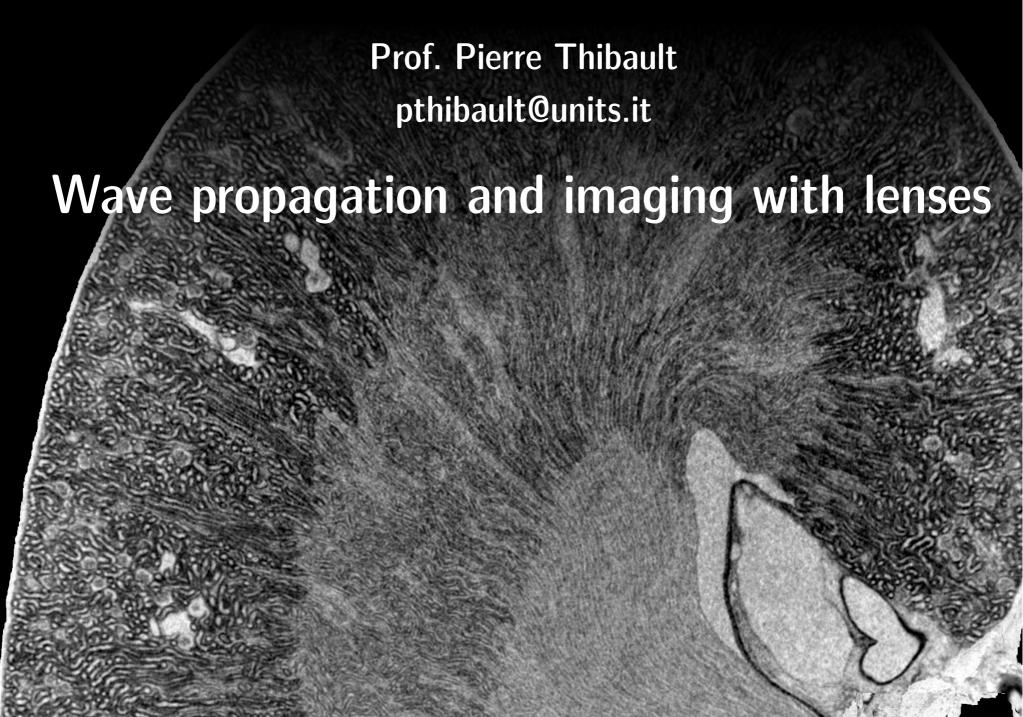
Image Processing for Physicists

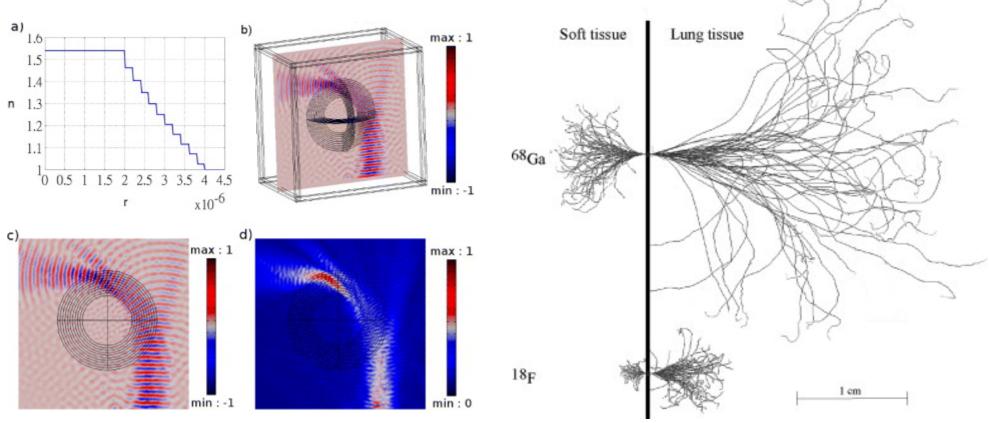


Overview

- Propagation modelization
- Wave propagation:
 - Near-field regime
 - Far-field regime

Motivations:

1. Validation



Finite element simulation of an electromagnetic field in a dielectric

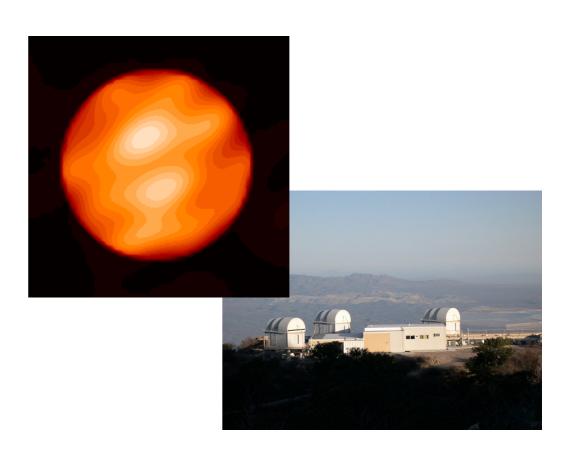
Monte Carlo simulation of positrons trajectories resulting from ⁶⁸Ga and ¹⁸F decay.

sources: T.M. Chang et al. New J. Phys. (2012) A. Sanchez-Crespo, Appl. Rad. Isotopes (2012)

Motivations:

