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Batch PEM Identification Algorithms

PEM identification algorithms can be classified in two main categories:

• Batch Algorithms: observed data are elaborated in single batch and the
determination of the model is carried out once all data are available

• Recursive Algorithms: observed data are elaborated in a recursive way as soon as
they become available according to their temporal ordering
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Least-Squares Batch
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Least-Squares Batch Identification Algorithm

• Recall that the first step is to chose the family of models M = {M(ϑ) : ϑ ∈ Θ}
which also implies to obtain a corresponding family of predictors
M̂ =

{
M̂(ϑ) : ϑ ∈ Θ̂

}
• Consider ARX models:

M(ϑ) : A(z) y(t) = B(z)u(t− 1) + ξ(t)

A(z) = 1− a1z
−1 − a2z

−2 − · · · − anz
−n

B(z) = b1 + b2z
−1 + · · ·+ bnz

−n

ϑ =



a1
...
an
b1
...
bn


M̂(ϑ) : ŷ(t) = [1−A(z)] y(t) +B(z)u(t− 1)

where we used the shorthand ŷ(t) for ŷ(t|t− 1)
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Least-Squares Batch Identification Algorithm (cont.)

• Let us resort to the Least-Squares technique. Then:

ϑ =



a1
...
an
b1
...
bn


φ(t) =



y(t− 1)
...

y(t− n)

u(t− 1)
...

u(t− n)


and hence

M(ϑ) : y(t) = φ(t)⊤ ϑ+ ξ(t)

M̂(ϑ) : ŷ(t) = φ(t)⊤ ϑ

where it is important to recall that the predictor has a linear structure with respect
to the vector ϑ of unknown parameters

DIA@UniTS – 267MI –Fall 2023 TP GF – L13–p4



Least-Squares Batch Identification Algorithm (cont.)

• The prediction error is given by:

ε(t) = y(t)− ŷ(t) = y(t)− φ(t)⊤ ϑ

where y(t) is the output observed variable of the true system to be identified; this
variable is going to be predicted at time t− 1 by the predictor.

• Consider the quadratic cost function:

J(ϑ) =

N∑
t=1

[ε(t)]2 =
N∑
t=1

[
y(t)− φ(t)⊤ϑ

]2
and the minimizing vector

ϑ◦ = arg min
ϑ

J(ϑ)
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Least-Squares Batch Identification Algorithm (cont.)

• Recalling the Least-Squares methodology and its solution:

N∑
t=1

φ(t) y(t) =

[
N∑
t=1

φ(t)φ(t)⊤

]
ϑ

Least-Squares
Normal Equations

(2n equations, 2n unknowns)

• and if
N∑
t=1

φ(t)φ(t)⊤ is non-singular, one gets:

ϑ̂N =

[
N∑
t=1

φ(t)φ(t)⊤

]−1 N∑
t=1

φ(t) y(t) Least-Squares Formula
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Least-Squares Batch Identification Algorithm (cont.)

• Also recall that:

• If det

[
N∑
t=1

φ(t)φ(t)⊤
]
̸= 0 =⇒ ϑ̂N is the unique

global minimum

• If det

[
N∑
t=1

φ(t)φ(t)⊤
]
= 0 =⇒ ϑ̂N is one among the

infinite global minima

• where the condition

det

[
N∑
t=1

φ(t)φ(t)⊤

]
̸= 0

is called Identifiability Condition
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Least-Squares Batch Identification Algorithm (cont.)

It is worth noting that the LS algorithm is associated with identification of ARX models
for the sake of simplicity but what matters is the linearity with respect to the unknown
parameters.

Example 1

S : y(t) =
1
2 u(t− 1) +

1
1+ dz−1

e(t) , e(·) ∼WN(0, λ2)

where the only unknown is the parameter d . Hence:

(1+ dz−1) y(t) =
1
2 (1+ dz−1)u(t− 1) + e(t)

=⇒ y(t) = −d y(t− 1) + 1
2 u(t− 1) +

1
2d u(t− 2) + e(t)
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Least-Squares Batch Identification Algorithm ((cont.))

