993SM - Laboratory of
Computational Physics
unit XI
December 4, 2023

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@units.it
tel.: +39 040 2240242

mailto:peressi@units.it

Lattice gas models

idea: recover the treatment of RWs
but the walkers now move together and interact

other topics:
- Macroscopic systems towards equilibrium
- Stochastic fluctuations
- Simulated annealing (A. Marrazzo, tomorrow; Python)

Random Walks

Dependence of (R*(t)) on t :

normal behavior: (R*(t)) ~ t
for the brownian motion

superdiffusive behavior: (R*(t)) ~ t*’with v > 1/2
in models where self-intersections are unfavored

subdiffusive behavior (R*(t)) ~ t**with v < 1/2
in models where self-intersections are favored

t (time) «=> N (number of steps); t = N At

<> = avg. over walkers

RWV and diffusion

e consider the normal behaviour: (R*(t)) ~ ¢
The quantity: D(t) _ %<AR(t)2>
t

(where d is the dimensionality of the system)
should go asymptotically to a constant value for large #,
the autodiffusion coefficient: _ ;.. D(?)

[— 00

Using the time discretization: t = NAt and (AR]%,) = N¢?
1 , N2 2
we have: D = lim —(AR“(¢)) = — =
t—co 2dt 2dt 2dAt

<> = avg. over walkers
4

RWV and diffusion in D

The probability that a RW of N steps (N large) ends at position x is given by:

2 2
Pnlw) =\ Ty &P (‘ﬁ)
£2
Considering that t = NAt, defining D = AL’ and measuring z in units of £, we get:

Dt = N£?/2 and therefore

[1 72
P(ﬂ?,t) = @ exp (—E)

which is the fundamental solution of the diffusion equation, a part from a factor of 2 in the
normalization due to the spatial discretization. The continuum solution is:

1 2
Plt) =\ mpt ®®\ "1

i.e., a Gaussian distribution with ¢? = 2Dt which describes a pulse gradually decreasing in
height and broadening in width in such a manner that its area is conserved.

000
1-Q00

Q00

000

Example of diffusion in solids

INTERSTITIAL
IMPURITIES VACANCIES

999 DIFFUSION

, 000
Q0

o
o
O

O

SUBSTITUTIONAL

IMPURITIES 4¢60¢ o
®0-0—po
Direct exchange @ 0 ®@ @

Vacancy assisted @ @-0 @ =p

@
@
@
o0 00 @
@
diffusion 0000 ®

... but typically:
more than one single interstitial,
more than one single impurity,
or more than one single vacancy....

A SIMPLE RW MODEL
IS NOT ENOUGH!

Lattice Gas model

interaction !

Consider a finite lattice with some density p of N, particles. The particlefLan move on the lattice
by jumps to the nearest sites, but two particles can not occupy the same site. This is a simple
example of a restricted random walk (see above). The physical interpretation is e.g. vacancies
moving in a lattice.

To simulate this kind of system, we need a bit more of an advanced approach than before. First of

all, we need to simulate the motion of all the particles at the same time, not taking the average

over many independent single-particle motions as was done before.

In terms of a Metropolis Monte Carlo approach:

AR 0 if no overlap N 1 new configuration accepted
= — =
+o00 if overlap 0 new configuration NOT accepted

2D Lattice Gas model

1° Choose number of particles N, number of steps Ngieps, Side length L. Set At and

lattice size a. (our old /)
2° Set all positions in the L X L grid to be empty

3 a° Generate N, particle coordinates randomly on the grid, checking that no two particles
end up on the same points.
3 b° Mark the points with the particles in the L X L grid as filled.

