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Availability: I can always find a 
station with at least one bike 
in a radius of  500 meters

Spread: after 10 time 
units, there exists a 
location lʹ at a certain 
distance from location l 
where the number of 
infected individuals is 
more than 50  



Reliability: we can always  find 
a path of sensors such that all 
sensors have a battery level 
greater than 0.5

Spots: regions with low 
density of protein A are 
always surrounded by 
regions with high level of 
protein B  



How to specify such spatio-temporal 
behaviours in a formal and 

human-understandable language ?



How to monitor their onset efficiently?



Part 1 :  
• Space Model and traces
• Spatio- Temporal Reach and Escape Logic (STREL)

Part 2: 
• Monitoring 
• Applicability to different scenarios



Introduction SSTL TSTL STREL

Monitoring Techinique
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Robust Monitoring
A robust STL monitor is a transducer that transform x into ��(x, .)
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Quant. sat
Bool. sat

��(x, ·)/��(x, ·)

In practice
� Trace: time words over alphabet R, linear interpolation

Input: x(·) � (ti , x(ti))i�N 0utput: ��(x, ·) � (rj , z(rj))j�N
� Continuity, and piecewise a�ne property preserved

Alexandre Donzé Robust Monitoring of STL EECS144 Fall 2013 20 / 52
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Spatio-Temporal Monitoring

INPUTS

Spatial Configuration

Sp-TemporalTrajectory

Specification

F[0,T ]�1S[0,d]�2

MONITORING
ALGORITHM

OUTPUTS
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SSTL Syntax

' ∶= µ � ¬' � '1 ∧'2 � '1 U[t1,t2] '2 � �[d1,d2]' � '1 �[d1,d2] '2

In addition F[t1,t2]' ∶= U[t1,t2]', G[t1,t2]' ∶= ¬F[t1,t2]¬', �'[d1,d2] ∶= ¬�¬[d1,d2] '.



Running Example: Wireless Sensor Network



Space Model, Signal and Traces



Spatial Configuration

We consider a discrete space described as a weighted (direct) graph

Reasons:
• many applications, like bike sharing systems, smart grid and sensor 

networks are naturally framed in a discrete spatial structure 

• in many circumstances continuous space is abstracted as a grid or as a 
mesh, e.g. numerical integration of PDEs 



Space Model   𝑆 = ⟨𝐿,𝑊⟩

– L is a set of nodes that we call locations; 
– 𝑊 ⊆ 𝐿 ×ℝ × 𝐿 is a proximity function associating a label 𝑤 ∈ ℝ to 
distinct pair ℓ!, ℓ" ∈ 𝐿 . If (ℓ!, 𝑤, ℓ") ∈ 𝑊, it means that there is an 
edge from ℓ! to ℓ" with weight 𝑤 ∈ ℝ

𝑤
ℓ!

ℓ"

ℓ#



Example



Route    𝜏 = ℓ!ℓ"ℓ#…

It is a infinite sequence s.t. ∀𝑖 ≥ 0 ∃ 𝑤 𝑠. 𝑡. ℓ$ , 𝑤, ℓ$%! ∈ 𝑊

ℓ&ℓ!ℓ"ℓ!… is a route

ℓ&ℓ!ℓ"ℓ#… is a not route

𝜏 𝑖 to denote the 𝑖 − 𝑡ℎ node 𝜏
𝜏(ℓ) to denote the first occurrence of ℓ ∈ 𝜏

ℓ&
ℓ!

ℓ" ℓ#



Route Distance    𝑑$
%[𝑖]

The distance 𝑑'
([𝑖] up to index 𝑖 is:

6 Laura Nenzi, Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Ennio Visconti

Definition 3 (Route Distance
5
). Let S = �L,W�, ⌧ a route in S , the distance df⌧ [i]

up-to index i is:

df⌧ [i] =
�������
0 i = 0
f(df⌧[1..][i − 1],w) (i > 0) and ⌧[0] w� ⌧[1]

Given a location ` ∈ L, the distance over ⌧ up-to ` is then d⌧ [`] = df⌧ [⌧(`)] if ` ∈ ⌧ , or∞ otherwise.

Considering again the sensor example, we can be interested in different types of dis-
tance. For example we can count the number of hops, simply using the function hops
defined as hops(v,w) ∶= v + 1 and in this case dhops⌧ [i] = i.We can also consider
the distances with respect the weighted label w in the edges, in that case we have
weight(v,w) = v + w and dweight

⌧ [i] is the sum the weights in the edges of the route
until the i-th node `i.

Definition 4 (Location Distance). The distance between two locations `1 and `2 is
obtained by choosing the distance values along all possible routes starting from `1 and
ending in `2:

dS[`1, `2] =min{d⌧ [`2]�⌧ ∈ Routes(S, `1)}.
In the sensor network example, the distance between two locations `1 and `2, will be
the minimum hop-length or weight-length over all paths connecting `1 and `2 for the
hops or weight distance function respectively.

2.2 Signal, Trace and Dynamic Models

We assume to have piecewise constant temporal signal ⌫ = [(t0, d0), . . . , (tn, dn)]
with ti ∈ T = [0, T ] ⊆ R≥0 a time domain and di ∈ D. Different kinds of signals can be
considered: signals with D = {true, false} are called Boolean signals; with D = R∞
are called real-valued or quantitative signals, signal with D = Z are integer signals. We
use T (⌫) to denote the sequence of (t0, . . . , tn) of time steps in ⌫.