2. Inversion

Image reconstruction from sound wave propagation (ultrasonography)



The surface of Betelgeuse reconstructed from interferometric data (IOTA)

sources: wikipedia Haubois et al. Astronom. & Astrophys. (2009)

Particles

- Model particle tracks (rays) through different media
- Model may include: refraction, force fields, particle decay and interactions
- Not included: diffraction

Wave

- Model the interaction of a field with a medium
- [–] Can be very complicated \rightarrow approximations are needed

Starting point: Helmholtz equation

- for EM field: neglect polarization (scalar wave approximation) $\rightarrow M_{ax\,well'}$ squations
- for electron wave, assume high energy electrons

La Schrödinger's equation

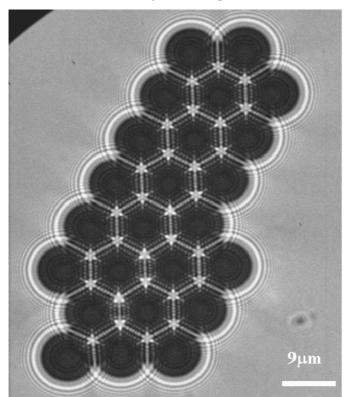
$$\nabla^{2} \psi - \frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi = 0$$
Consider solutions of the form $\psi(\vec{r},t) \rightarrow \psi(\vec{r}) e^{i\omega t}$

$$\psi^{2} \psi + k^{2} n^{2} \psi = 0$$

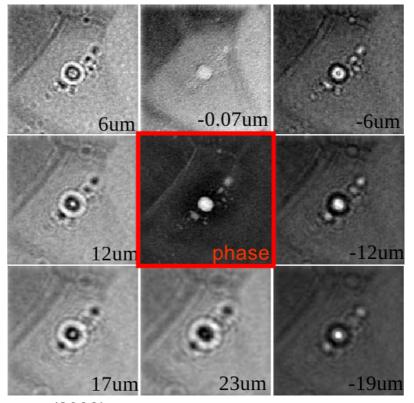
$$k^{2} = \frac{\omega^{2}}{c^{2}}$$
wavenumber

- Useful to:
 - better understand optical systems
 - understand diffraction, holography, phase contrast, interferometry, ...

X-ray hologram



TEM through-focus series



sources: Mayo et al. Opt. Express (2003) http://www.christophtkoch.com/Vorlesung/

The physics of propagation

Free space: n=1: General solution is a superposition of plane waves

$$\psi(\vec{r}) = \sum_{\vec{q}} A_{\vec{q}} e^{i\vec{q}\cdot\vec{r}}$$
 = sum is over \vec{q} such that $|\vec{q}|^2 = k^2$

with time:

$$\psi(\vec{r},t) = \sum_{i} \sum_{j} A_{\vec{q},i,i} e^{i(\vec{q}\cdot\vec{r} + \omega \cdot t)}$$

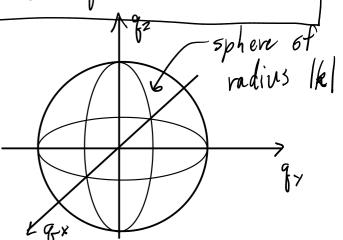
$$\nabla^{2}(A_{\vec{q}} e^{i\vec{q}\cdot\vec{r}}) + h^{2}A_{\vec{q}} e^{i\vec{q}\cdot\vec{r}} = A_{\vec{q}} e^{i\vec{q}\cdot\vec{r}} (-q^{2}) + k^{2}A_{q} e^{i\vec{q}\cdot\vec{r}} = 0$$

$$A_{q}^{2} e^{i\vec{q} \cdot \vec{r}} (k^{2} - q^{2}) = 0$$

$$Q_{x}^{2} + Q_{y}^{2} + Q_{z}^{2} = h^{2} \leftarrow \text{surface of a sphere}$$

$$O_{x} |_{x} |_{x}$$

Only wavevectors lying on the surface of this sphere are part of the solution



The physics of propagation

Angular spectrum representation

$$q_{z} = \frac{1}{2} \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}}$$

$$\psi(z) = \sum_{q_{x},q_{y}} A_{x}^{+} e^{i(q_{x}x + q_{y}y + \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - \sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - q_{y}^{2} - q_{y}^{2} - q_{y}^{2})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - q_{y}^{2} - q_{y}^{2} - q_{y}^{2})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - q_{y}^{2} - q_{y}^{2} - q_{y}^{2})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - q_{y}^{2} - q_{y}^{2} - q_{y}^{2})} z$$

$$+ \sum_{q_{x},q_{y}} A_{x}^{-} e^{i(q_{x}x + q_{y}y - q_{y}^{2} - q_{y}^{2} - q_{y}^{2})} z$$

$$+ \sum$$

$$\psi(x,y,z) = \sum_{q \neq q} A_{q \neq q} e^{i(q_{x}x + q_{y}y)} e^{i\sqrt{h^{2} - q_{x}^{2} - q_{y}^{2}}} z$$

$$2D \text{ Fourier transform.}$$

qx²-qx² z Fourier synthesis
equation for any
propagating wavefield

Forward propagation

Case
$$z=a$$
: $\psi(x,y,z=o)=\sum_{g\neq g} A_g \exp(iq_xx+q_yy))=\lim_{g\neq g} \lim_{g\neq g} \lim_{g$