4° Loop over MC steps of time At

4 A5o Loop from 1 to N,
6° Pick one particle ¢ at random
7° Find which positions it can jump to. If none, return to step 6° (*)
8° Let the particle jump to one of the allowed directions j by a displacement
x; = x; + 0x;,Yy; = Yi + 0y;, enforce periodic boundaries on x and y
9° Set dx; = dx; + dx, dy;, = dy; + dx (where periodic boundaries do not play
v a rolel)
10° End loop from 1 to N,
11° Update time t = t + At
v12O End loop over MC steps |
13° Output (AR®) = (dx: + dy.) and calculate diffusion coefficient.D(t) = 2—dt<AR(t)2>

average over the particles 9

Lattice Gas model

(*) Different dynamics can be implemented, for instance:

® find which nearest neighbour sites are free
and jump in one of them randomly chosen
(if any) (this is actually mentioned in the
previous slide and implemented in the code
we are going to discuss) OR

® choose randomly one nearest neighbour site
and jump only if it is free

NOTE - Here:
Different dynamics => different behaviour with concentration

(and somehow a different definition of the time unit)

10

Lattice Gas model

The crucial difference here to the previous random walk algorithms is that the outer loop goes
over MC steps, the inner one over particles. When the walkers are independent of each other

(“non-interacting”) we can deal with one walker at a time, saving memory since storage of all
particles is not needed.

But here the walkers (the particles) are “interacting”

Programs:

on moodle?

latticegas.f90
entropy.f90

box.f90
simulated_annealing.f90

Implementation of the model on 2D SQ lattice
(latticegas.f90)

logical,allocatable::lattice(:,:) ! (occ./non occ.=.true./.false.)
integer,allocatable::x(:),y(:) ! instantaneous positions of Np labelled particles
double precision, allocatable :: dx(:),dy(:) ! displ. from the starting point
integer :: free(4),nfree ! occupation of nearest neighbors

integer :: dxtrial(4),dytrial(4) ! trial move (instantaneous displacements)
integer :: xnew(4),ynew(4) ! 4 new possible positions

allocate(lattice(0:L-1,0:L-1))
allocate(x(Np),y(Np))
allocate(dx(Np),dy(Np))

lattice = .false. ! Mark all positions as empty

! Enumerate directions: l=right; 2=left; 3=up; 4=down
dxtrial(l)=+1; dytrial(1l)= 0;
dxtrial(2)=-1; dytrial(2)= 0;
dxtrial(3)= 0; dytrial(3)=+1;
dxtrial(4)= 0; dytrial(4)=-1;

! INIZIALIZE THE LATTICE : Generate Np particles on LxXL lattice
do i=1,Np

do ! Loop until empty position found, UNBOUNDED LOOP!

call random number(rnd) !which has dimension(2)
X(1)=int(rnd(1l)*L)
y(1i)=int(rnd(2)*L)
if (lattice(x(i),y(1))) then
! Position already filled, loop to find new trial

cycle !REMEMBER: JUMP AT THE END OF THIS LOOP (NOT EXIT)
else

lattice(x(1),y(1))=.true.

! Successful, place next particle

exit
endif

enddo
dx(1)=0.0d0; dy(i)=0.0d0; (NOTE: you could rewrite some instructions in a more compact way...)

enddo

! MONTE CARLO LOOP

Aado istep=0,Nsteps-1 ! Loop over MC steps

VYenddo

Ado isubstep=1,Np ! Move each particle once every MC step (on av.)

! Pick one particle at random

call random number (rndl)

i=int(rndl*Np)+1 ! 1 =< i =< Np;
! Find possible directions (j=1,...,4) for moving, store them
in free() ... (NOTE: different possible recipes !!!)

If no free positions, get a new particle ; otherwise choose
one possible direction (J) and update (x,y) with (xnew,ynew):

!Empty the old position and £fill the new one:
lattice(x(1i),y(1))=.false.
lattice(xnew(j),ynew(]j))=.true.

venddo
t=t+deltat

Another fundamental part:

calculation of distance from initial pos. for each particle
(do not use PBC for that!),
accumulation of data...

! Get total displacement using dx,dy

! dx,dy are individual displacements from the

! starting point => these d*sum are summed

! over time and particles

dxsum=0.0d0; dysum=0.0dO0;

dxsgsum=0.0d0; dysgsum=0.0dO0;

do 1=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);

dxsgsum=dxsgsum+dx (1) *dx(1);

dysgsum=dysgsum+dy (1) *dy(1);

enddo

print *,’dxsum’,dxsum,’ dysum’,6dysum

print *,’'dxsgsum’,dxsgsum,’ dysgsum’,dysgsum
16

Concentration dependent diffusion coefficient

And here is a series of results:

concentration

Np L Np/L~2 D (cm~2/s)

10 100 0.001 9.76 E-008

10 100 0.001 1.12 E-007

100 100 _ 0.01 T.02 E-007 Here: 2d example
100 100 0.01 9.46 E-008

10000 1000 0.01 9.89 E-008

1000 100 0.1 9.11 E-008 1 MC step = 1 ns
1000 100 0.1 9.42 E-008

100000 1000 _ 0.1 9.40 E-008 :

3000 100 0.3 5.28 E-008 unit step length = 2 A
3000 100 0.3 7.91 E-008

6000 100 0.6 5.69 E-008

6000 100 0.6 5.91 E-008

3000 100 0.9 .77 E-008

9000 100 0.9 1.78 E-008

900000 1000 _ 0.9 1.82 E-008

9900 100 0.99 1.83 E-009

9900 100 0.99 1.86 E-009

What does this mean? At small concentrations, the system behaves essentially as an unconstrained
random walk. For that one, we know that (A R?) should be equal to a® N, where N is the number
of steps, and a is the jump distance, and the result for the diffusion coefficient should be

b (AR*) (2A°N (2A? -7 cm?
4t _4NAtI7_4><1ns S

Sample averages (size effect)

A usually, we can estimate the statistical error associated to the estimate of D
(here: histogram done collecting data in the time evolution of D(t))

o0
| | | " Jexperiment20.dat” u (bin($3,binwidth)):(1.0) ——
1M"./experiment40.dat” u (bin(%$3,binwidth)):(1.0) ——
" fexperiment60.dat” u (bin($3,binwidth)):(1.0) —
o0 —
40 | I -
5 _ |
24 ATE I
I 30] _
: H - 111 —
o
Eﬂ . ::_- __- | il :-: —
10 | ‘L LA _ -
0 WW”NN”“HM - il]:”:II[II” [l -TIIIIIH_ITFH_V_H 1 I
0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

D{t=100) (u.a.)

size effect: concentration p fixed, changing the lattice dimension (20,40,60))

(more later)
18

Discussing Ex. |

(1.a) Study D(t) for a fixed value of p, for instance 0.2. Although D is
defined as the limit t = oo, it is instructive to follow D(t) as a function of
time: for this model, it fluctuates after a short equilibration time and no
appreciable improvements in the statistics are achieved by increasing t.

| | | | ".f‘timedeplﬂt{t.dat“ U 1.:3 — ?
0.45 L | N / .medla T™ (
o time average after equilibration
p .
c 04 I~ to estimate D T
=
E 0.35 —
9 1 A
E Ll D) = 5 (AR®)?) -
-
= I
D 0.25 Ill'l.,- _
L%""““’HM/ e
I | | FI T L - d__l
0 200 400 600 800 1000

tempo (u. a.)

this is D(t) or D (instantaneous, averaged over particles);

calculate it for t — o0
19

Temporal averages

T
]_ <G>
<G>T:?t_gth A J

Thermally equilibrated averages: <G>

<G>=lmr_ o <G >7

But in practice T is finite, and < G >7 oscillates(varying T):
divide T into intervals A, B,C'... of length L and sum(block averages):

L
_ (I)
<G>T—T § < G >

I=A,B,C,... (05//5) (0n/v/n)
1/2
L

- > (< (G2 > (< GV >2>

- 1

A <G >p=

N ————

T — o0 VT

Note: not always A < G >7 is a good indicator of the actual error!
(remind ”ergodicity”)

20

(I.1) ... Better statistics for D can be obtained by averaging D over as many

particles as possible (i.e., for a given p)... Here p=0.03

256000

<AR2(t)> _

and
expected ..
behavior

56000

Np=200, 80x80

selfdiffusion coefficient D3 Np=: =86x80, i.e., rho=6,03

deltarR™2(t) +
enpected avg behavior

8 16000 20000 30060 46000 50080 66008 70800 80000 96008 10008

selfdiffusion coefficient D; Np=208, L=86x80, i.e., rho=8.83

D(t) 0.9
and
<D>r -

time averaged:

D)+
D(t) (tine avg) %

T
(D)r=| D(@)dt -

0

10600 20800 30000 40600 50600 60008 70000 86008 96008 10008

selfdiffusion coefficient D; Np=268, L=86x80, i.e., rho=8.83

<D>71 -

in5
different k-(

’pippo’ u 1. +
’pippol” u 1. X
’pippo2” u 1. *
’pippo3” u 1. o
’pippod” u 1.