Definition 5 (Spatio-temporal signal). Let S = �L,W� be a space model and T =[0, T ] a time domain, a spatio-temporal signal is a function

� ∶ L→ T→D

that associates a temporal signal �(`) = ⌫ at each location. We use �@t to denote the
spatial signal at time t, i.e. the signal s such that s(`) = �(`)(t), for any ` ∈ L.

Definition 6 (Spatio-Temporal Trace). Let S = �L,W� be a space model, a spatio-
temporal trace is a function �x ∶ L→ T→Dn

such that for any ` ∈ L yields a vector of temporal signals �x(`) = (⌫1, . . . , ⌫n). Note
that this means that a spatio-temporal trace is composed by a set of spatio-temporal
signals. In the rest of the paper we will use �x(`, t) to denote �x(`)(t).

5 We restrict here only to the tropical semiring, a more general definition can be found in [13].

𝑑'
( ℓ = 𝑑'

([𝜏 ℓ ]



Route Distance    𝑑$
%[𝑖]

𝑤𝑒𝑖𝑔ℎ𝑡(𝑥, 𝑦) = 𝑥 + 𝑦

ℎ𝑜𝑝𝑠(𝑥, 𝑦) = 𝑥 + 1

𝑑ℓ!ℓ"ℓ#..
+,$-./ 2 = weight(𝑑ℓ"ℓ#..

+,$-./ 1 , 4) =  𝑑ℓ"ℓ#
+,$-./ 1 + 4 = …

= weight(𝑑ℓ#..
+,$-./ 0 , 2) + 4 = 6 

ℓ0
ℓ!

ℓ" ℓ#

4

2



Location Distance    𝑑&
% ℓ' , ℓ(

𝑑!
" ℓ# , ℓ$ = min 𝑑% ℓ$ 𝜏 ∈ 𝑅𝑜𝑢𝑡𝑒𝑠(𝑆, ℓ#)}

𝑑1
.023 ℓ&, ℓ" = 2

ℓ0
ℓ!

ℓ" ℓ#



Location Distance

𝑑!
" ℓ# , ℓ$ = min 𝑑% ℓ$ 𝜏 ∈ 𝑅𝑜𝑢𝑡𝑒𝑠(𝑆, ℓ#)}

𝑑1
.023 ℓ&, ℓ" = 1

ℓ0
ℓ!

ℓ" ℓ#



Signal and Trace

Spatio-Temporal Signals       𝜎: 𝐿 → 𝕋 → 𝐷

Spatio-Temporal Trace  𝒙: 𝐿 → 𝕋 → 𝐷4

𝑥(ℓ) = (𝜈5 , 𝜈6 )
𝑥(ℓ, 𝑡) = (𝜈5(𝑡) , 𝜈6(𝑡) )



Dynamic Spatial Model 

𝑡$ , 𝑆$ for 𝑖 = 1,… , 𝑛 and 𝑆 𝑡 = 𝑆$∀𝑡 ∈ [𝑡$ , 𝑡$%!)



STREL



Spatio- Temporal Reach and Escape Logic (STREL)

It is an extension of the Signal Temporal Logic with a number of 
spatial modal operators 

In addition, we can derive: 
• The disjunction operator: ∨
• the temporal operators: 𝐹!, 𝐺!, 𝑂!, H"
• the spatial operators: somewhere,  everywhere and surround  

8 L. Nenzi et al.

dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition µ,
these are inequality of the form (g(ν1, . . . ,νn) ≥ 0), for g ∶ Rn → R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1Rf
d ϕ2 ∣ Ef

d ϕ

where true is the Boolean true constant, µ is an atomic predicate (AP ), negation¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, #, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location # at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, #, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, #, t) > 0 then (S,x, #, t) ⊧⊧ ϕ; if ρ(ϕ,S,x, #, t) <
0 then (S,x, #, t) /⊧ ϕ. Furthermore it satisfies also the correctness property,
which shows that x measures how robust is the satisfaction of a trajectory with
respect to perturbations. We refer the reader to [36] for more details.
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Reach: 
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3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S, �x, `, t) � ', with the mean-
ing that the spatio-temporal trace �x in location ` at time t with spatial model S , sat-
isfies the formula ' and a quantitative semantics, ⇢(',S, �x, `, t), that can be used to
measure the quantitative level of satisfaction of a formula for a given trajectory. The
function ⇢ is also called the robustness function. The robustness is compatible with the
Boolean semantics since it satisfies the soundness property: if ⇢(',S, �x, `, t) > 0 then(S, �x, `, t) � '; if ⇢(',S, �x, `, t) < 0 then (S, �x, `, t) �� '. Furthermore it satisfies also
the correctness property, which shows that �x measures how robust is the satisfaction of
a trajectory with respect to perturbations. We refer the reader to [36] for more details.

Fig. 4. Example of spatial properties. `3 satisfies yellowRhops[1,4]pink while `4 does not. `9 satisfies
Ehops[3,∞]orange while `10 does not. `1 satisfies �hops[3,5]pink and �hops[2,3]yellow. All green points
satisfy green �hops[0,100] blue. `43 (the green point in the middle with a boild red circle) is the only
location that satisfies green �hops[2,3] blue. The letters inside the nodes indicate the color and the
numbers indicate the enumeration of the locations.

Reach The quantitative semantics of the reach operator is: ⇢('1Rf[d1,d2]'2,S, �x, `, t) =
= max

⌧∈Routes(S(t),`) max
`′∈⌧ ∶�df

⌧ [`′]∈[d1,d2]�
(min(⇢('2,S, �x, `′, t), min

j<⌧(`′)⇢('1,S, �x, ⌧[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and considering
the Boolean satisfaction instead or ⇢. (S, �x, `, t), a spatio-temporal trace �x, in location
`, at time t, with a (dynamic) spatial model S , satisfies '1 Rf[d1,d2] '2 iff it satisfies
'2 in a location `′ reachable from ` through a route ⌧ , with a length df⌧ [`′] ∈ [d1, d2],

𝑆 , 𝑥⃗ , ℓ, 𝑡 satisfies                              iff it satisfies 𝜑" in a location ℓ′
reachable from ℓ through a route τ, with a length 𝑑'

((ℓ7) ∈ [𝑑!, 𝑑"] and such 
that 𝜏[0] = ℓ and all its elements with index less than 𝜏(ℓ′) satisfy 𝜑!
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Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.

!9 satisfies Ehops[3,∞]orange while !10 does not. !1 satisfies !hops[3,5]pink and !hops[2,3]yellow. All

green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.

!9 satisfies Ehops[3,∞]orange while !10 does not. !1 satisfies !hops[3,5]pink and !hops[2,3]yellow. All

green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
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Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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Escape: 

𝑆 , 𝑥⃗ , ℓ, 𝑡 satisfies  if and only there exists a route τ and a 
location ℓ7 ∈ 𝜏 such that 𝜏 0 = ℓ, 𝑑1

( ℓ, ℓ7 ∈ 𝑑! , 𝑑" and all 
elements 𝜏[0], … 𝜏[𝑘] (with 𝜏(𝑙′) = 𝑘) satisfy 𝜑
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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Fig. 4. Example of spatial properties. !3 satisfies yellowRhops[1,4]pink while !4 does not.

!9 satisfies Ehops[3,∞]orange while !10 does not. !1 satisfies !hops[3,5]pink and !hops[2,3]yellow. All

green points satisfy green ⊚hops[0,100] blue. !43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops[2,3] blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is: ρ(ϕ1 Rf[d1,d2] ϕ2,S,x, #, t) =
= max

τ∈Routes(S(t),") max
"′∈τ ∶(df

τ ["′]∈[d1,d2])
(min(ρ(ϕ2,S,x, #′, t), min

j<τ("′)ρ(ϕ1,S,x, τ[j], t)
The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, #, t), a spatio-temporal
trace x, in location #, at time t, with a (dynamic) spatial model S, satisfies
ϕ1Rf[d1,d2] ϕ2 iff it satisfies ϕ2 in a location #′ reachable from # through a route
τ , with a length df

τ [#′] ∈ [d1, d2], and such that τ[0] = # and all its elements with
index less than τ(#′) satisfy ϕ1. Practically, the reach operator φ1Rf[d1,d2]φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location #3 (meaning the
trajectory x at time t in position #3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops[1,4]pink. Indeed, there exists a route τ = #3#13#14#17#35 such that
dhops

τ [#35] = 4, where τ[0] = #3, #35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for exam-
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that
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satisfy the property because the distance dhops
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location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
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τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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and such that ⌧[0] = ` and all its elements with index less than ⌧(`′) satisfy '1. Prac-
tically, the reach operator �1Rf[d1,d2]�2 describes the behaviour of reaching a location
satisfying property �2 passing only through locations that satisfy �1, and such that
the distance from the initial location and the final one is greater than d1 and less than
d2. In Figure 4, we report an example of reachability property, considering f as the
hops function described in the previous section. In the graph, the location `3 (mean-
ing the trajectory �x at time t in position `3 with spatial model S(t) as in the figure)
satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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satisfies yellowRhops[1,4]pink. Indeed, there exists a route ⌧ = `3`13`14`17`35 such that
dhops⌧ [`35] = 4, where ⌧[0] = `3, `35 satisfies the pink property (i.e. it is pink) and
all the other elements of the route satisfy the yellow property. Instead, for example,
the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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the location `4 does not satisfy the property because it does not satisfies the distance
constraint.

Escape The quantitative semantics of the escape operator is:

⇢(Ef[d1,d2]',S, �x, `, t) = max
⌧∈Routes(S(t),`) max

`′∈⌧ ∶�dfS(t)[`,`′]∈[d1,d2]�
min

i≤⌧(`′)⇢(',S, �x, ⌧[i], t).
The Boolean semantics can be derived substituting min,max with ∨,∧, and consid-
ering the Boolean satisfaction instead of ⇢. (S, �x, `, t), a spatio-temporal trace �x, in
location `, at time t, with a (dynamic) spatial model S , satisfies Ef[d1,d2] ' if and only
if there exists a route ⌧ and a location `′ ∈ ⌧ such that ⌧[0] = `, dS[⌧[0], `′] ∈ [d1, d2]
and all elements ⌧[0], ...⌧[k] (with ⌧(`′) = k) satisfy '. Practically, the escape oper-
ator Ef[d1,d2]� describes the possibility of escaping from a certain region passing only
through locations that satisfy �, via a route with a distance that belongs to the interval
d.

In Fig 4, we report an example of escape property. In the graph, the location `9
satisfies Ehops[3,∞]orange. Indeed, there exists a route ⌧ = `9`10`11`12 such that ⌧[0] = `9,

⌧[3] = `12, dhopsS [`9, `12] = 3 and all elements ⌧[0], ⌧[1], ⌧[2], ⌧[3] satisfy the orange
property. Note that the route `10`11`12 is not a good route to satisfy the property because
the distance dhopsS [`10, `12] = 2.

Now we describe the other three derived operators.

