
INFORMATION
RETRIEVAL
Laura Nenzi 
lnenzi@units.it

Lecture 5

mailto:lmanzoni@units.it

LECTURE OUTLINE

Postings Lists

and dictionary compression

index construction

and updating

NEW

DOCUM

ENTS

Counting

disk accesses

Boolean Queries
Optimisation

(a ∧ b) ∧ c

a ∧ (b ∧ c)

COUNTING DISK ACCESSES

MAIN MEMORY AND EXTERNAL STORAGE

EXTERNAL STORAGE

• When analysing the complexity of algorithms each step is
considered as having the same cost.

• This is a reasonable assumption in many cases, especially if all the
data fit in the main memory.

• When accessing storage this assumption is stretched too thin: the
costs can be orders of magnitude greater than accessing the main
memory.

• Similar considerations holds when using the network.

FROM NANOSECONDS DI MILLISECONDS

TIMING OF SOME STANDARD OPERATIONS

execute typical instruction 1 ns

fetch from L1 cache memory 0.5 ns

branch misprediction 5 ns

fetch from L2 cache memory 7 ns

Mutex lock/unlock 25 ns

fetch from main memory 100 ns

send 2K bytes over 1Gbps network 20,000 ns

read 1MB sequentially from memory 250,000 ns

fetch from new disk location (seek) 8,000,000 ns

read 1MB sequentially from disk 20,000,000 ns

From http://norvig.com/21-days.html#answers

http://norvig.com/21-days.html#answers

SOME TERMINOLOGY

• Caching: keeping frequently used disk data in main memory

• Seek time: the time needed for the disk head to move to the part
of the disk where the data are located (averages 5 ms for typical
disks). No data are being transferred during the seek

• Buffer: the part of main memory where a block being read or
written is stored. Reading single bytes from disk can take as much
time as reading entire blocks

COMPLEXITY: COUNTING DISK ACCESSES

• We might want to transfer data “in block”. Since each read is
costly, we want to read more than strictly necessary.

• While asymptotic results are important, we might want to be do
a finer analysis.

• Since the access to external storage is expensive, we might
decide to do more work “in memory” to minimise the number
of accesses (e.g., choice of data structure, compress and
decompress data).

• The total time of reading and then decompressing compressed
data is usually less than reading uncompressed data

 INDEX CONTRUCTION

HOW THE POSTINGS LISTS ARE ORGANISED ON DISK

STORING POSTINGS

• How are the postings stored on-disk?

• One file per postings list can lead to too many files for a
filesystem to manage efficiently

• One single large file containing all the postings can be better
(here we select this solution)

• In reality we can have a combination of both, with multiple large
files each storing part of the postings

BASIC IDEA OF THE ALGORITHM

BLOCKED SORT-BASED INDEXING (BSBI)

• Segments the collection into parts of equal size (blocks)

• Accumulate postings for each block and sort in memory

• Stores intermediate sorted results on disk

• Then merge the blocks into one long sorted order (with binary-
tree or more efficient a multi-way merge)

• The merged list is written back to disk

REMAINING PROBLEM WITH SORT-BASED ALGORITHM

• Our assumption was: we can keep the dictionary in memory.

• We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

• Actually, we could work with term,docID postings instead of
termID,docID postings…

• …but then intermediate files become very large. (We would end
up with a scalable but very slow index construction method)

SINGLE-PASS IN-MEMORY INDEXING (SPMI)

• Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

• Key idea 2: Don’t sort. Accumulate postings in postings lists as
they occur.

• With these two ideas we can generate a complete inverted index
for each block.

• These separate indexes can then be merged into one big index
(similar to BSMI).

• Compression makes SPIMI even more efficient

BASIC IDEA OF THE ALGORITHM

UPDATING THE INDEX

• Up to now, we have assumed that collections are static.

• They rarely are:

• Documents come in over time and need to be inserted.

• Documents are deleted and modified.

• This means that the dictionary and postings lists have to be
modified

DYNAMIC INDEXING
FOR COLLECTIONS THAT CHANGE WITH TIME

FOR COLLECTIONS THAT CHANGE WITH TIME

DYNAMIC INDEXING

• How can we insert new documents (or delete old ones) in an
inverted index?

• We can rebuild the index:

• Not very efficient.

• Only useful when the number of changes is small.

• To keep the system online while reindexing we need to keep
the old index until new one is ready.

A MORE EFFICIENT SOLUTION

AUXILIARY INDEX

Main index

Auxiliary index: 
contains only 

new document

Invalidation bit vector: 
we save which documents 

has been deleted 
(one bit for each document)

Queries merge 
the results of 

the two indices

Filtering using the 
invalidation bit vector

+

CAN WE DO BETTER?

AUXILIARY INDEX

• When the auxiliary index becomes too big we need to merge it 
with the main index.

• We can improve the efficiency by keeping auxiliary
indices (each one of size double the previous one) where is the
total number for postings and the size of the smaller auxiliary
index.