Forward propagation

$$m_{x}N_{x}N = u_{x} \times = m_{x} \triangle x n_{x} \triangle u$$

$$\Rightarrow \triangle x \triangle u = N \qquad \triangle u = N \triangle x$$

$$Paraxial approximation: (small ample approximation)$$

$$\sqrt{k'-q''_{1}} = k\sqrt{1-q''_{1}}, \quad = k\left(1-\frac{q''_{1}}{2k'_{2}}\right) = k-\frac{q''_{1}}{2k}$$

$$\Rightarrow \exp\left(iz\sqrt{h'-q''_{1}}\right) \approx \exp\left(ikz\right) \exp\left(-i\frac{zq''_{1}}{2k'_{2}}\right)$$

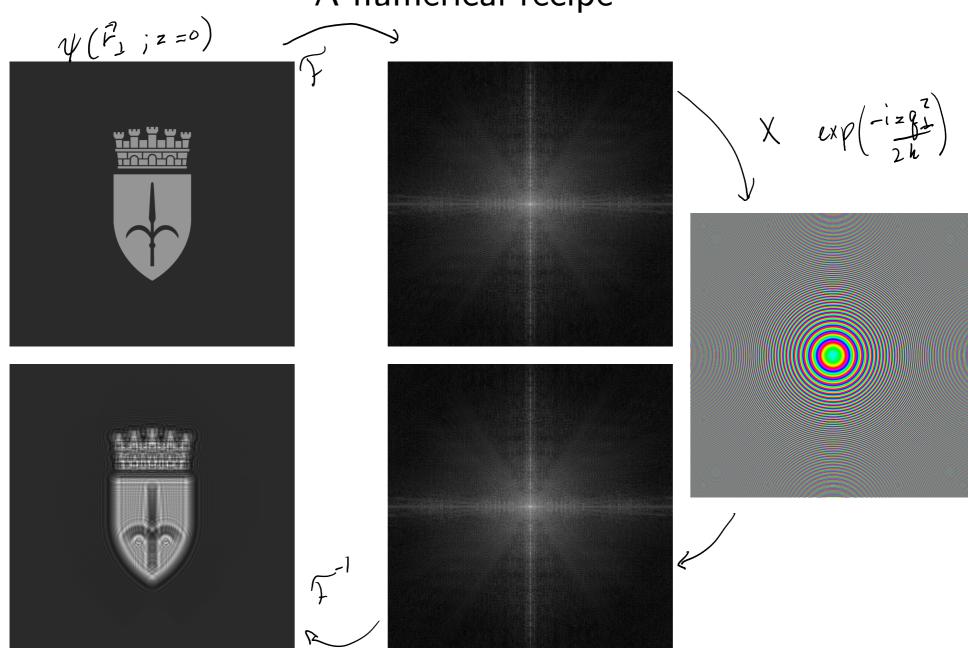
$$= \exp\left(-izq''_{2}\right) = \exp\left(-iz\pi\lambda u^{2}\right) = \exp\left(-iz\pi\lambda u^{2}\right) = \exp\left(-i\pi\sqrt{2\pi\lambda}(n_{x}^{2}+n_{y}^{2})\alpha^{2}\right)$$

$$= \exp\left(-i\pi\sqrt{2}(\lambda)(n_{x}^{2}+n_{y}^{2})\alpha^{2}\right)$$

$$= \exp\left(-i\pi\sqrt{2}(\lambda)(n_{x}^{2}+n_{y}^{2})\alpha^{2}\right)$$

Forward propagation

A numerical recipe



Near field, far field

$$\psi(\vec{r}_1;z) = \int_{-\infty}^{\infty} \{ \int_{-\infty}^{\infty} \{ \psi(\vec{r}_1;z=0) \} \exp\{-i\pi z \lambda u^2\} \}$$
 (+X)
* 6b servation 1: aliasing will occur when λz is too large (exect condition kept as an exercise)

A observation 2: (X) has the form of a convolution!

$$\psi(\vec{r}_{\perp};z) = \psi(\vec{r}_{\perp};z=0) * P_{z}(\vec{r}_{\perp})$$

where
$$P_z(P_\perp) = \int_{-\infty}^{\infty} \left\{ exp\left(-i\pi z \lambda u^2\right) \right\}$$

$$= -\frac{2\pi i}{\lambda z} \exp\left(i\pi r^2\right)$$
 Fresnel propagator

Huggens construction

Near field, far field

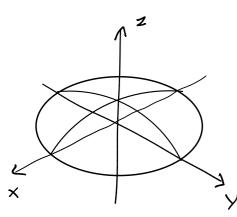
$$\psi(\vec{r},z) = -\frac{2\pi i}{\lambda z} \int d^2r' \, \psi(\vec{r}_1';z=0) \exp\left(i\pi \frac{(\vec{r}-\vec{r}_1')^2}{\lambda z}\right) \frac{1}{|\vec{r}|} + \frac{1}{|\vec{r}|} \exp\left(-\frac{1}{|\vec{r}|} + \frac{1}{|\vec{r}|} + \frac{1}{|\vec$$

$$\int \left\{ \psi(r';z=0) \exp\left(\frac{i\pi r'^2}{\lambda z}\right) \right\} \left(\vec{\lambda} = \frac{\vec{r}}{\lambda z} \right)$$

$$= \psi(\vec{r};z) = \frac{-\partial \pi_i}{\partial z} \exp\left(\frac{i\pi r^2}{\partial z}\right) + \left\{ \psi(r';z=0) \exp\left(\frac{i\pi r^2}{\partial z}\right) \right\} \left(\vec{u} = \frac{\vec{r}}{\partial z}\right)$$

Wave propagation
$$\Rightarrow$$
 $z \rightarrow \infty$ $\psi(\vec{r}; z \rightarrow \omega) \propto f\{\psi\}(\vec{a} = \frac{\vec{r}}{\lambda z})$

Back focal plane of a lens inclevant thickness profile: $t(v) = t_0 - \alpha r^2$ curvature



$$t(v) = t_0 - \alpha r^2$$

) * phase
$$\phi(\vec{r}_1) = k(n-1)t(\vec{r}_1)$$

$$\phi(\vec{r}_{\perp}) = -\frac{2\pi}{3}(n-1)\alpha r_{\perp}^{2}$$

$$(n-1) d = 2f$$

* focal length:
$$(n-1) d = 2f$$

eig(\vec{r}_1)

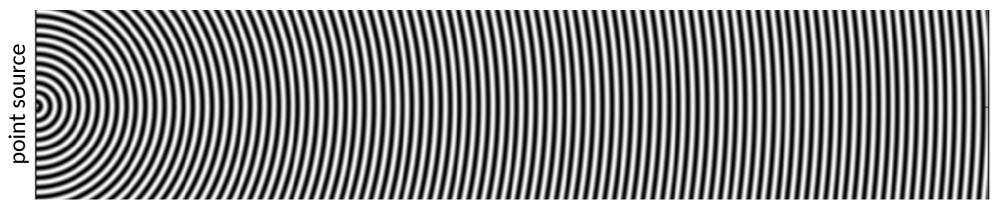
Substitute $\psi(r_1; z=0)$ with $\psi(\vec{r}_1; z=0) \exp(-i\pi r_1)$

$$\Rightarrow \psi(\vec{r}_{\perp};z) = -\frac{2\pi i}{\lambda z} \exp\left(\frac{i\pi r^2}{\lambda z}\right) - \left\{ \psi(r_{\perp};z=0) \exp\left(\frac{i\pi}{\lambda}(\frac{1}{z}-\frac{1}{f})r^2\right) \right\} (\vec{u} = \frac{\vec{r}}{\lambda z})$$

* special case:
$$z = f \implies \psi(\vec{r}_1; z = f) = f.T. \text{ of } \psi(\vec{r}_2; z = 0)$$

A lens acts as a Fourier transform operator!

Plane waves, point sources



circular waves evanescent waves contact region

parabolic waves near field Fresnel region plane waves far field Fraunhofer region

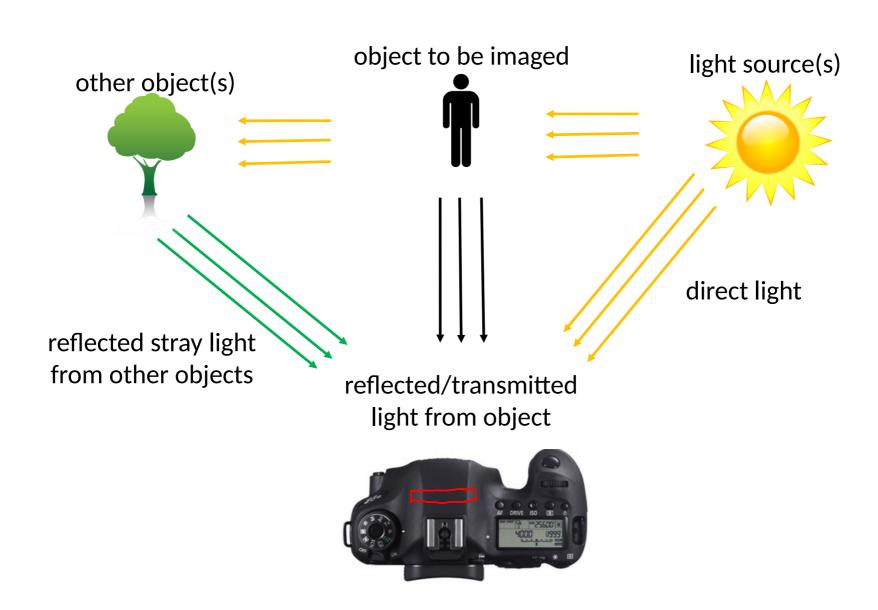
Why optical elements?

with objective lens

without objective lens

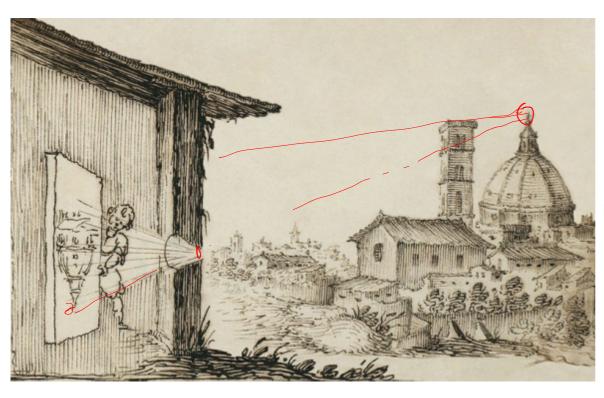
Why optical elements?