Somewhere �f[d1,d2]' ∶= trueRf[d1,d2]' holds for (S, �x, `, t) iff there exists a location
`′ in S(t) such that (S, �x, `′, t) satisfies ' and `′ is reachable from ` via a route ⌧ with
length df⌧ [`′] ∈ [d1, d2]. In Fig. 4, `1 satisfies the property �hops[3,5]pink because there is
a path ⌧ = `1 . . . `35 with a length dhops⌧ (k) ∈ [3,5], where ⌧[0] = `1, ⌧[k] = `35, and
`35 satisfies the pink property.

Everywhere. �f[d1,d2]' ∶= ¬�f[d1,d2] ¬' holds for (S, �x, `, t) iff all the locations `′
reachable from ` via a path,with length df⌧ [`′] ∈ [d1, d2], satisfy '. In Fig. 4, `1 satisfies
�hops[2,3]yellow because all the locations at a distance between 2 and 3 from `1 satisfy the
yellow property, while `2 does not satisfies because `18 is at a distance less than 3 but
does not satisfy the yellow property.
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𝑆 , 𝑥⃗ , ℓ, 𝑡 iff there exists a 𝜑!-region that contains ℓ, all locations in 
that region satisfies 𝜑! and are reachable from ℓ via a path with length 
less than 𝑑" . 
All the locations that do not belong to the 𝜑!-region but are directly 
connected to a location of that region must satisfy 𝜑" and be reached 
from ℓ via a path with length in the interval [d!, 𝑑"]. 
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ple, the location !4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef[d1,d2] ϕ,S,x, #, t) = max
τ∈Routes(S(t),") max

"′∈τ ∶(dfS(t)[","′]∈[d1,d2])
min

i≤τ("′)ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, !, t), a spatio-temporal
trace x, in location !, at time t, with a (dynamic) spatial model S, satisfiesEf[d1,d2] ϕ if and only if there exists a route τ and a location !′ ∈ τ such that
τ[0] = !, dS[τ[0], !′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(!′) = k)
satisfy ϕ. Practically, the escape operator Ef[d1,d2]φ describes the possibility of
escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
!9 satisfies Ehops[3,∞]orange. Indeed, there exists a route τ = !9!10!11!12 such that

τ[0] = !9, τ[3] = !12, dhops
S [!9, !12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route !10!11!12 is not a good route to
satisfy the property because the distance dhops

S [!10, !12] = 2.
Now we describe the other three derived operators.

Somewhere. $f[d1,d2]ϕ ∶= trueRf[d1,d2]ϕ holds for (S,x, !, t) iff there exists a
location !′ in S(t) such that (S,x, !′, t) satisfies ϕ and !′ is reachable from !
via a route τ with length df

τ [!′] ∈ [d1, d2]. In Fig. 4, !1 satisfies the property$hops[3,5]pink because there is a path τ = !1 . . . !35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = !1, τ[k] = !35, and !35 satisfies the pink property.

Everywhere. !f[d1,d2]ϕ ∶= ¬$f[d1,d2] ¬ϕ holds for (S,x, !, t) iff all the locations
!′ reachable from ! via a path,with length df

τ [!′] ∈ [d1, d2], satisfy ϕ. In Fig. 4,
!1 satisfies !hops[2,3]yellow because all the locations at a distance between 2 and 3
from !1 satisfy the yellow property, while !2 does not satisfies because !18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚f[d1,d2] ϕ2 ∶= ϕ1 ∧ ¬(ϕ1Rf[d1,d2]¬(ϕ1 ∨ϕ2) ∧ ¬(Ef[d2,∞](ϕ1)) holds
for (S,x, !, t) iff there exists a ϕ1-region that contains !, all locations in that
region satisfies ϕ1 and are reachable from ! via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from ! via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops[0,100] blue. Indeed, for each green
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point we can find a region that contains the point, such that all its points are
green and all the points connected with an element that belongs to the region
are blue and satisfy the metric constraint. Instead, the property green⊚hops[2,3] blue

is satisfied only by location !43 (the location with a bold red circle), indeed !43 is
the only location for which there exists a region (the green region) such that all
its elements are at a distance less than 3 from !43 and satisfy the green property;
and all the locations directly connected with the green region are at a distance
between 2 and 3 from !43 and satisfy the blue property.

3.2 Offline Monitoring Algorithm

At the moment the logic supports only offline monitoring. The monitor takes as
inputs a static or dynamic spatial model S, a trace x and a formula φ and returns
the spatio-temporal signal σ representing the monitoring of φ, a Boolean spatio-
temporal signal for the Boolean Semantics and a real-value spatio-temporal sig-
nal for the quantitative one. The monitor of the whole trace corresponds to σ@0,
i.e. the spatial Boolean or real-value signal at time zero. This means that the
monitor of the whole trace corresponds to the evaluation at time t = 0 in each
point in space: (S,x, !) ⊧ ϕ iff (S,x, !,0) ⊧ ϕ and ρ(ϕ,S,x, !) ∶= ρ(ϕ,S,x, !,0).
We made this choice because we assume no privilege direction or location so we
cannot consider a zero location as for the time.

Like in STL, monitoring of temporal operators is linear in the length of the
signal times the number of locations in the spatial model. This because the mon-
itoring procedure is performed at each location by using the same (linear) algo-
rithm proposed in [36]. Monitoring of spatial properties is more expensive. These
algorithms, formally described in [13], are based on a variations of the classical
Floyd-Warshall algorithm. The number of operations to perform is polynomial
on the size of the model times the length of the signal.