• This increase the complexity of all algorithms used to answer
queries, so it is a trade-off.

log2(T/n)
T

n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR

INDEX OF

SIZE n

“SLOT” FOR

INDEX OF

SIZE 2n

“SLOT” FOR

INDEX OF

SIZE 4n

The smaller index is kept in memory

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR

INDEX OF

SIZE n

“SLOT” FOR

INDEX OF

SIZE 2n

“SLOT” FOR

INDEX OF

SIZE 4n

When full it is copied to disk.

A new (empty) index of size is created in memoryn

INDEX OF
SIZE n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR

INDEX OF

SIZE n

“SLOT” FOR

INDEX OF

SIZE 2n

“SLOT” FOR

INDEX OF

SIZE 4n

When it is full, since there is already an index of size  
saved on disk, it is merged with it to form an index of size .

A new (empty) index of size is created in memory

n
2n

n

INDEX OF
SIZE 2n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR

INDEX OF

SIZE n

“SLOT” FOR

INDEX OF

SIZE 2n

“SLOT” FOR

INDEX OF

SIZE 4n

When full it is copied to disk. No merge is necessary (the “slot” is free)

A new (empty) index of size is created in memoryn

INDEX OF
SIZE 2n

INDEX OF
SIZE n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR

INDEX OF

SIZE n

“SLOT” FOR

INDEX OF

SIZE 2n

“SLOT” FOR

INDEX OF

SIZE 4n

When it is full, since there is already an index of size  
saved on disk, it is merged with it to form an index of size .

Since there is already an index of size saved on disk,

it is merged with it to form an index of size

A new (empty) index of size is created in memory

n
2n

2n
4n

n

INDEX OF
SIZE 4n

MAIN MEMORY

MAIN IDEAS

LOGARITHMIC MERGING

INDEX OF
SIZE n

“SLOT” FOR

INDEX OF

SIZE n

“SLOT” FOR

INDEX OF

SIZE 2n

“SLOT” FOR

INDEX OF

SIZE 4n

When full it is copied to disk. No merge is necessary (the “slot” is free)

A new (empty) index of size is created in memoryn

INDEX OF
SIZE 4n

INDEX OF
SIZE n

Most merges are of small indices, even if sometimes a series of

more merge operations are necessary.

DICTIONARY AND INDEX COMPRESSION

SPEED IMPLICATIONS

WHY COMPRESSION?

• We can compress two things: the dictionary and the postings

• Why using compression?

• To save disk space.

• To keep the entire dictionary in memory.

• To keep more data in the main memory.

• It might be faster to read less data from disk and decompress it
in memory than to read the non-compressed data.

HEAPS’ LAW

ESTIMATION OF THE NUMBER OF TERMS

M = kTb

In a collection with tokens the estimated size 
of the vocabulary is:

T

Typical values for are between and k 30 100

Usually, b ≈ 0.5

HEAPS’ LAW SUGGESTS THAT THE SIZE OF THE DICTIONARY 
INCREASES WITH THE SIZE OF THE COLLECTION

ZIPF’S LAW

DISTRIBUTION OF TERMS

cfi ∝
1
i

The -th most common term in a collection appears 

with a frequency proportional to :

i

cfi
1
i

In other words, frequency of terms decreases rapidly 
with the rank.

Equivalent formulation: for some constants 
 and for .

cfi = cik

c k = − 1

FREQUENCIES OF WORDS IN A CORPUS

DISTRIBUTION OF WORDS

Data extracted from the “Time” dataset

Stop words are usually located here

DICTIONARY AS FIXED-WIDTH ENTRIES

A

AACHEN

ABABA

ABABAS

ABACK

ABADAN

ABANDON

ABANDONED

ABANDONING

ABANDONMENT

Pointer to postings list

0

250

167

229

23

119

22

1 2

226 229

326 353

271 284

70

261

359

187 192

ADVANTAGES AND DISADVANTAGES

DICTIONARY AS FIXED-WIDTH ENTRIES

• Each entry consists of an entry of characters and a pointer to
the postings list.

• Words of length at most can be stored.

• If we save a 40 characters string (i.e.,) then every entry will
require 40 characters, wasting a lot of space for short words.

m

m

m ≥ 40

DICTIONARY AS A SINGLE STRING

A AACHEN ABABA ABABAS ABACK ABADAN ABANDON ABANDONED ABANDONING ABANDONMENT

Pointer to term Pointer to postings list

0

250

167

229

23

119

22

1 2

226 229

326 353

271 284

DESCRIPTION AND ADVANTAGES

DICTIONARY AS A SINGLE STRING

• Each entry consists of a pointer to the term that is part of a
contiguous string and to the pointer to the postings list

• To know the end of the word it is necessary to look at the next
pointer.

• There is no wasted space for the strings…

• …but it is necessary to keep an additional pointer for each entry.

• We can reduce the space used for the pointers by using blocked
storage.