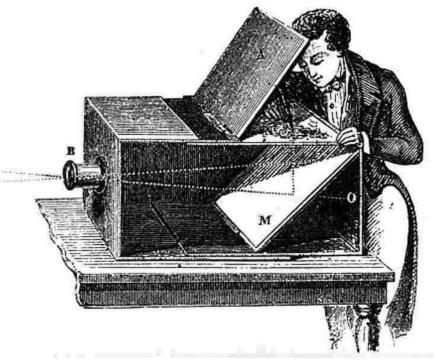
- Information from many sources overlaps in detector plane
- Need models to understand image forming systems



Pinhole camera model

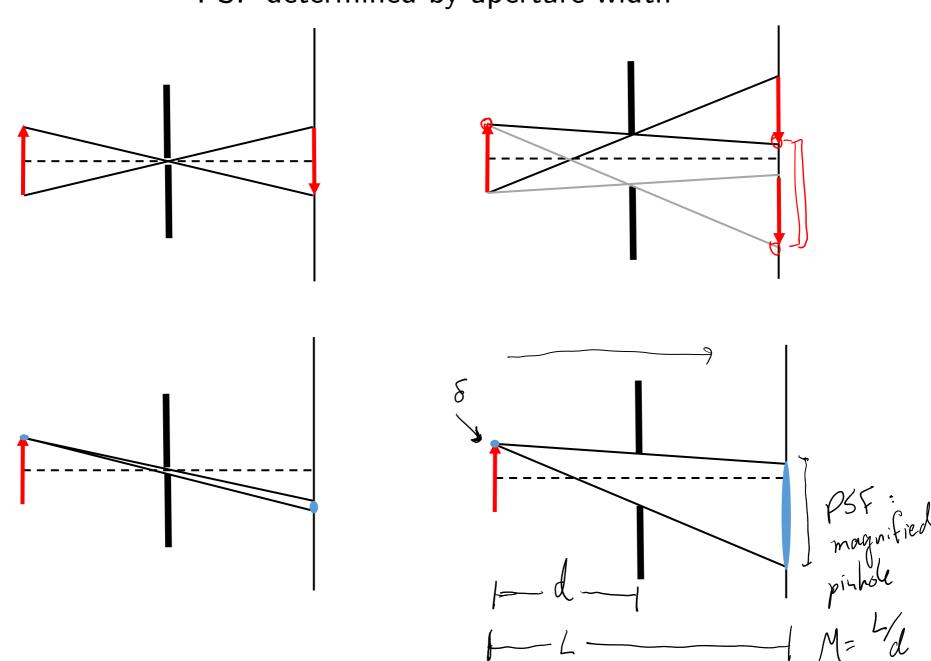
camera obscura



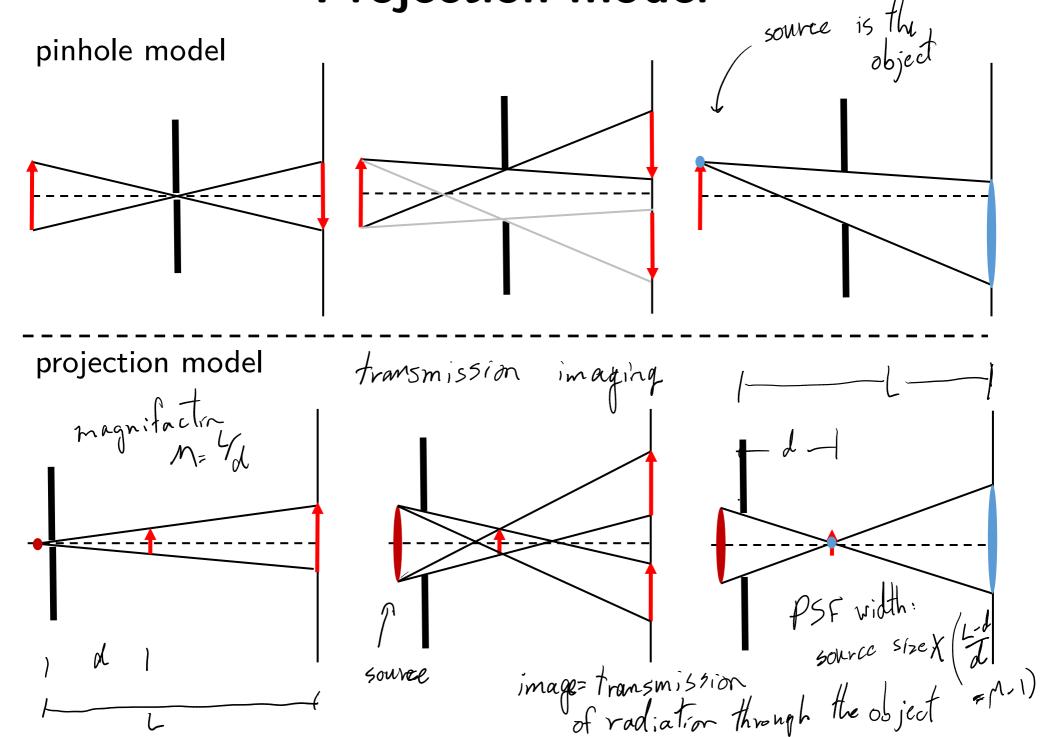


Pinhole camera model

PSF determined by aperture width



Projection model



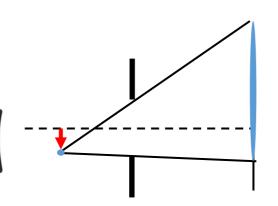
Lens camera model



Result similar to small pinhole but without compromise on intensity

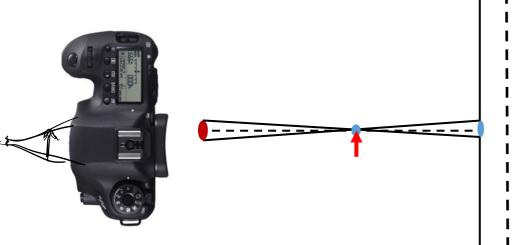
Lens camera model

lensless model

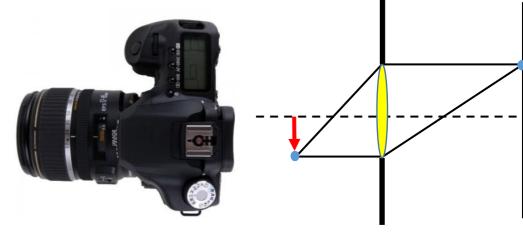


pinhole camera model

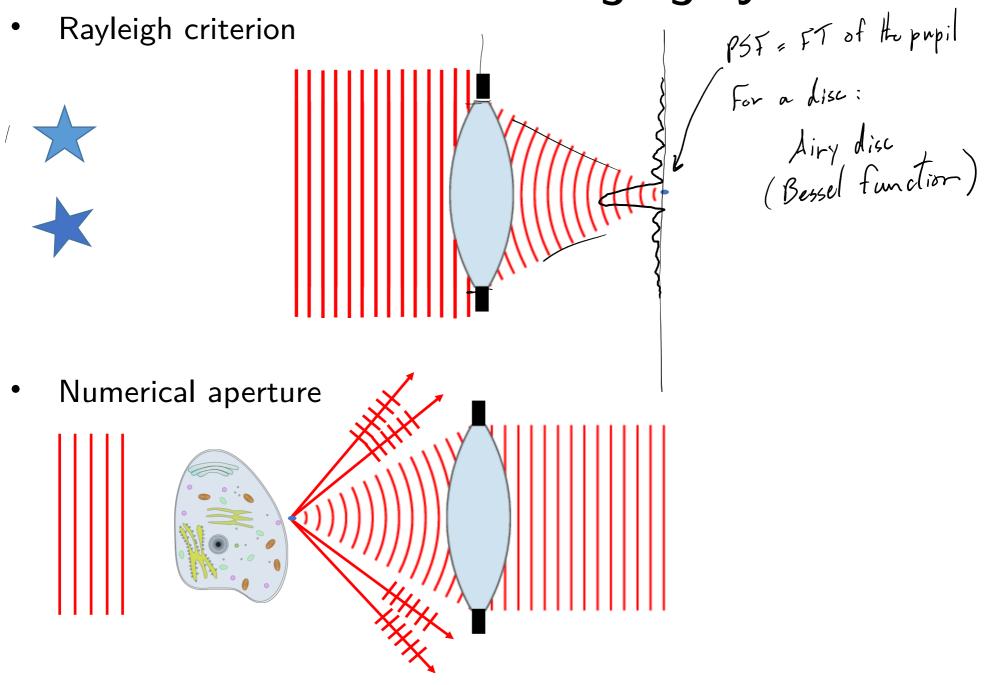
projection model



lens camera model