This XAR model has the structure of a ARX(1,2) model:

ϑ =

 d

b1
b2

 φ(t) =

 y(t− 1)
u(t− 1)
u(t− 2)


However:

• to identify the original model using this ARX structure is not efficient because we
do not take advantage of the information for which b1 = 0.5

• Moreover, the parameters a1, b2 actually depend on a single parameter and also
this information is not exploited.

• Finally, trying to obtain the estimate of a single parameter by estimating three
parameters is not efficient as well.
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Least-Squares Batch Identification Algorithm (cont.)

But the original model can be rewritten as:

y(t) =
1
2 u(t− 1) + d

[
−y(t− 1) + 1

2 u(t− 2)
]
+ e(t)

and hence
ỹ(t) = φ̃(t) ϑ̃+ e(t) with ϑ̃ = d

where
φ̃(t) = −y(t− 1) + 1

2 u(t− 2) , ỹ(t) = y(t)− 1
2 u(t− 1)
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Least-Squares Batch Identification Algorithm (cont.)

Example 2
Assume that the true system to be identified takes on the form of a nonlinear model:

S : y(t) = a y(t− 1)2 + b1u(t− 3) + b2u(t− 5)3 + e(t) , e(·) ∼WN(0, λ2)

However, letting

ϑ =

 a

b1
b2

 , φ(t) =

 y(t− 1)2
u(t− 3)
u(t− 5)3


we obtain a linear structure

y(t) = φ(t)⊤ ϑ+ e(t)

and, again, we are able to proceed in the usual way
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Least-Squares Batch
Identification Algorithm
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Asymptotic Analysis of the LS Batch Identification Algorithm

• In general, we have seen that in PEM methods, under suitable assumptions, the
estimate asymptotically converges to the set ∆ of minima of the function
J̄(ϑ) = E

{
[ε(t)]2

}
• The function J̄(ϑ) can be evaluated only by using the knowledge of the true system
S

• Suppose that ∃ϑ◦ : S = M(ϑ◦) which, in our case, means to assume that there
exists ϑ◦ (true parametrization) such that:

S : y(t) = φ(t)⊤ ϑ◦ + ξ(t) , ξ(·) ∼WN(0, λ2)

• If S is as. stable (zeroes of A(z) with | · | < 1 ) then, the stationarity of u(·) and of
ξ(·) implies the stationarity of y(·)
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Asymptotic Analysis of the LS Batch Identification Algorithm (cont.)

• The prediction error is given by:

ε(t) = φ(t)⊤ (ϑ◦ − ϑ) + ξ(t)

But φ(t)⊤ (ϑ◦ − ϑ) is a scalar and hence it is equal to its transpose:

ε(t)2 = (ϑ◦ − ϑ)
⊤
φ(t)φ(t)⊤ (ϑ◦ − ϑ) + ξ(t)2 + 2 (ϑ◦ − ϑ)

⊤
φ(t) ξ(t)

=⇒ E
[
ε(t)2

]
= (ϑ◦ − ϑ)

⊤
E
[
φ(t)φ(t)⊤

]
(ϑ◦ − ϑ) + E

[
ξ(t)2

]
+2 (ϑ◦ − ϑ)

⊤
E [φ(t) ξ(t)]

=⇒ E
[
ε(t)2

]
= (ϑ◦ − ϑ)

⊤
E
[
φ(t)φ(t)⊤

]
(ϑ◦ − ϑ) + λ2

• If E
[
φ(t)φ(t)⊤

]
> 0 : The LS algorithm converges a.s. to the true parametrization

• If E
[
φ(t)φ(t)⊤

]
≥ 0 : Identifiability does not hold
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Asymptotic Analysis of the LS Batch Identification Algorithm (cont.)

• Let us now evaluate the asymptotic variance of the estimate:

ψ(t, ϑ)⊤ = − ∂

∂ϑ
εϑ(t) = − ∂

∂ϑ

[
φ(t)⊤ (ϑ◦ − ϑ) + ξ(t)

]
= φ(t)⊤

and observe that, due to linearity in the parameters, ψ(t, ϑ)⊤ does not depend on
ϑ . Hence:

R̄ = E
[
φ(t)φ(t)⊤

]
which implies that for large values of N the variance of the estimate is
λ2

N
E
[
φ(t)φ(t)⊤

]−1
Computing the empirical estimates, one gets:

var [ϑ̂N ] =
λ2

N

[
1
N

N∑
t=1

φ(t)φ(t)⊤

]−1

= λ2 S(N)−1 (⋆)

Remark: (⋆) only holds if ∃ϑ◦ : S = M(ϑ◦)
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Operational Batch LS Identification Procedure

• Set the order of the ARX model to be identified

and from the observed data u(·)
and y(·) build the regression
vector φ(·)

• Perform a singularity test on matrix S(N)

• If S(N) > 0 compute ϑ̂N = [S(N)]
−1

N∑
t=1

φ(t) y(t)

• Evaluate the estimate uncertainty var [ϑ̂N ] = λ̂2 S(N)−1 where λ̂2 is an empirical
estimate of λ2

• Check the witheness of the prediction error ε(t) = y(t)− φ(t)⊤ ϑ̂N which is of
fundamental importance to verify the “goodness” of the identified model (order
and structure).
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Persistency of Excitation

• Let us analyze the matrix S(N) =

N∑
t=1

φ(t)φ(t)⊤ and, just to get more insight, let us

focus on the simple ARX(1,1) case:

ϑ =

[
a1
b1

]
φ(t) =

[
y(t− 1)
u(t− 1)

]

=⇒ φ(t)φ(t)⊤ =

[
y(t− 1)2 y(t− 1)u(t− 1)

u(t− 1)y(t− 1) u(t− 1)2

]

=⇒ S(N) =


N∑
t=1

y(t− 1)2
N∑
t=1

y(t− 1)u(t− 1)
N∑
t=1

u(t− 1)y(t− 1)
N∑
t=1

u(t− 1)2


Notice that the elements of the matrix S(N) diverge for N → ∞
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Persistency of Excitation (cont.)

• Notice that rank
[
φ(t)φ(t)⊤

]
= 1 , ∀φ(t) and hence S(1) is non-singular only if

dim [φ(t)] = 1 (only one parameter to be estimated).
Hence:

given the model’s complexity, the data cardinality has to be large enough
• It is convenient to introduce

R(N) =
1
N
S(N)

=⇒ ϑ̂N = [R(N)]
−1 1

N

N∑
t=1

φ(t) y(t)
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Persistency of Excitation (cont.)

• In the ARX(1,1) case under consideration:

R(N) =


1
N

N∑
t=1

y(t− 1)2 1
N

N∑
t=1

y(t− 1)u(t− 1)

1
N

N∑
t=1

u(t− 1)y(t− 1) 1
N

N∑
t=1

u(t− 1)2

 −→ R̄

where R̄ =

[
γyy(0) γuy(0)
γyu(0) γuu(0)

]
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Persistency of Excitation (cont.)

• In the general case ARX(na, nb) :

R̄ =

[
R̄na

yy R̄yu

R̄uy R̄nb
uu

]

where

R̄na
yy = E




y(t− 1)
...

y(t− na)

 [y(t− 1) · · · y(t− na)]


R̄nb

uu = E




u(t− 1)
...

u(t− nb)

 [u(t− 1) · · · u(t− nb)]


and so on.
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Persistency of Excitation (cont.)

• Hence, the positive definiteness of R(N) is the condition to be satisfied in order to
obtain a unique estimate at least for a sufficiently large number N of observed
data

• Consider the Sylvester test: a symmetric square matrix A is positive definite if and
only if all principal minors are positive, that is, if and only if:

D1 = det (a11) > 0

D2 = det

[
a11 a12
a21 a22

]
> 0

D3 = det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 > 0

...
Dn = det (A) > 0
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Persistency of Excitation (cont.)

• Hence R̄ > 0 =⇒ R̄nb
uu > 0 that is R̄nb

uu > 0 is a necessary condition for R̄ to be
non-singular

• In general, for a generic n , we have:

R̄n
uu =


γuu(0) γuu(1) · · · γuu(n− 1)
γuu(1) γuu(0) · · · γuu(n− 2)

. . . . . .
γuu(n− 1) · · · γuu(1) γuu(0)


which is a Toeplitz matrix (all elements on the diagonals coincide) and depends
only on u(·) hence on the experimental conditions.
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Persistency of Excitation (cont.)

Persistency of Excitation
Definition. The input variable u(·) is persistently exciting of order n if R̄n

uu is
non-singular.

A necessary condition to be able to identity a ARX(na, nb) model is that the input
u(·) is persistently exciting of order nb

Remark. From the Sylvester test it turns out that if u(·) is persistently exciting of order
n then it is p.e. of order ñ, ∀ ñ < n
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Least-Squares Identifiability

The Case of ARX Models



LS Identifiability in the Case of ARX Models

Recall that:

• To analyze the identifiability of a given system S through a given class of models
M means to analyze the cardinality of the set ∆

• In general:

Experimental conditions

Structure of the class of models

 =⇒ Cardinality of ∆

• In our case, we want to analyze the identifiability of a given system S by a given
family of models M = ARX(na, nb)
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LS Identifiability in the Case of ARX Models (cont.)

• If we are allowed to design the identification experimental conditions, we have to
make sure that u(·) is sufficiently rich so as to guarantee that ∆ contains only one
element.

• If the experimental conditions cannot be designed, the complexity of the models
(that is, the number of parameters to be identified) has to be reduced by limiting
ourselves to identify what is actually identifiable for the given the experimental
context

• In our case M = ARX(na, nb) , u(·) sufficiently rich means u(·) p.e. of order nb
• Observe that u(·) =WN(0, λ2) is p.e. of arbitrary order because, in this case, R̄n

uu

is a diagonal matrix. This is not necessarily the best choice. The important point is
to make sure to design input variables u(·) with a suitable spectrum exciting all
the system’s modes of behaviour.
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Identifiability: Structure of the Family of Models to be Identified

Recall that:

• Assume that S ∈ M but also that the chosen family has a complexity larger than
the one of the true system

Example S = ARMAX(1, 1, 1) , M = ARMAX(2, 2, 2)
Clearly, irrespective of the experimental conditions, ∆ will be necessarily made of
an infinite number of elements because S can be described by an infinite number
of models belonging to the family in which there are common factors.

It is important to guarantee that the family M is not over-parametrised
• In our considered case M = ARX(na, nb) , having a structural non-identifiability
means that R̄ is singular despite the fact that R̄nb

uu > 0
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LS Identifiability: Summing Up

• Suppose that:
• S is ARX(na, nb) with with no common factors between A(z) and B(z)

• M = ARX(na, nb)

• u(·) p.e. of order nb

Then, the estimates of the parameters of the ARX(na, nb) model converge a.s. to
the true parametrization

• If u(·) is not p.e. of order nb and the estimate does not converge even for large
values of N very likely the complexity of the model to be identified should be
reduced.

• If the estimate does converge but the prediction error ε(·) is not white this means
that the family of models M = ARX(na, nb) is not adequate; hence either the
order or the family itself has to be changed.
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Least-Squares Identifiability

Example



Important Example

• Consider a system to be identified which can be described by a ARMAX(1,1,1) model:

S : y(t) = a◦ y(t− 1) + b◦ u(t− 1) + ξ(t) + c◦ ξ(t− 1)
|a◦| < 1 , ξ(·) ∼WN(0, λ2) , u(·) ∼WN(0, µ2)

where the processes u(·) and ξ(·) are supposed to be uncorrelated.
• Let us consider the ARX(1,1) family of models:

M̂ : ŷ(t) = a y(t− 1) + b u(t− 1)

and let us use the LS algorithm to identify the system S by a ARX model.
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Important Example (cont.)

The asymptotic theory ensures the almost sure convergence to one of the minima of the
function

J̄(ϑ) = E
{
[ε(t)]2

}
= E

{
[y(t)− ŷ(t)]2

}
= E [y(t)]

2
+ E [ŷ(t)]

2 − 2E [y(t) ŷ(t)]

Hence:

E [ŷ(t)]
2
= a2E [y(t− 1)]2 + b2E [u(t− 1)]2 + 2 a bE [y(t− 1)u(t− 1)]

But y(t− 1) depends on u(t− 2), y(t− 2), ξ(t− 1) and hence, given our hypotheses, we
have E [y(t− 1)u(t− 1)] = 0 and then

E [ŷ(t)]
2
= a2 γyy(0) + b2 γuu(0)

Moreover:
E [y(t) ŷ(t)] = aE [y(t) y(t− 1)] + bE [y(t)u(t− 1)]

= a γyy(1) + b γuy(1)
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Important Example (cont.)

Thus:
J̄(ϑ) =

(
1+ a2

)
γyy(0) + b2 γuu(0)− 2 a γyy(1)− 2 b γuy(1)

and hence:

∂J̄

∂ϑ
=

[
∂J̄

∂a

∂J̄

∂b

]
= [2a γyy(0)− 2 γyy(1) | 2b γuu(0)− 2 γuy(1)]

=⇒ ϑ̄ =

[
ā

b̄

]
=


γyy(1)
γyy(0)

γuy(1)
γuu(0)



DIA@UniTS – 267MI –Fall 2023 TP GF – L13–p29



Important Example (cont.)

Now, plugging in the information on the “true” system we obtain:

γuy(1) = E [y(t)u(t− 1)] = E
[
a◦ y(t− 1)u(t− 1) + b◦ u(t− 1)2

+ξ(t)u(t− 1) + c◦ ξ(t− 1)u(t− 1)]
= b◦ γuu(0)

γyy(1) = E [y(t) y(t− 1)] = E
[
a◦ y(t− 1)2 + b◦ u(t− 1) y(t− 1)

+ξ(t) y(t− 1) + c◦ ξ(t− 1) y(t− 1)]
= a◦ γyy(0) + c◦ λ2

Hence:
ā =

γyy(1)
γyy(0)

=
a◦ γyy(0) + c◦ λ2

γyy(0)
= a◦ + c◦

var (ξ)

var (y)

b̄ = b◦
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Important Example (cont.)

• Summing up, we got:

ϑ̂N =

[
âN
b̂N

]
−→

 a◦ + c◦
var (ξ)

var (y)
b◦

 a.s.

and then the estimation error of the true parameter a◦ , for a given c◦ , is inversely
proportional to the signal/noise ratio.
Moreover, the true value can only be obtained for c◦ = 0 or var (ξ) = 0 and then
only in the case in which the ARMAX model is actually ARX or deterministic.
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Important Example (cont.)

• Prediction error:

ε(t) = y(t)− ŷ(t) = y(t)− ā y(t− 1)− b̄ u(t− 1)
= a◦ y(t− 1) + b◦ u(t− 1) + ξ(t) + c◦ ξ(t− 1)

−
(
a◦ + c◦

var (ξ)

var (y)

)
y(t− 1)− b◦ u(t− 1)

= ξ(t) + c◦ ξ(t− 1)− c◦
var (ξ)

var (y)
y(t− 1)

which is not white, except in the case c◦ = 0
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Choice of Models Complexity

Whiteness Test



Premise: Anderson Whiteness Test

• The results of the identification procedure have to be checked a posteriori verifying
that the prediction error is as much similar as possible to a white process.

• Given a zero-mean stationary process ε(·) consider the empirical estimate of the
covariance function:

γ̂(τ) =
1
N

N−τ∑
t=1

ε(t) ε(t+ τ)

where N is the length of the considered time-horizon.
• The Anderson test makes use of the normalized empirical covariance function:

ρ̂(τ) =
γ̂(τ)

γ̂(0)

• It can be shown that if ε(·) is white, then
√
N ρ̂(τ) ∼ AsG(0, 1) and that ρ̂(i) is

asymptotically uncorrelated with ρ̂(j), i ̸= j
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Premise: Anderson Whiteness Test (cont.)

• Set a confidence level 0 < α < 1 (for example α = 0.01 )

Moreover, determine β > 0 such
that the tails of the Gaussian
G(0, 1) in the intervals (−∞,−β)
and (β,+∞) have area α/2 .

• Consider a certain number M of evaluations of ρ̂(τ) : ρ̂(0), ρ̂(1), ρ̂(2), . . . , ρ̂(M)

• Consider the interval (−β/
√
N, β/

√
N) and evaluate the number n of samples of

ρ̂(τ) such that ρ̂(τ) ̸∈ (−β/
√
N, β/

√
N)

• If n

M
< α then ε(·) is considered white with confidence α
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LS Batch Identification Algorithm - Example

Matlab live script
An interactive Matlab live script illustrates how to solve the
identification problem, given the proper model of a stochastic process.

Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture13,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( ' L13_LS_batch_ID_alg_example . mlx ' ) ;

• Explore the live script and run it.
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Choice of Models Complexity

Model Validation



Model Complexity

• Let us characterize the complexity of the model (for a given specific family of
models) with the total number n of its parameters

• Consider the quadratic criterion:

J(ϑ) =
1
N

N∑
i=1

[ε(t)]2

where ϑ is the vector of unknown parameters, n = dim(ϑ) and ε(t) is the
prediction error at time instant t : ε(t) = y(t)− ŷ(t | t− 1)

• Consider:
ϑ̂N = arg min

ϑ
J(ϑ)

• Moreover J(ϑ̂N ) can be interpreted as an index quantifying the “data
interpretation” capabilities of the model

• For a given realization of the observed data, J(ϑ̂N ) decreases as the model
complexity n increases and hence J(ϑ̂N ) is not per se useful to determine the
optimal model complexity

DIA@UniTS – 267MI –Fall 2023 TP GF – L13–p36



Important Example

Consider the process (“true” system):

S : y(t) = 1.2 y(t− 1)− 0.32 y(t− 2) + u(t− 1) + 0.5u(t− 2) + e(t)

e(·) ∼WN(0, 1) , u(·) ∼WN(0, 4) , e(·), u(·) uncorrelated

Consider the family of models ARX(n, n):

M(ϑ) : y(t) = a1 y(t− 1) + · · ·+ an y(t− n)

+b1 u(t− 1) + · · ·+ bn u(t− n) + ξ(t)

and let us identify the models in the cases n = 1, 2, 3 over a window of 2000 data, that
is {u(t), y(t)}t=1,...,2000
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Important Example (cont.)
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Important Example (cont.)

Observations

• Observe that J(ϑ̂2000) decreases when n increases
• The Anderson test provides results that improve when n increases
• For n ≥ 3 the estimates of the parameters ân and b̂n are very small and the
uncertainties associated with the parameters estimates are very large which is a
clear sign of over-parametrization (the model is too complex with respect to the
available data)

• In a situation like the one in this example it is possible to conclude that ARX(2, 2)
is the correct model. However, in general this is hardly possible
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General Remarks

• In general, the Anderson test may not be satisfied even for very large values of n
and, in such a case, it is not possible to come up with a clear choice as far as the
model order is concerned (as in the example)

• The fact that, for a given observed data realization, J(ϑ̂N ) decreases when the
model complexity n increases – thus avoiding the possibility to use J(ϑ̂N ) to
determine the model complexity – is a direct consequence of a conceptual mistake:

Use of the same batch of data
to identify and to validate the model

Hence, J(ϑ̂N ) is generally not an indicator of the “goodness” of the identified
model

Model Validation
It is necessary to validate the model on data that are different from the ones used to
identify the model
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Choice of Models Complexity

Cross-Validation



Cross-Validation

• Assume the availability of a sufficiently large batch of N
observed data;

• Reserve a part of the batch of data to validate the model
that has been identified with the remaining data

• Consider a cross-validation cost function:

JCV (ϑ) =
1

N − t̄

N∑
k=t̄

[ε(k)]2

and evaluate n such that JCV (ϑ) is minimized
• For a given batch of observed data, JCV (ϑ̂t̄) is NOT monotonically decreasing with
respect to the increase of the complexity n and hence JCV (ϑ̂t̄) can be used to
decide the optimal complexity of the model

• The CV procedure is rather cumbersome and needs a large batch of data to be
applicable in an effective way.
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Choice of Models Complexity

Final Prediction Error



Final Prediction Error (FPE)

• Let us devise a criterion by which to evaluate the goodness of the model with
respect to different realizations of the batch of observed data:

J̄(ϑ) = E
{
[y(t, s)− ŷ(t, s, ϑ)]

2
}

where s is the outcome of the random experiment concerning the data observation
• Hence J̄(ϑ) characterizes the average adherence of the model on all possible data
batches.

• As usual we have ϑ̂N = arg min
ϑ

J(ϑ) where the minimization is carried out on a
given specific data batch. Clearly, when considering all possible data realizations,
we have ϑ̂N = ϑ̂N (s)

• Averaging again, we define

FPE = E
{
J̄
[
ϑ̂N (s)

]}
and the optimal model complexity is the one for which FPE is minimized
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Final Prediction Error (FPE) (cont.)

Let us evaluate the FPE in a simple/specific case:

S : AR(n) and M : AR(n)

Then:
S : y(t, s) = φ(t, s)⊤ ϑ◦ + ξ(t) ξ(·) ∼WN(0, λ2)
M̂(ϑ) : ŷ(t, s) = φ(t, s)⊤ ϑ

But φ(t, s) and ξ(t) are uncorrelated and hence

J̄(ϑ) = E
{
[y(t, s)− ŷ(t, s, ϑ)]

2
}
= E

{[
φ(t, s)⊤ (ϑ◦ − ϑ) + ξ(t)

]2}
= (ϑ◦ − ϑ)

⊤
E

[
φ(t, s)φ(t, s)⊤

]
(ϑ◦ − ϑ) + λ2

Setting R̄ = E
[
φ(t, s)φ(t, s)⊤

]
we get

FPE = E
{
J̄
[
ϑ̂N (s)

]}
= E

{[
ϑ◦ − ϑ̂N (s)

]⊤
R̄

[
ϑ◦ − ϑ̂N (s)

]
+ λ2

}
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Final Prediction Error (FPE) (cont.)

On the other hand, for a sufficiently large N :

var
[
ϑ◦ − ϑ̂N (s)

]
∼ λ2

N
R̄−1

Now, setting ν = ϑ◦ − ϑ̂N (s) we have:

var (ν) =
λ2

N
R̄−1 =⇒ R̄ = var (ν)−1

λ2

N

and then
FPE = E

(
ν⊤ R̄ ν

)
+ λ2 = E

[
ν⊤ var (ν)−1 ν

] λ2
N

+ λ2

But ν⊤ var (ν)−1 ν is a scalar and hence:

ν⊤ var (ν)−1 ν = tr
[
ν⊤ var (ν)−1 ν

]
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Final Prediction Error (FPE) (cont.)

Therefore (using tr (AB) = tr (BA) ):

E
[
ν⊤ var (ν)−1 ν

]
= E

{
tr

[
ν⊤ var (ν)−1 ν

]}
= E

{
tr

[
var (ν)−1 ν ν⊤

]}
= tr

{
E

[
var (ν)−1 ν ν⊤

]}
= tr

[
var (ν)−1E

(
ν ν⊤

)]
= tr

[
var (ν)−1 var (ν)

]
= tr (I) = n

Thus:
FPE =

n

N
λ2 + λ2
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Final Prediction Error (FPE) (cont.)

For a sufficiently large value of N , an estimate of λ2 is

λ̂2 =
1

N − n

N∑
t=1

[ε(t)]2 =
N

N − n

1
N

N∑
t=1

[ε(t)]2 =
N

N − n
J(ϑ̂N )(n)

where J(ϑ̂N )(n) denotes the specific value of the cost on the given observed data on
the model of complexity n .

The final form of the FPE is thus given by:

FPE =
N + n

N − n
J(ϑ̂N )(n)
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Final Prediction Error (FPE): Remarks

• The function N + n

N − n
behaves like in the figure, whereas

the function J(ϑ̂N )(n) is monotonically decreasing with
n

• Hence, for a given N , the typical FPE behavior is shown
in the figure on the right.
Thus, the optimal complexity with respect to the FPE
criterion is n̄

• The FPE formula holds for other families of models just suitably re-defining n . For
example, in the ARX case, we set n = na + nb while in the ARMAX case we set
n = na + nb + nc
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Choice of Models Complexity

Akaike Information Criterion



Akaike Information Criterion (AIC)

• This is a statistical criterion. It is obtained by minimizing the Kullback distance
between the probability density function of the observed data and the one that
would be generated by the model under concern. The Kullback distance is defined
as

E

(
ln

ptrue
pmodel

)
• It can be shown that

AIC = 2 n
N

+ ln
[
J(ϑ̂N )(n)

]

• Again, the optimal complexity with respect to the AIC
criterion is n̄

• Notice that the rate of growth of the linear term 2 n
N

decreases with N . Hence, AIC
“suggests” models of smaller order in presence of fewer observed data.
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Choice of Models Complexity

Minimum Description Length



Minimum Description Length (MDL)

• This is an information-theory based criterion:
for a given set of data, the optimal complexity is the one for which the model can
be “described” by the minimum number of bits.

• Taking into account that the growth of the dimension of the vector of parameters is
compensated by the (average) decrease of the number of bits that are needed to
describe the prediction error. It can be shown that

MDL = (ln N)
n

N
+ ln

[
J(ϑ̂N )(n)

]

• Again, the optimal complexity with respect to the
MDL criterion is n̄
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Choice of Models Complexity

Comparison Between Indexes



Comparison Between FPE, AIC and MDL

• For large N , FPE and AIC typically yield very similar outcomes:

ln FPE = ln

[
N + n

N − n
J(ϑ̂N )(n)

]
= ln

[1+ n/N

1− n/N
J(ϑ̂N )(n)

]
= ln (1+ n/N)− ln (1− n/N) + ln

[
J(ϑ̂N )(n)

]
≃ 2 n

N
+ ln

[
J(ϑ̂N )(n)

]
= AIC

• AIC and MDL have a similar structure and differ for the term multiplying n : for AIC
it is 2/N while for MDL it is lnN/N

• For large N , MDL typically yields models
with lower complexity

• In general there is no guarantee that the criteria have a single minimum
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Hands On - Comparison Between the Indices
Matlab live script
A couple of interactive Matlab live scripts illustrate how to evaluate the
performance of the FPE, AIC and MDL indices and of the Cross Validation
in selecting the best model from a range of possible models.
Steps to retrieve the live script:

• Download as a ZIP archive the whole contents of the folder named ”Lecture13,”
available in the ”Class Materials” file area of the MS Teams course team, and
uncompress it in a preferred folder.

• Add the chosen folder and subfolders to the Matlab path.
• Open the live script using the Matlab command:

open ( 'L13_Order_Determination_FPE_AIC_MDL . mlx ' ) ;
open ( ' L13_Order_Determination_CV . mlx ' ) ;

• Explore the live scripts and run them.
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