Lezione 27 Determinante

Calcolo del rango col determinante

Teor (di Kronecker). Data $A \in M_{m,n}(\mathbb{K})$, supponiamo che una sottomatrice quadrata B di ordine r abbia det $B \neq 0$. Se tutte le sottomatrici quadrate di ordine r+1 che contengono B hanno determinante nullo, allora rg A=r.

Esempio.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & -1 & 0 & 2 \end{pmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = -1, \begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} = 0, \begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & -1 & 2 \end{vmatrix} = 0$$

quindi rg A = 2.

Determinante come funzione multilineare

Una matrice $n \times n$ è essenzialmente una n-upla ordinata di vettori colonna di \mathbb{K}^n , ossia $A = (v_1, \ldots, v_n)$ con $v_i = A_{(i)}$.

$$\det: M_n(\mathbb{K}) = \underbrace{\mathbb{K}^n \times \cdots \times \mathbb{K}^n}_{n \text{ volte}} \to \mathbb{K}$$

è funzione delle colonne di una matrice. Si può dimostrare che det soddisfa le seguenti proprietà (dove ci sono . . . non modifichiamo nulla):

$$\det(\ldots, v + w, \ldots) = \det(\ldots, v, \ldots) + \det(\ldots, w, \ldots)$$
$$\det(\ldots, \alpha v, \ldots) = \alpha \det(\ldots, v, \ldots).$$

In altre parole det è lineare rispetto a ciascuna colonna, tenendo fisse le altre. Per questo motivo si dice che det è *multilineare nelle colonne*, ossia è lineare rispetto a ciascuna colonna.

Dato che det $A = \det^t A$ si ha che det è multilineare nelle righe.

Determinante di un endomorfismo

Def. Consideriamo un endomorfismo $f: V \to V$ e una base $\mathcal{B} = (b_1, \ldots, b_n)$ per V. Si chiama determinante di f il numero

$$\det f \stackrel{\text{def}}{=} \det M_{\mathcal{B}}^{\mathcal{B}}(f) \in \mathbb{K}.$$

Oss. Il determinante di un endomorfismo è definito come il determinante di una sua matrice rispetto ad una base arbitraria di V, usando la stessa base sia nel dominio che nel codominio.

Oss. $C = (c_1, ..., c_n)$ altra base per $V \Rightarrow \det M_C^C(f) = \det M_B^B(f)$ perché sono matrici simili. Quindi det f è ben definito (non dipende dalla base).

Oss. $f, g: V \to V$ endomorfismi $\Rightarrow \det(f \circ g) = \det(f) \det(g)$ (T. di Binet).

Oss. f isomorfismo $\Leftrightarrow M_{\mathcal{B}}^{\mathcal{B}}(f)$ invertibile $\Leftrightarrow \det f \neq 0 \Rightarrow \det(f^{-1}) = \frac{1}{\det f}$.

Spazio delle applicazioni lineari

Definiamo lo spazio delle applicazioni lineari da V a W

$$\operatorname{Hom}(V, W) \stackrel{\text{def}}{=} \{ f : V \to W \mid f \text{ lineare} \}$$

Date applicazioni lineari $f, g: V \to W$ definiamo la somma

$$f + q: V \rightarrow W$$

$$(f+g)(v) \stackrel{\text{def}}{=} f(v) + g(v)$$

e la moltiplicazione scalare per $lpha \in \mathbb{K}$

$$\alpha f: V \to W$$

$$(\alpha f)(v) \stackrel{\text{def}}{=} \alpha f(v).$$

È facile dimostrare che f+g e αf sono lineari e con queste operazioni Hom(V,W) è un \mathbb{K} -spazio vettoriale.