3.3 Application to Stochastic Systems

The analysis of spatio-temporal properties can be applied also on stochastic
systems considering methodologies as Statistical Model Checking [74] (SMC).
SMC combines simulation of the stochastic model (i.e. an algorithm that samples
traces according to the probability distribution of the model in the Skorokhod
space) with a monitoring routine for the property φ. Stochastic systems induce
a probability measure on the space of all possible traces (i.e. on the so-called
Skorokhod space, the space of càdlàg functions, which are piecewise continuous
functions of time, taking real values). If we define a stochastic process M =(T ,A, µ), where T is a trajectory space and µ is a probability measure on a
σ-algebra A of T , a quantity for measuring how a certain STREL formula ϕ
is satisfied by M is the satisfaction probability S(ϕ, t), i.e. the probability that
a trajectory generated by the stochastic process M satisfies the formula ϕ at
the time t: E[s(ϕ, ξ, t)] = ∫ξ∈T s(ϕ, ξ, t)dµ(ξ) where s(ϕ, ξ, t) = 1 if (ξ, t) ⊧ ϕ
and 0 otherwise. The quantitative counterpart of the satisfaction probability is
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Offline Monitoring Algorithm 

Spatial Boolean Satisfaction

Introduction SSTL Case Study Monitoring SSTL Algorithms Results Conclusions

Monitoring SSTL

µ1 ∶ xA − 0.5 ≤ 0
sµ1(t, `), ⇢µ1(t, `)

xA(t, `) − 0.5

xA(t, `), xB(t, `)

µ2 ∶ xA − 2 > 0
sµ2(t, `), ⇢µ2(t, `)

xA(t, `) − 2

xA(t, `), xB(t, `)

Spatial Boolean signal
Spatial Quantitative signals

Secondary signals

Primary signals

Spatial Boolean Signal

s' ∶ L→ [0,T ]→ {0,1} such that s'(`, t) = 1⇔ (S, �x , `, t) � '
Spatial Quantitative Signal

⇢' ∶ L→ [0,T ]→ R ∪ ±∞ such that ⇢'(`, t) = ⇢(S, �x , `, t)
s'(`,0)
⇢'(`,0)
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Monitoring SSTL

µ1 ∶ xA − 0.5 ≤ 0
sµ1(t, `), ⇢µ1(t, `)

xA(t, `) − 0.5

xA(t, `), xB(t, `)

µ2 ∶ xA − 2 > 0
sµ2(t, `), ⇢µ2(t, `)

xA(t, `) − 2

xA(t, `), xB(t, `)

Spatial Boolean signal
Spatial Quantitative signals

Secondary signals

Primary signals

Spatial Boolean Signal

s' ∶ L→ [0,T ]→ {0,1} such that s'(`, t) = 1⇔ (S, �x , `, t) � '
Spatial Quantitative Signal

⇢' ∶ L→ [0,T ]→ R ∪ ±∞ such that ⇢'(`, t) = ⇢(S, �x , `, t)
s'(`,0)
⇢'(`,0)
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Spatial Quantitative  Satisfaction
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Monitoring SSTL

µ1 ∶ xA − 0.5 ≤ 0
sµ1(t, `), ⇢µ1(t, `)

xA(t, `) − 0.5

xA(t, `), xB(t, `)

µ2 ∶ xA − 2 > 0
sµ2(t, `), ⇢µ2(t, `)

xA(t, `) − 2

xA(t, `), xB(t, `)

Spatial Boolean signal
Spatial Quantitative signals

Secondary signals

Primary signals

Spatial Boolean Signal

s' ∶ L→ [0,T ]→ {0,1} such that s'(`, t) = 1⇔ (S, �x , `, t) � '
Spatial Quantitative Signal

⇢' ∶ L→ [0,T ]→ R ∪ ±∞ such that ⇢'(`, t) = ⇢(S, �x , `, t)
s'(`,0)
⇢'(`,0)
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Monitoring SSTL

µ1 ∶ xA − 0.5 ≤ 0
sµ1(t, `), ⇢µ1(t, `)

xA(t, `) − 0.5

xA(t, `), xB(t, `)

µ2 ∶ xA − 2 > 0
sµ2(t, `), ⇢µ2(t, `)

xA(t, `) − 2

xA(t, `), xB(t, `)

Spatial Boolean signal
Spatial Quantitative signals

Secondary signals

Primary signals

Spatial Boolean Signal

s' ∶ L→ [0,T ]→ {0,1} such that s'(`, t) = 1⇔ (S, �x , `, t) � '
Spatial Quantitative Signal

⇢' ∶ L→ [0,T ]→ R ∪ ±∞ such that ⇢'(`, t) = ⇢(S, �x , `, t)
s'(`,0)
⇢'(`,0)
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SSTL Syntax

' ∶= µ � ¬' � '1 ∧'2 � '1 U[t1,t2] '2 � �[d1,d2]' � '1 �[d1,d2] '2

In addition F[t1,t2]' ∶= U[t1,t2]', G[t1,t2]' ∶= ¬F[t1,t2]¬', �'[d1,d2] ∶= ¬�¬[d1,d2] '.
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Computational consideration

• Temporal operators: like in STL monitoring [1] is linear in the length of 
the signal times the number of locations in the spatial model. 

