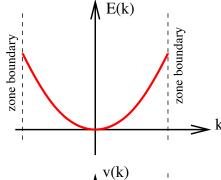
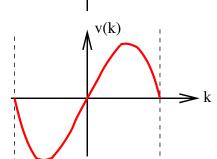
Motion in a uniform E field





$$\hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{E}$$

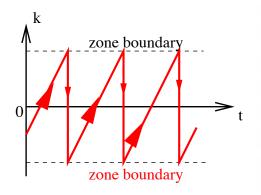
$$\hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{E}$$

$$\mathbf{k}(t) = \mathbf{k}(0) - \frac{e\mathbf{E}}{\hbar}t$$

without collisions or for $t << \tau$

with collisions k saturates at

$$\mathbf{k}_{avg} = -\frac{e\mathbf{E}}{\hbar}t_{avg} = -\frac{e\mathbf{E}}{\hbar}\tau$$



without collisions or for $t << \tau$ <u>electron velocity oscillates</u> → <u>electron motion is oscillatory</u>

Bloch oscillations

But: if the band is filled an applied electric field cannot change k → no current is induced by an applied electric field

Motion in a uniform H field (i)

velocity

$$\mathbf{v}_n = \dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial E_n}{\partial \mathbf{k}} \qquad -$$

equation of motion
$$\hbar \dot{\mathbf{k}} = -e \left(\mathbf{E} + \frac{1}{c} \mathbf{v}_n \times \mathbf{H} \right)$$

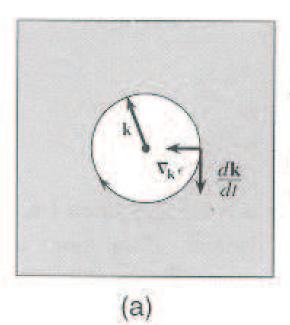
$$\hbar \frac{d\mathbf{k}}{dt} = -\frac{e}{\hbar c} \frac{\partial E_n}{\partial \mathbf{k}} \psi \times \mathbf{H}$$

 \mathbf{k} evolves \perp to $\frac{\partial E_n}{\partial \mathbf{k}}$ and \mathbf{H} :

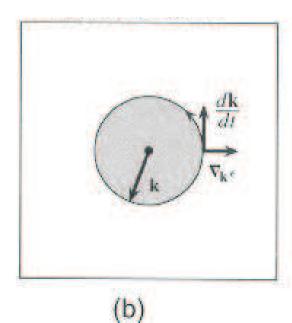
electrons in a static magnetic field move on a curve of constant energy on a plane normal to H

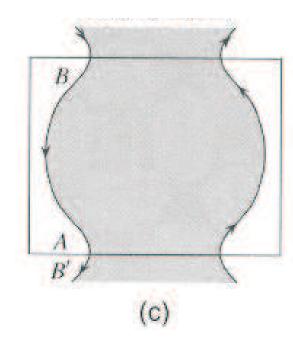
an electron on the Fermi surface will move in a curve on the Fermi surface

Motion in a uniform H field (ii)



perpendicular to the plane, pointing up





hole-like orbit

electron-like orbit

open orbit

clockwise motion, as expected for a positively charged particle

anticlockwise motion, as expected for a negatively charged particle

Motion in a uniform H field (iii)

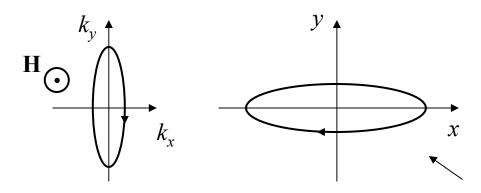
real space orbit vs k-space orbit

From the eqs. of motions it follows:

$$\frac{d\mathbf{k}}{dt} = -\frac{e}{\hbar c} \frac{d\mathbf{r}_{\perp}}{dt} \times \mathbf{H} = -\frac{eH}{\hbar c} \frac{d\mathbf{r}_{\perp}}{dt} \times \mathbf{\hat{H}}$$

(where \mathbf{r}_{\perp} is the projection of \mathbf{r} on a plane $\perp \mathbf{H}$, and $\hat{\mathbf{H}} = \mathbf{H}/H$)

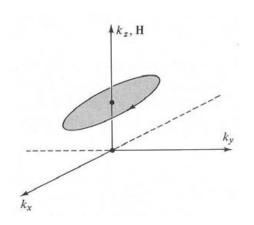
i.e. \mathbf{r} and \mathbf{k} evolve following orbits \perp one to the other:

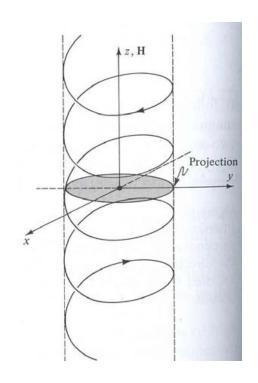


Motion in a uniform H field (iv)

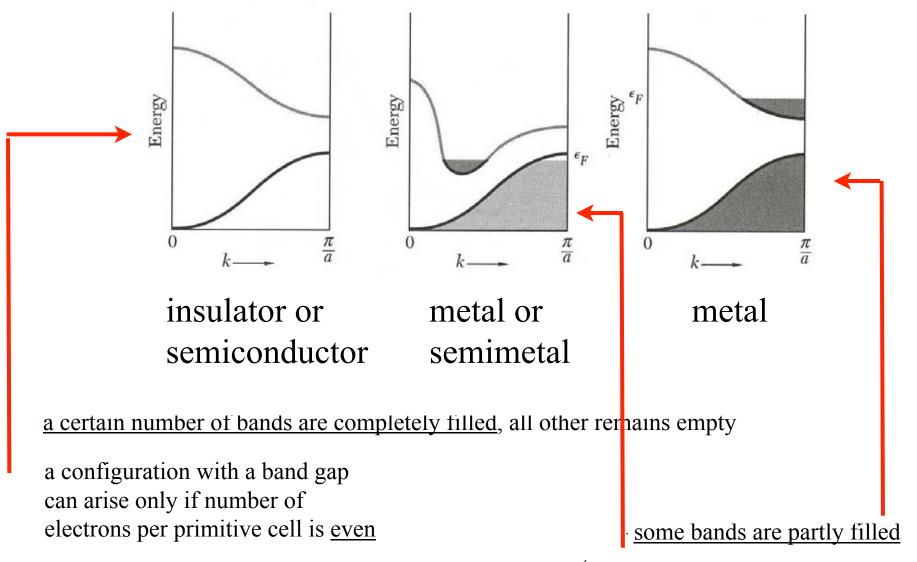
3D: the <u>projection of the real space orbit</u> in a plane perpendicular to the field is the k-space orbit rotated through 90^0 about the field direction

and scaled by the factor $l_H^2 = \frac{\hbar c}{eH}$





metals and insulators



(this is case for an <u>odd</u> number of el.; could be also with an <u>even</u> number of electrons but in presence of a band crossing)

An example of semi-metal

Bi Z=83, group VA; structure: RHL

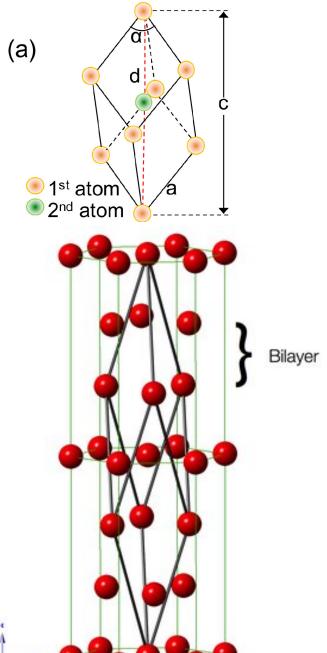
two atoms per unit cell => 10 valence electrons per unit cell => insulator OR metal ?

Bi has:

- the **highest Hall coefficient**, RH = -1/(nec), is several orders of magnitude higher than expected with that n.
- the second lowest thermal conductivity (after Hg)
- a **high electrical resistance** (or low electrical conductivity) (look for instance at Tab 1.2 and 1.6 of A&M)

Why?

Is the "effective" electron concentration *n* for some reason much lower than the calculated one?



Bi Z=83, group VA; rhombohedral structure (RHL)

a nearly perfect "compensated semi-metal"

with small electron and hole pockets;

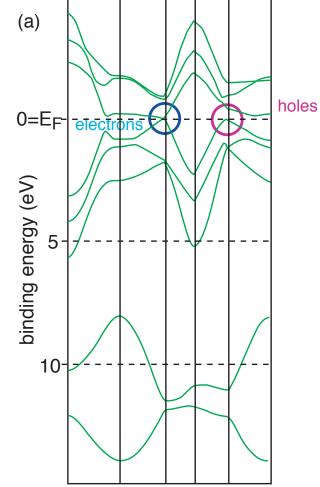
low carrier density;

small Fermi surface

Adapted from:

Philip Hofmann

Online note to accompany the book "Solid State Physics - An Introduction", Wiley, by



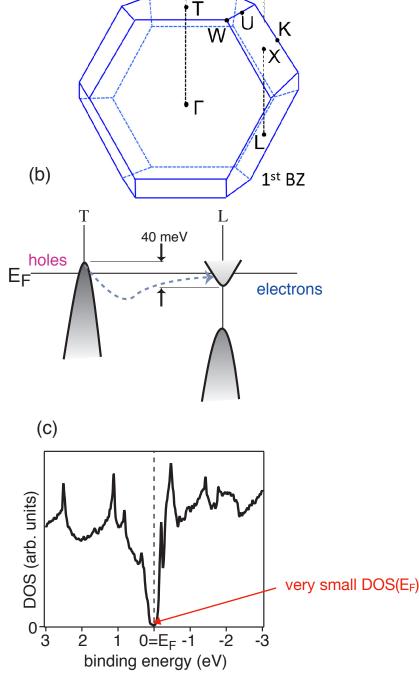
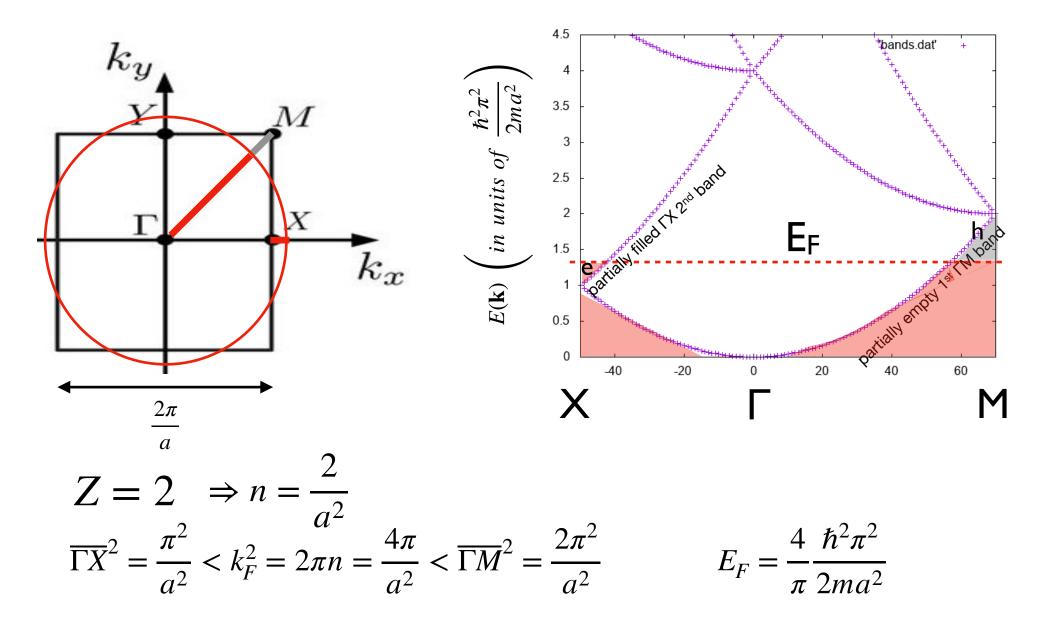
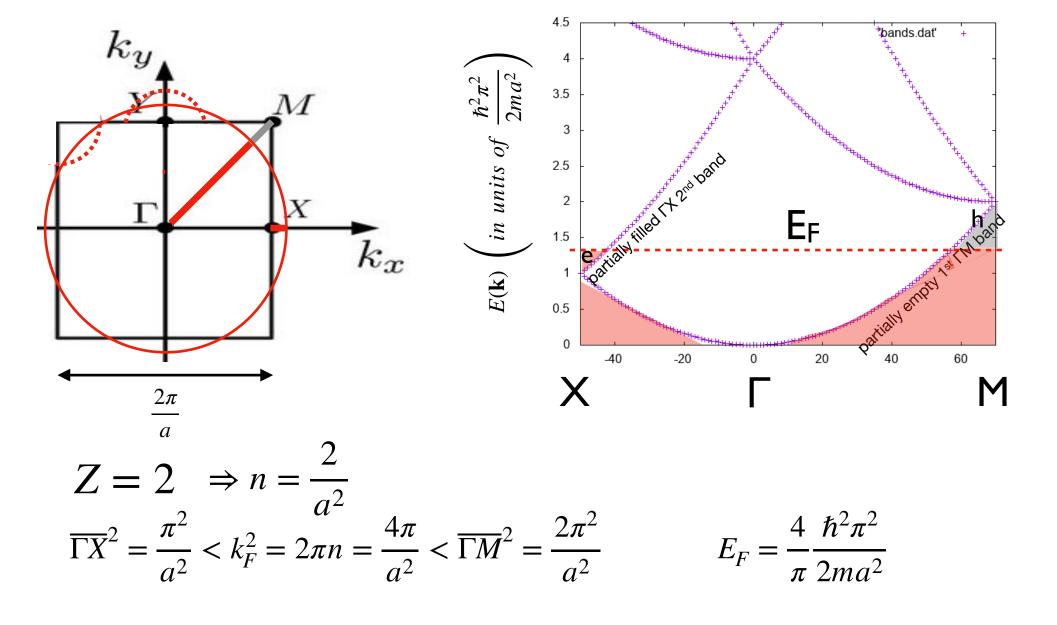