Diffraction-limited imaging systems

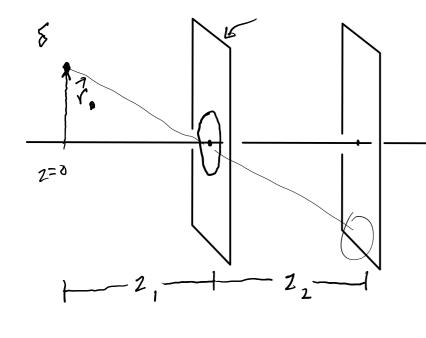


inverse Fourier transform of disc of radius J. First Bessel function Rayleigh criterion to define resolution: distance from origin to first minimum J (3.83) = 0 271 r Min Umax = 3.83 $2\pi M_{max} = q_{max} = k \sin \theta$ $\gamma_{\min} = \frac{3.83}{k \sin \theta} = \frac{1.12}{2 \sin \theta}$

Umax OC J, (211 r Umax)
r Umax
Ynin

 $PSF = \left| J_{1}(2\pi r u_{max}) \right|^{2}$ $r u_{max}$

 $J_{1}(J\pi r_{min} U_{max}) = 0$ $sin\theta = NA$ "numbrical aperture" g_{2} g_{2} g_{3}



- 1) monochromatic point source at position ro in place z=0
- 2) propagates to plane Z,
- 3) multiplied with optical element O(F)