• Spatial properties are more expensive, they are based on a variations 
of the classical Floyd-Warshall algorithm. 
The number of operations to perform is quadratic for the reach 
operator and cubic for the escape

[1] O. Maler, T. Ferrére, and D. Nickovic. Efficient Robust Monitoring for STL. In Proc.CAV 2010
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The formation of Patterns 
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Pattern formation

The production of skin pigments that generate spots in animal furs:

t=0 t=5 t=7 t=10 t=20 t=50
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The production of skin pigments that generate spots in animal furs:

Space model: a K×K grid treated as a graph,   cell 𝑖, 𝑗 ∈ 𝐿 = {1, … , 𝐾}×{1, … , 𝐾}

Spatio-Temporal Trajectory: 𝑥: 𝐿 −> 𝕋 → ℝ! s.t. 𝑥 ℓ = (𝑥", 𝑥#)
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Spot formation property

�spotform ∶= F[Tpattern,Tpattern+�]G[0,Tend ]((xA ≤ h)S[w1,w2](xA > h))
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Spots formation property

t=0 t=5 t=7 t=10 t=20 t=50
0
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�x = (xA, xB) ∶ T × L→ R2 is the trace (with L = {1, ..,32} × {1, ..,32})

Spot formation property

F[18,20]G[0,30]((A ≤ 0.5)�[1,4] (A > 2))

�spotform = F[19,20]G((A ≤ 0.5)�hops[1,w2] (A > 0.5))
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Pattern property

�pattern ∶= �[0,w]� [0,w ′]�spotform ,

� w is the distance to cover all space

� w′ measures the distance between spots
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Fig. 5. Concentration of protein A for the reaction-diffusion system for the frames with t =
0,5,7,12,20,50 time units. The initial conditions (i.e. the initial concentration of A and B) are
set randomly. The colour map for the concentration is specified in the legend on the right.
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Fig. 6. (a) Boolean (left) and quantitative (right) satisfaction of the (spot formation) property;
in the Boolean case the cells that satisfy the formula are in red; (b) Snapshots at time t = 50 of
protein A for the reaction-diffusion model with different diffusion rates for which we have the
formation of different patterns.

4.1 Properties

Spot (�spot ∶= (A <= h)�hops[d1,d2] (A > h)) holds in sub-regions that have low concen-
tration of A, surrounded by a high concentrations of A. In detail, this property holds
in the location ` that belongs to a region L′ of the grid where all elements satisfy the
atomic proposition A <= h and their distance from ` belong to the interval is less than
d2. Furthermore, each element directly connected with L′ satisfy A > 0, and its distance
from ` belongs to [d1d2]. The elements in the boundary correspond to all elements di-
rectly connected to a location of L′. Note that the use of distance bounds in the surround
operator allows one to constrain the size/ diameter of the spot to [d1d2]. If we have only
one type of distance function, the name in the formula can be even omitted.

Spot Formation (F[T,T+�]G(spot)) means that from a point in the future between T
and T +� the spot property should always hold. In Fig.6(a) we can see the Boolean and
quantitative satisfaction of the Spot Formation formula with h = 0.5, T = 19, � = 1, d1 =
1, d2 = 6 for the trajectory reported in Fig. 5.

Pattern (� �[0,dspot] spotformation) means that each node in the grid should be
connected to a node at a distance less than dspot where the spot property holds, where
dspot represent the maximum distance between spots. This property permits to describe
a global behaviour. As we pointed in the description of the logic the monitor is done
in each location, differently from the temporal part where we define the satisfaction
of the whole trajectory as the satisfaction at time zero. Using the everywhere operator
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t=0 t=5 t=7 t=10 t=20 t=50
0
2
4
6

Fig. 5. Concentration of protein A for the reaction-diffusion system for the frames with t =
0,5,7,12,20,50 time units. The initial conditions (i.e. the initial concentration of A and B) are
set randomly. The colour map for the concentration is specified in the legend on the right.
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Fig. 6. (a) Boolean (left) and quantitative (right) satisfaction of the (spot formation) property;
in the Boolean case the cells that satisfy the formula are in red; (b) Snapshots at time t = 50 of
protein A for the reaction-diffusion model with different diffusion rates for which we have the
formation of different patterns.

4.1 Properties

Spot (�spot ∶= (A <= h)�hops[d1,d2] (A > h)) holds in sub-regions that have low concen-
tration of A, surrounded by a high concentrations of A. In detail, this property holds
in the location ` that belongs to a region L′ of the grid where all elements satisfy the
atomic proposition A <= h and their distance from ` belong to the interval is less than
d2. Furthermore, each element directly connected with L′ satisfy A > 0, and its distance
from ` belongs to [d1d2]. The elements in the boundary correspond to all elements di-
rectly connected to a location of L′. Note that the use of distance bounds in the surround
operator allows one to constrain the size/ diameter of the spot to [d1d2]. If we have only
one type of distance function, the name in the formula can be even omitted.

Spot Formation (F[T,T+�]G(spot)) means that from a point in the future between T
and T +� the spot property should always hold. In Fig.6(a) we can see the Boolean and
quantitative satisfaction of the Spot Formation formula with h = 0.5, T = 19, � = 1, d1 =
1, d2 = 6 for the trajectory reported in Fig. 5.

Pattern (� �[0,dspot] spotformation) means that each node in the grid should be
connected to a node at a distance less than dspot where the spot property holds, where
dspot represent the maximum distance between spots. This property permits to describe
a global behaviour. As we pointed in the description of the logic the monitor is done
in each location, differently from the temporal part where we define the satisfaction
of the whole trajectory as the satisfaction at time zero. Using the everywhere operator
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Pattern property

�pattern ∶= �[0,w]� [0,w ′]�spotform ,

� w is the distance to cover all space

� w′ measures the distance between spots

�pattern ∶= �hops �hops[0,15] �spotform
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Perturbation property

�pert ∶= (xA ≥ hpert) ∧ (�1S[wm,wM]�2)
� �1 = F[0,Tp]G[0,Td ](xA < h′);
� �2 ∶= G[0,T ](xA < h′)