$$\mathcal{B} = (b_1 \ldots, b_n)$$
 base per V

$$C = (c_1 \dots, c_m)$$
 base per W

 $\forall f, g \in \text{Hom}(V, W), \forall \alpha \in \mathbb{K} \Rightarrow$

$$M_{\mathcal{B}}^{\mathcal{C}}(f+g) = M_{\mathcal{B}}^{\mathcal{C}}(f) + M_{\mathcal{B}}^{\mathcal{C}}(g)$$
$$M_{\mathcal{B}}^{\mathcal{C}}(\alpha f) = \alpha M_{\mathcal{B}}^{\mathcal{C}}(f)$$

Quindi l'applicazione

$$M_{\mathcal{B}}^{\mathcal{C}}$$
: $\operatorname{Hom}(V, W) \to M_{m,n}(\mathbb{K})$

che associa a $f \in \text{Hom}(V, W)$ la matrice $M_{\mathcal{B}}^{\mathcal{C}}(f)$, è lineare e sappiamo che è anche invertibile (ad ogni matrice corrisponde un'applicazione lineare). Abbiamo quindi la proposizione seguente.

Prop. $M_{\mathcal{B}}^{\mathcal{C}}$: $\text{Hom}(V,W) \to M_{m,n}(\mathbb{K})$ è un isomorfismo di spazi vettoriali.

$$M_{m,n}(\mathbb{K}) \cong \mathbb{K}^{mn} \Rightarrow \dim M_{m,n}(\mathbb{K}) = mn \Rightarrow \dim \operatorname{Hom}(V,W) = \dim V \dim W.$$

Definiamo lo spazio degli endomorfismi di V

$$\operatorname{End}(V) \stackrel{\operatorname{def}}{=} \operatorname{Hom}(V, V) = \{ f : V \to V \mid f \text{ lineare} \}.$$

 $\operatorname{End}(V)$ è uno spazio vettoriale e dim $\operatorname{End}(V) = (\dim V)^2$.

Problema della diagonalizzazione

Dato $f \in \text{End}(V)$ vorremmo trovare una base $\mathcal{D} = (v_1, \dots, v_n)$ per V t.c. $M_{\mathcal{D}}^{\mathcal{D}}(f)$ sia la più semplice possibile: una matrice diagonale.

Def. $f \in \operatorname{End}(V)$ è diagonalizzabile se esiste una base \mathcal{D} per V t.c. $M_{\mathcal{D}}^{\mathcal{D}}(f)$ sia una matrice diagonale. \mathcal{D} è detta base diagonalizzante o base che diagonalizza f.

Ricordando che la *i*-esima colonna di $M_{\mathcal{D}}^{\mathcal{D}}(f)$ è il vettore delle coordinate di $f(v_i)$ si ha subito la seguente proposizione.

Prop. $\mathcal{D} = (v_1, \dots, v_n)$ diagonalizza $f \Leftrightarrow \exists \lambda_1, \dots, \lambda_n \in \mathbb{K}$ t.c.

$$f(v_i) = \lambda_i v_i, \quad \forall i = 1, \ldots, n.$$

Inoltre $M_{\mathcal{D}}^{\mathcal{D}}(f) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$

Oss. Se $M_{\mathcal{D}}^{\mathcal{D}}(f) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ allora f si scrive in coordinate come

$$fegin{pmatrix} x_1\ dots\ x_n \end{pmatrix} = egin{pmatrix} \lambda_1x_1\ dots\ \lambda_nx_n \end{pmatrix}$$

Autovalori e autovettori

Def. Dato $f \in \operatorname{End}(V)$, uno scalare $\lambda \in \mathbb{K}$ è detto *autovalore* di f se esiste un vettore *non nullo* $v \in V$ t.c. $f(v) = \lambda v$. In questo caso v è detto *autovettore per f relativo all'autovalore* λ .

Oss. $v \in V$ autovettore per $f \Leftrightarrow v \neq 0_V$ e $\exists \lambda \in \mathbb{K}$ t.c. $f(v) = \lambda v$.

N. B. Vogliamo $v \neq 0_V$ perché altrimenti la definizione sarebbe banale: per ogni $\lambda \in \mathbb{K}$ si ha $f(0_V) = \lambda 0_V$.

Cor. Una base è diagonalizzante ⇔ è formata da autovettori.