4) propagate further to plane 2,+22

2):
$$\Psi(\vec{r};z=z_i) = \frac{-2\pi i}{\lambda z_i} \exp\left(\frac{i\pi(\vec{r}-\vec{r}_o)}{\lambda z_i}\right)$$

3):
$$\gamma'(\vec{r}) = \gamma(\vec{r}; z = z_1) \cdot O(\vec{r})$$

4):
$$\psi(\vec{r}; z=z_1+z_2) = -\frac{2\pi i}{\lambda z_2} \exp\left(\frac{i\pi r^2}{\lambda z_2}\right) + \left\{\psi'(\vec{r}) \exp\left(\frac{i\pi r^2}{\lambda z_2}\right)\right\}$$

 $\left(\vec{u} = \sum_{\lambda z_{i}}\right)$

$$\begin{aligned} \mathbf{*} &= \int \left\{ -\frac{2\pi i}{\lambda z_{1}} \exp\left[\frac{i\pi}{\lambda z_{1}} \left[r^{1^{2}} - 2r^{i} \cdot \vec{r}_{0} + r^{2}\right] \right] \mathcal{O}(\vec{r}) \exp\left[\frac{i\pi}{\lambda z_{1}} r^{12}\right] \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}^{2}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}^{2}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}^{2}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}^{2}}\right) \right\} \left(\vec{u} + \vec{r}_{0} \right) \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}^{2}}\right) \right\} \left(\vec{u} + \vec{r}_{0} \right) \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}^{2}}\right) \right\} \left(\vec{u} + \vec{r}_{0} \right) \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r^{i}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \right\} \\ &= -\frac{2\pi i}{\lambda z_{1}} \exp\left(\frac{i\pi r_{0}^{2}}{\lambda z_{1}}\right) \int \left\{ \mathcal{O}(\vec{r}^{1}) \exp\left(\frac{i\pi r_{$$

$$\partial(\hat{R}; z = z^*) = \frac{-2\pi i}{\lambda z^*} \exp\left(\frac{i\pi R^2}{\lambda z^*}\right) \int \left\{\partial(\hat{r}') \exp\left(\frac{i\pi r^{11}}{\lambda z^*}\right)\right\} \left(u = \hat{R}\right)$$

$$\frac{\vec{r}}{\lambda z^*} = \frac{\vec{r}}{\lambda z_2} - \frac{\vec{r}}{\lambda z_1}$$

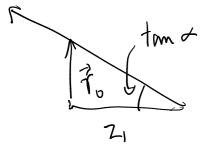
$$\frac{\overrightarrow{r}}{\lambda z^{*}} = \frac{\overrightarrow{r}}{\lambda z_{2}} - \frac{\overrightarrow{r}}{\lambda z_{1}}$$

$$R = \frac{\overrightarrow{r}}{2z} - \frac{\overrightarrow{r}}{z_{1}} = \frac{\overrightarrow{r}}{z_{1}} = \frac{\overrightarrow{r}}{z_{1}+2z} - \frac{\overrightarrow{r}}{z_{1}+2z}$$

$$\lambda z^{*} = \frac{\overrightarrow{r}}{\lambda z_{2}} - \frac{\overrightarrow{r}}{\lambda z_{1}} = \frac{\overrightarrow{r}}{z_{1}+2z} - \frac{\overrightarrow{r}}{z_{1}+2z} = \frac{\overrightarrow{r}}{z_{1}+2z}$$

$$\psi(\vec{r}; z = z_1 + z_1) = \frac{-2\pi i}{\lambda(z_1 + z_1)}$$

$$\psi(\vec{r}; z = z_1 + z_1) = \frac{-2\pi i}{\lambda(z_1 + z_1)} exp\left[\frac{i\pi(r_0^2 - r_0^2)}{\lambda z_1}\right] O\left(\frac{z_1}{z_1 z_2}, r_0^2 - \frac{z_2}{z_1 z_2}, r_0^2\right)$$



tom
$$d$$

$$O(7): long of focal length f$$

$$O(7) = f = f$$

$$f = f$$

Scanning systems

Transmission

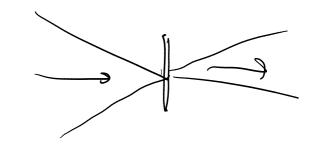
- Scanning Transmission Electron Microscopy
- Scanning Transmission X-ray Microscopy
- •

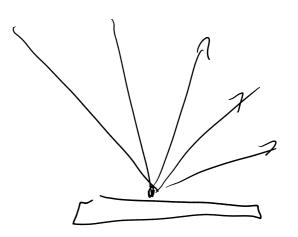
Indirect (reflection, scattering, fluorescence, ...)