�pert ∶= (xA ≥ 10) ∧ (�absorb �hops[1,2] �no e↵ect)
� �absorb = F[0,1]G[0,10](xA < 3);� �noe↵ect ∶= G[0,20](xA < 3)(a)
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Application to Stochastic Systems

STREL can be applied on stochastic systems considering methodologies as 
Statistical Model Checking (SMC)

Stochastic process             where is a trajectory space and 𝜇 is a probability 
measure on a σ-algebra of 

We approximate the satisfaction probability 𝑆(𝜑, 𝑡), i.e. the probability that a 
trajectory generated by the stochastic process      satisfies the formula φ.
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stochastic processM = (T ,A, µ), where T is a trajectory space and µ is a probability
measure on a �-algebraA of T , a quantity for measuring how a certain STREL formula
' is satisfied by M is the satisfaction probability S(', t), i.e. the probability that a
trajectory generated by the stochastic processM satisfies the formula ' at the time t:
E[s(', ⇠, t)] = ∫⇠∈T s(', ⇠, t)dµ(⇠) where s(', ⇠, t) = 1 if (⇠, t) � ' and 0 otherwise.
The quantitative counterpart of the satisfaction probability is the expected robustness,
defined as �⇢(', t)� ∶= E[⇢(', ⇠, t)] = ∫⇠∈T ⇢(', ⇠, t)dµ(⇠) that is the expectation of
the robustness computed over the trajectories ofM.

More specifically, SMC for satisfaction probability works by pipelining the gener-
ation of traces and their monitoring: every time a trace is generated by the simulator, it
is passed to the Boolean monitor, which returns either 0 (false) or 1 (true). Probabilis-
tically, this can be seen as a sample of a Bernoulli random variable, having probability
p(�) of observing 1. From a finite sample of such values, we can rely on standard sta-
tistical tools to estimate p(�) and to compute the confidence level of such an estimate.
Estimation of average robustness works in a similar way. Examples of spatio-temporal
model checking to compute the approximated probabilistic satisfaction can be found
in [14]. Analyzing these systems through the computation of satisfaction probability
and/or average robustness, can therefore bring key insights in assessing and evaluating
the design choices being made. The combination of Statistical Model Checking with
quantitative semantics has been explored earlier for STL in [9] and applied to tasks like
system design and parameter synthesis [9,25].

4 Static Space and Regular Grid: the formation of Patterns

We consider here the simplest scenario, a regular grid, with only hop distance function
and a deterministic model. In particular, in this example, we show how to exploit the
surround operator to specify the formation of patterns and some other spatio-temporal
related properties.

Model and Trace. The space model is a K ×K grid treated as a weighted undirected
graph, where each cell (i, j) ∈ {1, . . . ,K}×{1, . . . ,K} is a location, edges connect each
pairs of neighbouring nodes along four directions and they have only one label which
corresponds to the hop distance function, i.e. if two cells are neighbors the distance is
equal to one.

The spatio-temporal trace describes the concentration of two proteins A and B in
each cell of the grid at each time step. It is generated by a reaction-diffusion system,
discretised according to a Finite Difference scheme [63], as a system of ODEs whose
variables are organised in the K ×K rectangular grid. Fig. 5 reports the concentration
of A for a number of time steps. It can be seen that from time t = 20 the shape of
the pattern is apparent and remains stable; the pattern consists in a almost equidistant
distribution of (blue) spots which have a low concentration of A surrounded by regions
with a high concentration of A. For protein B (not shown) happens the opposite (high
density regions surrounded by low density regions). More details about the model can
be found here [62].
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Stochastic Semantics
The average robustness E (R') is the mean of the distribution,

P (X 2 {~x 2 D | ⇢(�, ~x , 0) 2 [a, b]}) = P (R'(X) 2 [a, b])

where R'(X) is a real-value random-variable.
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We can do something similar with the 
quantitative semantics computing the 
robustness distribution



London Santander Cycles Hire network

- 733 bike stations (each with 20-40 slots) 
- a total population of 57,713 agents (users)         

picking up and returning bikes

We model it as a Population Continuous 
Time Markov Chain (PCTMC) with time-
dependent rates, using historic journey and 
bike availability data.

Prediction for 40 minutes.

Bike Sharing Systems (BSS)



Spatio-Temporal Trajectory: 𝑥: 𝐿 −> 𝕋 → ℤ# s.t. 𝑥 𝑖, 𝑡 = 𝐵$ 𝑡 , 𝑆$ 𝑡

Space model  
• Locations: 𝐿 = {𝑏𝑖𝑘𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠},    
• Edges: ℓ$, 𝑤, ℓ% ∈ 𝑊 iff w = ∥ ℓ$ − ℓ% ∥ < 1 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟

Bike Sharing Systems (BSS)
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5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore their
robustness considering a set of parameter values for the formulas. In the following, we
will consider the distance induced by the function �(v, (x, y)) = v + ��(x, y)��2, where(x, y) are the coordinates of the distance vector between two adjacent nodes, while v is
the distance incrementally computed by �.