BLOCKED STORAGE

A AACHEN ABABA ABABAS ABACK ABADAN ABANDON ABANDONED

Pointer to term Pointer to postings list

0

250

167

229

23

119

22

1 2

226 229

326 353

271 284

1 6 5 6 5 6 7 9 ABANDONING10

Block of 4 terms

block 
(one pointer)

Is the length of a wordn

ADVANTAGES AND DISADVANTAGES

BLOCKED STORAGE

• Now only one every entries (the block size) has a pointer.

• The value of the others entries is determined by a linear scan of
the block.

• The addition of the length of the string is needed to know where
a string end.

• It is a trade-off between space and access time (which is increased
due to the linear scanning inside a block).

• We are still not using the fact that the words in the dictionary are
ordered alphabetically.

k

FRONT CODING

A ACHEN BABA S1 6 5 61 1 4 ABACK DAN NDON ED5 6 7 93 3 7

Block of 4 terms

Length of the prefix shared with the previous word

A 
AACHEN

ABABA

ABABAS

Block of 4 terms

ABACK

ABADAN

ABANDON

ABANDONED

In red the prefix shared by each word 
with the previous one in the block:

This works because the 
dictionary is ordered alphabetically,

thus many words share a prefix

ADVANTAGES AND DISADVANTAGES

FRONT CODING

• Used inside a block reduces the size of the dictionary.

• Uses the fact that the dictionary is ordered.

• Requires, in addition to the linear scanning, a decoding phase.

• As before a trade-off between reducing size and incrementing the
cost of retrieving a term.

AND THE USE OF VARIABLE BYTE CODES

POSTING FILE: ENCODING DIFFERENCES

A

AACHEN

ABABA

0

250

167

1 2

226 229

Can we use the fact that a postings list is ordered?

YES

If we have a sequence with for all , 
we can also encode it as a sequence of differences 
of consecutive terms:

(a0, a1, a2, a3, …) ai < ai+1 i

(a0, a1 − a0, a2 − a1, a3 − a2, …)

AND THE USE OF VARIABLE BYTE CODES

POSTING FILE: ENCODING DIFFERENCES

A

AACHEN

ABABA

0

250

167

1 2

226 229

A

AACHEN

ABABA

0

250

167

1 1

59 3

Encoding gaps instead 
of DocIDs

AND THE USE OF VARIABLE BYTE CODES

POSTING FILE: ENCODING DIFFERENCES

A

AACHEN

ABABA

0

250

167

1 1

59 3

How can we recover this DocID?
167 + 59 + 3 = 229

In general, to recover the -th DocID in list we sum all the 
values up to the -th one: 

k
k

a0 +
k

∑
i=0

(ai − ai−1) = a0 + a1 − a0 + a2 − a1 + … = ak

MOTIVATIONS FOR ENCODING THE GAPS

POSTING FILE: ENCODING DIFFERENCES

• The DocID can be arbitrarily large…

• …but most of the gaps between two DocID will be small

• We can use variable byte codes to use less storage

• Still, recovering a DocID now is more complex.

• Most importantly, access to the list must be sequential: to recover
a DocID we need to read all the previous ones.

• But the algorithms for union and intersection access the list
sequentially.

ENCODE NUMBERS IN A VARIABLE NUMBER OF BYTES

VARIABLE BYTE CODES

0 1 0 0 1 0 0 0

One byte usually encodes different values28 = 256

26 + 23 = 72

0 1 0 0 1 0 0 0

We encode different values in the first seven bits 
the last bit is a continuation bit. 
If it is then we have completed reading the number 
otherwise we must continue to read the next byte

27 = 128

0

25 + 22 = 36

ENCODE NUMBERS IN A VARIABLE NUMBER OF BYTES

VARIABLE BYTE CODES

0 1 0 0 1 0 0 1

212 + 29 + 26 + 21 + 20 = 4675

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1 0 0 0 0 1 1

of bytes Max value

1 127
2 16383

3 2097152

4 268435456

The most frequent terms will have small 
gaps in their postings lists.

Hence, we can store the size of most gaps 
in only a few bytes

COMPRESSION + DATA STRUCTURES

A AACHEN ABABA ABABAS ABACK ABADAN ABANDON ABANDONED1 6 5 6 5 6 7 9 ABANDONING10

Block of 2 terms

A binary search on a compressed dictionary 
requires a linear search inside each block

Pointer to block

OPTIMISATION OF BOOLEAN QUERIES

SOMETIMES ORDER IS IMPORTANT

WHICH ONE IS BETTER?

Query: Monty AND Python AND Grail

(Monty AND Python) AND Grail

(Python AND Grail) AND Monty

Can be evaluated in three ways:

(Monty AND Grail) AND Python

The result is the same but the performances might differ

OPTIMISATION OF BOOLEAN QUERIES

• The main idea is to select the order the reduce the size of the
intermediate results…

• …but we don’t know the size of the intersection

• But we know that , hence we use
 as an estimate.

• We evaluate the terms from the one with the shorter postings list
to the largest.

• Similar considerations can be made with the union, using
 as an estimate

|A ∩ B | ≤ min(|A | , |B |)
min(|A | , |B |)

|A | + |B |