Figure 1: Electronic structure of Bismuth. (a) Bulk band dispersion in different directions of the Brillouin zone (b) Schematic band structure of the bands crossing the Fermi energy. (c) Density of states.

The 2D empty square lattice model



The 2D empty square lattice model weak potential



The 2D empty square lattice model

weak potential

written test of January 16, 2012 - problem n. 3 (qualitative picture!)

$$Z=2$$

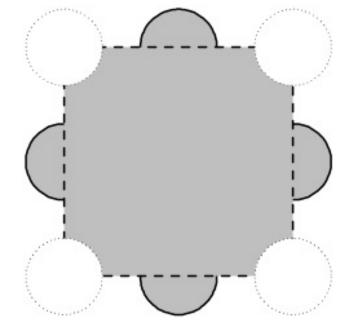
$$2D \Rightarrow n = \frac{2}{a^2}$$

$$2D \Rightarrow n = \frac{2}{a^2}$$

$$k_F^2 = 2\pi n = \frac{4\pi}{a^2} \Rightarrow A_{Fermi\ circle} = \pi k_F^2 = \left(\frac{2\pi}{a}\right)^2 = A_{1st\ Bz}$$

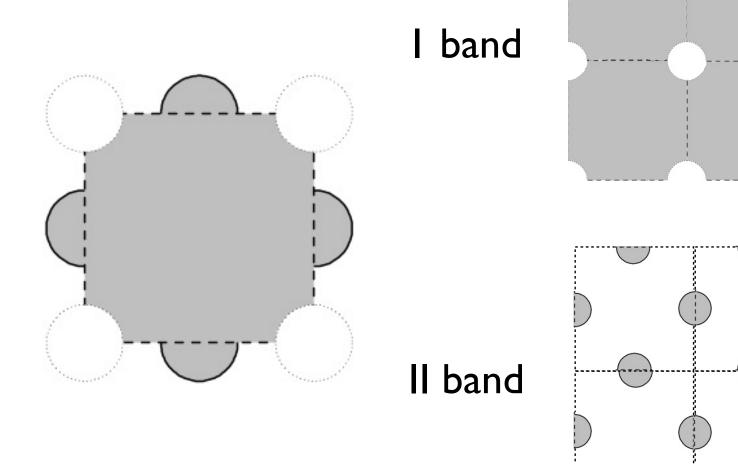
$$3D \Rightarrow n = \frac{2}{a^3}$$

$$k_F^3 = 3\pi^2 n = \frac{6\pi^2}{a^3} \Rightarrow V_{Fermi\ sphere} = \frac{4}{3}\pi k_F^3 = \left(\frac{2\pi}{a}\right)^3 = V_{1st\ Bz}$$



The 2D empty square lattice model

weak potential



Bi Z=83, group VA; structure: RHL

The effect of the presence of both holes and electrons on the Hall constant can be understood qualitatively from the expression for RH:

$$R_H = \frac{p\mu_h^2 - n\mu_e^2}{e(p\mu_h + n\mu_e)^2}$$
 => small denominator => hi
No longer true if $p\mu_h^2 = n\mu_e^2$

(see: Ashcroft-Mermin: problem 12.4

or

written test of 11/04/2007)

if n, p (here: n=p) are very small \Rightarrow small denominator \Rightarrow high R_H

since also the numerator vanishes

3D Fermi Surface

1 valence e 2 valence e 3 valence e Na Ca Al FCC FCC

web page: http://www.phys.ufl.edu/fermisurface/

Silicon bands and anisotropic effective masses