Local Availability One of the main problems of these systems consists in the avail-
ability of bikes or free slots in each station. The most interesting question related to this
issue from a user’s point of view is “If I don’t find a bike (free slot, resp.) here, can
I find another station close enough where there is an available bike (resp. free slot)?”
This concern can be expressed by the STREL property described below:

�1 = G{�weight[0,d] (B > 0) ∧�weight[0,d] (S > 0)} (1)

A station ` satisfies �1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and
a station at a distance less or equal to d that has at least one free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to see
how the satisfaction of the property changes in each location. Figure 7 shows the ap-
proximate satisfaction probability p�1 for 1000 runs for all the stations, for (a) d = 0,
and (b) d = 0.3 For d = 0, we can see that many stations have a high probability to be
full or empty (indicated by red points), i.e. low values of satisfaction probability, with
standard deviation of all the locations in the range [0, 0.0158] and mean standard devi-
ation 0.0053. However, increasing d to d = 0.3 kilometres, i.e. allowing a search area of
up to 300 metres from the station that currently has no bikes, or no slots respectively, we
greatly increase the satisfaction probability of �1, with a standard deviation that remains
in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G[0,Tend]{��[0,d](F[tw,tw]B > 0) ∧��[0,d](F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.
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5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore their
robustness considering a set of parameter values for the formulas. In the following, we
will consider the distance induced by the function �(v, (x, y)) = v + ��(x, y)��2, where(x, y) are the coordinates of the distance vector between two adjacent nodes, while v is
the distance incrementally computed by �.

Local Availability One of the main problems of these systems consists in the avail-
ability of bikes or free slots in each station. The most interesting question related to this
issue from a user’s point of view is “If I don’t find a bike (free slot, resp.) here, can
I find another station close enough where there is an available bike (resp. free slot)?”
This concern can be expressed by the STREL property described below:

�1 = G{�weight[0,d] (B > 0) ∧�weight[0,d] (S > 0)} (1)

A station ` satisfies �1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and
a station at a distance less or equal to d that has at least one free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to see
how the satisfaction of the property changes in each location. Figure 7 shows the ap-
proximate satisfaction probability p�1 for 1000 runs for all the stations, for (a) d = 0,
and (b) d = 0.3 For d = 0, we can see that many stations have a high probability to be
full or empty (indicated by red points), i.e. low values of satisfaction probability, with
standard deviation of all the locations in the range [0, 0.0158] and mean standard devi-
ation 0.0053. However, increasing d to d = 0.3 kilometres, i.e. allowing a search area of
up to 300 metres from the station that currently has no bikes, or no slots respectively, we
greatly increase the satisfaction probability of �1, with a standard deviation that remains
in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G[0,Tend]{��[0,d](F[tw,tw]B > 0) ∧��[0,d](F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.
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Bike Sharing Systems (BSS)
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in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G{�weight[0,d] (F[tw,tw]B > 0) ∧�weight[0,d] (F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.

Average walking speed of 6.0 km/h, e.g. d = 0.5 km -> 𝑡& = 6 minutes

The results similar to the results of previous property
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Mobile Ad-hoc sensor NETwork (MANET)

Space model  𝑆(𝑡)
• Locations: 𝐿 = {𝑑𝑒𝑣𝑖𝑐𝑒𝑠},    
• Edges: ℓ$, 𝑤, ℓ% ∈ 𝑊 iff w = ∥ ℓ$ − ℓ% ∥ < min 𝑟$, 𝑟%

Spatio-Temporal Trajectory: 𝑥: 𝐿 −> 𝕋 → ℤ × ℝ# s.t.
𝑥 𝑖, 𝑡 = 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒 = 1, 2, 3 for coordinator, rooter, and end_device
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“an end device is either connected to the coordinator or can reach it via a chain of routers”

“broken connection is restored within h time units”
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Delivery in a MANET 

Monitoring Spatio-Temporal Properties (Invited Tutorial) 17

Connectivity. The first property one is interested to monitor is the connectivity. That
is, each node that is an end device is directly connected either to a router or to a coor-
dinator:

 1 = deviceRhops[0,1] (router ∨ coord)
The formula above holds if from a node satisfying the atomic proposition end dev
(indicating an end device), we can reach a node satisfying either router or coord (that
are the atomic proposition satisfied by coordinators or a routers), following a path in
the spatial graph such that the hops distance along this path (i.e. its number of edges) is
not bigger than 1.

More sophisticated properties can be specified with STREL. For instance, the fol-
lowing property can be used to specify that an end device is either connected to the
coordinator or can reach it via a chain of at most of 5 routers:

 2 = deviceRhops[0,1] (routerRhops[0,5]coord)
Delivery. Another property that one could be interested in monitoring is the ability
of the system to forward a message at a given distance. The ability of a component to
forward a message is related to its battery level. To express this property, we can use
the escape operator:

 3 = Ehops[5,∞](battery > 0.5)
This property states that from a given location, we can find a path of (hops) length at
least 5 such that all nodes along the path have a battery level greater than 0.5, i.e. that a
message will be forwarded along a connection with no risk of power failure.

Reliability. Spatial and temporal operators can be mixed to specify properties regard-
ing the evolution of the space in time. For instance, the following property is satisfied
by the nodes with a battery level less than 0.5 that can reach in less than 10 hops another
component that will eventually have a the battery level greater than 0.5:

 4 = (battery < 0.5)Rhops[0,10] F(battery > 0.5)
Moreover, the following property can be used to state that the correct spatial con-

figuration is preserved in each time step:

 5 = G 2

where  2 is the formula defined above.

7 Related Work

Machine learning vs specification languages Pattern recognition is a well-established
research area in machine learning. A typical approach consists in using a classifier
trained with a labeled data set that assigns each data item to one class. Once the classi-
fier is built from data using one of the several machine learning (ML) techniques [66]

“from a given location, we can find a path of (hops) length at least 5 such 
that all nodes along the path have a battery level greater than 0.5”



Reliability in a MANET 

“reliability  in  terms  of  battery  levels,  e.g. battery level above 0.5



Moonlight:  https://github.com/MoonLightSuite/MoonLight/wiki
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