S

Refactoring, S.O.L.1.D.
Principles and Simple Design

F

\¥" \
Y/

5
\J

S.O.L.I.D. Principles

Principle of class design

~ 7

S.O.L.1.D. Principles

Principle of class design that focus very tightly on dependency
management.

DESIGN PRINCIPLES

= Single Responsibility Principle

» Open-closed Principle g _
= Liskov Substitution Principle e ogp Smcpe ISP P
= Interface Segregation Principle cioses Searegation

» Dependency Inversion Principle

https://stackify.com/solid-design-principles/
https://stackify.com/solid-design-open-closed-principle/
https://stackify.com/solid-design-liskov-substitution-principle/
https://stackify.com/interface-segregation-principle/
https://stackify.com/dependency-inversion-principle/

Single Responsibility Principle

Every object should have a single
responsibility, and that responsibility should
be entirely encapsulated by the class. public class Rectangle {

private double width;
private double height;
private Graphics graphics;

/).

public double area() {
. return width * height;
= We want classes to be cohesive }

= Only one reason to change public void draw() {

. oL o
= Can be applied to methods too } // Do something with Graphics

Single Responsibility Principle

Move responsibilities to other (new) classes.

public class GeometricRectangle {

private double width;
private double height;

public double area() {
return width * height;

}
}

public class Rectangle {

o COmpOSitiOn over inheritance private GeometricRectangle geometricRectangle;

. private Graphics graphics;
= Move related behaviors close to each other
/) ...

public void draw() {
// Draw geometricRectangle using Graphics

}

Open-Closed Principle

Software entities should be open for
extension, but closed for modification.

= Minimize changes to existing code when
adding new behavior

= Take advantage of object composition and
polymorphism

public class Shape {
/...
}

public class Rectangle extends Shape {
/e
}

public class Circle extends Shape {
/).
}

public class GraphicEditor {

public void drawShape(Shape s) {
if (s instanceof Rectangle) {
drawRectangle((Rectangle) s);
} else if (s instanceof Circle) {
drawCircle((Circle) s);
}
}

public void drawRectangle(Rectangle rectangle) {
/).
}

public void drawCircle(Circle c) {
/...
}

Open-Closed Principle

public abstract class Shape {

Introduce abstraction.)

public abstract void draw();

}

public class Rectangle extends Shape {
/) e
@Override

public void draw() {
// Draw the rectangle

}
}
= LaW Of Demeter public class Circle extends Shape {
= Move responsibilities /7 e
@Override
public void draw() {
// Draw the circle
}
}

public class GraphicEditor {

public void drawShape(Shape s) {
s.draw();

}

Dependency Inversion Principle

public class Human {

High level classes should not depend on low o
public void work() {

level classes. } // ...working

}

public class Manager {
private Human worker;

public void setWorker (Human worker) {
this.worker = worker;

}
= We want a flexible design

public void manage() {
worker.work();

= We want to easily replace low level classes
= We want low coupling

}

}

public class Robot {

public void work() {
// ...working longer

}

Dependency Inversion Principle

public interface Worker {

Introduce an abstraction that decouples the void work();
high-level and low-level classes from each)
c)tt]ear. public class Human implements Worker {

public void work() {
// ...working

}
}

public class Robot implements Worker {

public void work() {
// ...working much more

= High level classes depends on abstractions }

= Low level classes are created based on public class Manager {
abStraCtionS private Worker worker;

}

public void setWorker (Worker worker) {
this.worker = worker;

}

public void manage() {
worker.work();

}

J

Exercises

Let’s put S.O.L.1.D. principles into practice.

DESIGN PRINCIPLES

» Find principle violations in this project https:/github.com/

bebosudo/it.units.muli.poker
= Work on the Cribbage Score Calculator assignment, use

S.O.L.I.D. principles (and all the other concepts) when
refactoring.

https://github.com/bebosudo/it.units.muli.poker
https://github.com/bebosudo/it.units.muli.poker
https://github.com/bebosudo/it.units.muli.poker
https://github.com/bebosudo/it.units.muli.poker
https://github.com/dario-campagna/Cribbage-assignment

=

\¥" \
Y/

5
\J

SIm
A 8043

nle Design

/euide when refactoring

~ 7

Simple Design

According to Kent Beck, a design is “simple” if it follows this
guidelines:

1. Passes the tests

2. Minimizes duplication

3. Reveals its intents

4. Has fewer classes/modules/packages...

The Simple Design Dynamo

Removing duplication and revealing intent/
increasing clarity quickly form a rapid, tight

feedback cycle.
>,7,‘

P yalt

Putting An Age-Old Battle To Rest, J.B. Rainsberger Sj(%%f @%@ / 7yl
(wva @ 'j“()” W/y
licabion,
= When we remove duplication, we create / i vl absteachip
1 (- e
buckets. X s A 22 12

= When we improve names, we create more

cohesive, more easily-abstracted buckets.

© Joraiws 2015

https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest
https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest

