
Taming overly complex
state-altering conditional logic

Dario Campagna

Head of Research and Development

The conditional expressions that control an
object’s state transitions are complex.

▪ State-altering logic tends to spread.
▪ Logic can become hard to follow.
▪ Classes takes care of different responsibilities.
▪ Design gets complicated.

State-altering conditional logic
public class SystemPermission...
 private SystemProfile profile;
 private SystemUser requestor;
 private SystemAdmin admin;
 private boolean isGranted;
 private String state;

 public final static String REQUESTED = "REQUESTED";
 public final static String CLAIMED = "CLAIMED";
 public final static String GRANTED = "GRANTED";
 public final static String DENIED = "DENIED";

 public SystemPermission(SystemUser requestor, SystemProfile profile) {
 this.requestor = requestor;
 this.profile = profile;
 state = REQUESTED;
 isGranted = false;
 notifyAdminOfPermissionRequest();
 }

 public void claimedBy(SystemAdmin admin) {
 if (!state.equals(REQUESTED))
 return;
 willBeHandledBy(admin);
 state = CLAIMED;
 }

 public void deniedBy(SystemAdmin admin) {
 if (!state.equals(CLAIMED))
 return;
 if (!this.admin.equals(admin))
 return;
 isGranted = false;
 state = DENIED;
 notifyUserOfPermissionRequestResult();
 }

 public void grantedBy(SystemAdmin admin) {
 if (!state.equals(CLAIMED))
 return;
 if (!this.admin.equals(admin))
 return;
 state = GRANTED;
 isGranted = true;
 notifyUserOfPermissionRequestResult();
 }
}

State-altering conditional logic can quickly become hard to follow as more real-world behavior
gets added.

State-altering conditional logic

A state diagram that can be managed with not very
complicated conditional logic (see previous slide).

Conditional logic shows its limit when the state
transition logic is more elaborated.

Motivation
▪ A TCPConnection class that responds

differently based on its state
▪ To have a good bird-eye view of state-

changing logic

Applicability
▪ An object’s behavior depends on its state, and

it must change at runtime
▪ Operations have complicated conditional

statements depending on the object’s state

State
Allow an object to alter its behavior when its internal state changes. The object will appear to
change its class.

Replace State-Altering Conditionals with State

https://www.industriallogic.com/xp/refactoring/alteringConditionalsWithState.html
https://www.informit.com/articles/article.aspx?p=1398607&seqNum=4

https://www.industriallogic.com/xp/refactoring/alteringConditionalsWithState.html
https://www.informit.com/articles/article.aspx?p=1398607&seqNum=4

Replace State-Altering Conditionals with State

Benefits Liabilities

Reduces or removes state-changing
conditional logic.

Complicates a design when state
transition logic is already easy to follow.

Simplifies complex state-changing logic.

Provides a good bird’s-eye view of
state-changing logic.

1. Apply Replace Type Code with Class on the original state field, the new class is the state superclass.

✔ Compile

2. Apply Extract Subclass to each state constants. Declare the state superclass to be abstract.

✔ Compile

3. Copy a context class method that alters the state to the state superclass, add delegation call in superclass. (For every context method)

✔ Compile and test

4. Copy state superclass methods altering a state to the corresponding state subclass, remove unrelated logic. (For all the states)

✔ Compile and test

5. Delete the body of each methods moved to the state superclass in step 3.

✔ Compile and test

Replace State-Altering Conditionals with State – Mechanics

Let’s apply this refactoring to the SystemPermission class
in the state-altering-conditionals branch of the following
repository.

https://github.com/dario-campagna/replace-state-altering-
conditionals-with-state

▪ Example from Refactoring to Patterns
▪ Code comes from a security system

Replace State-Altering Conditionals with State – Example

https://github.com/dario-campagna/replace-state-altering-conditionals-with-state
https://github.com/dario-campagna/replace-state-altering-conditionals-with-state

