Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Overview

- Fundamentals of tomography
 - Physics & geometry
- Analytic formulation
 - Radon transform
 - Filtered back-projection
- Algebraic formulation

Examples of tomographic imaging Computed (X-ray) Tomography (CT)

source: W. Kalender, Publicis, 3rd ed. 2011

Examples of tomographic imaging

Single-Photon Emission

Positron emission tomography (PET) + CT

Computed Tomography (SPECT)

Examples of tomographic imaging Seismic tomography

source: Sambridge et al. G3 Vol.4 Nr.3 (2003)

Examples of tomographic imaging Ultrasonography/tomography (US/UST)

Magnetic resonance imaging/tomography (MRI/MRT)

Reconstructions from projections

Radon transform

Sinogram

Representation of projection measured by a single detector line as a function of angle

Tomography

b

Filtered back-projection

$$\int_{y}^{\infty} \int_{y}^{\infty} \{p(\theta, r^{2})\} e^{2\pi i w r} |w| dw = p^{2}(\theta, r)$$
Filtered sinogram

$$f(x, \gamma) = \int_{0}^{\pi} \frac{p'(\theta, \gamma = x\cos\theta + \gamma\sin\theta)}{back - projected} \frac{1}{filtered} \frac{1}{projection} \frac{1}{p} \frac{1}{p(\theta, \gamma = x\cos\theta + \gamma\sin\theta)} \frac{1}{p(\theta, \gamma = x\cos\theta)} \frac{1}{p($$

Filtered back-projection

- Filter can be tuned to achieve image enhancement
- Trade-off between noise and sharpness

Geometries

Algebraic formulation

Tomography can be formulated as a set of linear equations

Weighting coefficients

Weighting measures:

• Logic

Dor 1 Area

- Path length
- Distance to pixel center

 f_1 f_n Δξ f_{n^2}

Differences in calculation effort, smoothness, noise sensitivity, ...

Tomography

source: Buzug, Springer, 1st ed. 2008

System Matrix

system matrix in general is -> mode of entries between 0 and 1 -> sparse

 $\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 13 \\ 2 \\ 10 \\ 7 \end{pmatrix}$

source: Buzug, Springer, 1st ed. 2008

Matrix (pseudo)-inversion

 $) \mathcal{M}^{\mathsf{T}}$

Moore - Penrose preudo-inverse

square matrices only Tomographic reconstruction = linear system inversion con be inverted syster matrix tomo slice rectangular matrices are pseudo-inverted

singrom

Iterative methods:

T= M-15 Algebraic reconstruction technique • ART

 $M \int |T| = |S|$

- SART Simultaneous algebraic reconstruction technique
- SIRT Simultaneous iterative reconstruction technique
- M T corresponds to Back-project-operation • MART Multiplicative algebraic reconstruction technique
- MLEM Maximum likelihood expectation maximization
- OSEM Ordered subset expectation maximization
- ... and many, many more

FBP vs algebraic methods

iterative 40% dose

Filtered backprojection 100% dose

source: Kachelries, http://www.dkfz.de/en/medphysrad/workinggroups/ct/ct_conference_contributions/BasicsOfCTImageReconstruction_Part2.pdf

Artifacts

Missing projections \rightarrow "streak" artifacts

spatial axis

Also: sample motion, beam hardening, ...

Tomographic Display

source: http://wikipedia.org

source: W. Kalender, Publicis, 3rd ed. 2011

Volume rendering display

Summary

- Computed tomography: reconstruction from projections
- Analytic approach:
 - Projections and tomographic slices are related by the Fourier slice theorem
 - Standard algorithm uses filtered back-projection
- Algebraic approach:
 - Tomography as a system of linear equations
 - Iterative methods are used for large matrix inversions
 - More powerful but computationally more costly
- Imperfect data leads to artifacts