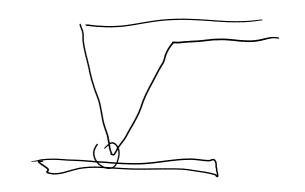
- Laser Scanning Confocal Micropsopy
- Scanning Electron Microscopy
- X-ray Fluorescence Microscopy
- PhotoEmission Electron Microscopy
- •

Physical probe

- Atomic Force Microscopy
- Scanning Tunneling Microscopy
- •

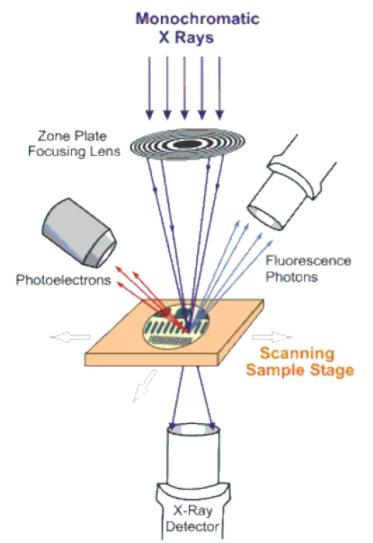


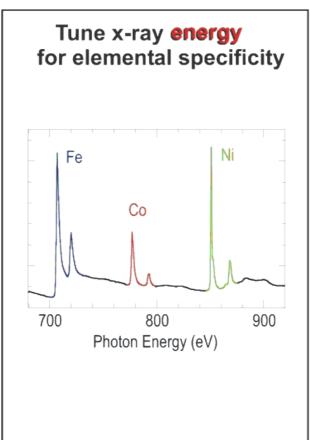


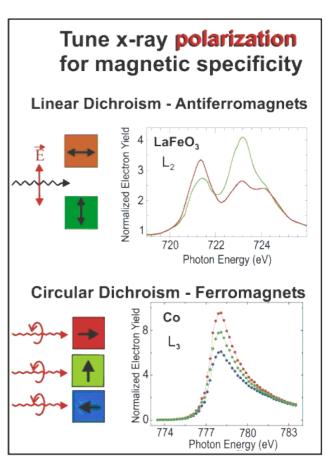


Scanning transmission X-ray microscopy

Scanning Transmission X-ray Microscopy STXM

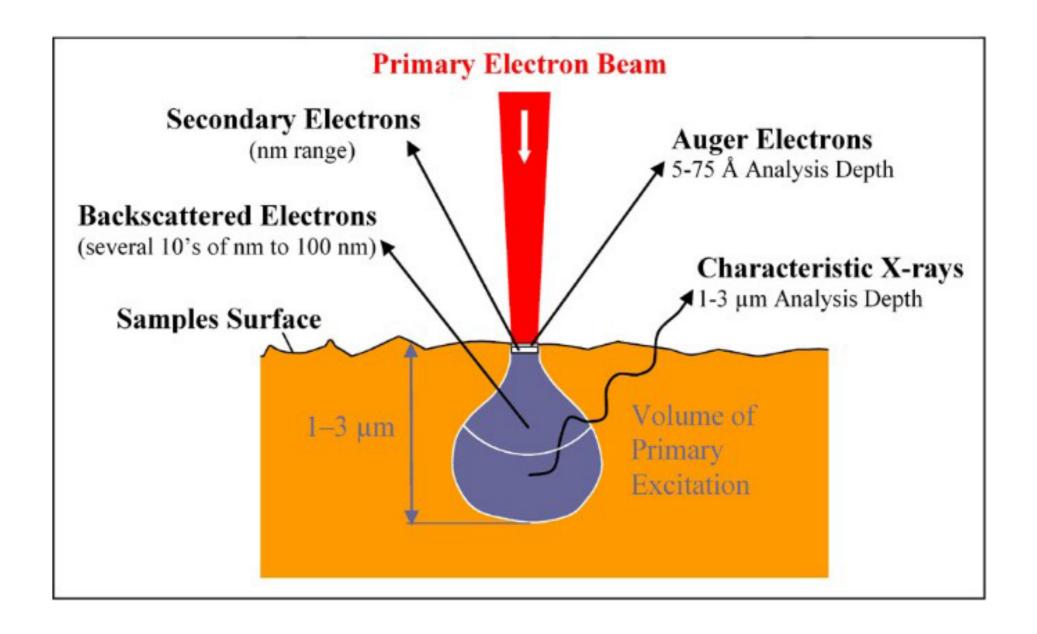






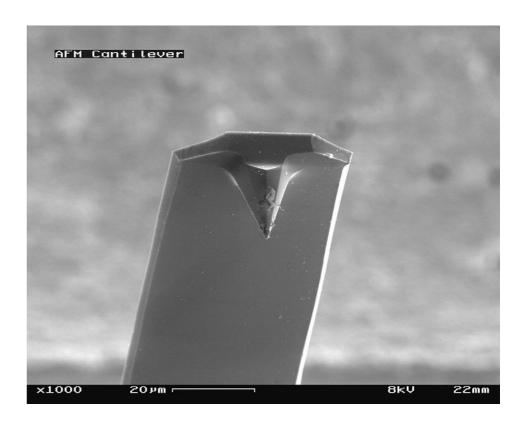
source: http://www-ssrl.slac.stanford.edu

Scanning electron microscopy



Atomic force microscopy





Resolution in scanning systems

Resolution mainly limited by probe size

two images of point sources. coherent vs. incoherent. What is measured:

1) if the two source.

Coherent -> they

1) if the two sources are perfectly coherent on they interfere Game frequency, same phase 14, + 4, 1²

2) if the Two sources are completely incolerent: their intensities add up 14/2 + 14/2

In general I=PSFinc* |4/2

PSF for a scanning system is the intensity of the image of a point source 14/2 e.g. | J, (2 Trumax) | 2

Scanning vs. full field systems

Transmission probe: the reciprocity theorem

In coherent system