I”u ns % g iooso zoown oo 40000 o000 couoo 7o0m0 goow0 50000 10000
(we expect the limit of the simple 2D RW on a square lattice, with D=0.25)

Np=50, 40x40

selfdiffusion coefficient D3 Np=50, L=40x48, i.e., rho=8.83

256000

200000

156000

106000

56000

deltaR™2(t) -+
enpected avg behavior

8
8 16000 20000 30060 46000 50080 66008 70000 80A00 96008

selfdiffusion coefficient D; Np=56, L=48x46, i.e., rho=8.83

10000

D)y +
D(t) (tine avg) %

] 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000
selfdiffusion coefficient D; Np=58, L=40x48, i.e., rho=i
0.6 n
’pippo” +
’pippol” X
’pippo2” *
0.55 7pippo3” o
*pippod’
0.5
8,45
8.4
8.35
- /—\
8.2
8.15
L} 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000

21

Np=13, 20x20

selfdiffusion coefficient D3 Np=13, L=20x28, i.e., rho=0.83

256000

200000

156000

106000

56000

deltar™2(t) +
enpected avg behavior

16000 20000 30060 46008 50080 66008 70000 8000 96008 10008

selfdiffusion coefficient D3 Np=13, L=20x20, i.e., rho=8.83

D)+
D(t) (tine avg) %

10600 20800 30000 40600 5060P 60008 70000 80008 96008 10008

selfdiffusion coefficient D; Np=13, L=20x20, i.e., rho=

’pippo” +
’pippol” X
’pippo2” *
’pippo3” o

’pippod”

10600 20000 30000 40060 50800 60060 70060 80GOO 99600 10000

Ex. 1 (...) Verify that deviations of <D(t)>t from its mean value are proportional to the
inverse square root of the total number of particles.

log{var) vs log{Np}; rho=8,803 with Np=13,58,260
"5 T T T

*varD’ u (log($1)):(log(32)) (@

2.5 3 3.5 4 4.5 5 5.9

O%p proportional to |/Np

22

Concentration dependent
diffusion coefficient

- . . Diffusion coefficient _|
1.e-07 " . m - Fraction of failures 30.0
_-I
8.e-08 + .
i 22.5
m“é 6.e-08 - o
o 415.0
4.e-08
475
2.e-08 + .
OQ0m - | = L N O R S | R 0.0
00 01 0.2 03 04 05 06 0.7 0.8 0.9
Concentration

23

Fraction of failures

the lattice gas problem is suitable to be afforded
by embedding the “number crunching” part in Fortran90
in a Python structure:
do it yourself!

24

Another example of restricted random walks:
self-avoiding walks (SAW)

polyethylene .« .—=CHy—CH5s—CHo—CHo—- - -

Experiments on polymers have shown that when the length of the “noodle” is measured, the
average mean square end-to-end length has been found to have the following dependence:
(AR*(N)) N* with v = 0.592

for a wide range of polymers, regardless of their other properties. Here N is the number of
monomers. The fact that such very general behaviour is observed indicates that there is some very

simple general reason for the behaviour.

in a polymer the monomers :
certainly can not occupy the same space !

add the simple requirement that

the walker should never return
to a position it has already

occupied.
25

SAW

Coding the SAW efficiently is not quite trivial. It could seem easy. Just do random walks one at a
time as usual for non-interacting walkers, store all the positions visited to an 2D or 3D array, and if
a new step enters a previously visited site, disregard it.

But herein lies the problem. We can not just disregard the last step, and look for a new direction.
This would skew the statistics; we have to disregard the whole walk. If we want to make a walk of
any sensible length (say, N > 30), the probability of the walker entering a previously visited site
becomes enormously large. Hence we end up disregarding almost all walks.

26

SAW

The idea is that once a walk attempts to do a step /N that is impossible, we do not disregard the

whole walk, but only this step. We then pick some other, possible step. A weight factor W (V) is
used to ensure that the statistics remains correct.

The way the weighting is done can be written as follows. Consider a situation where we have just
done step IN — 1, and look at step IN. Three outcomes are possible:

1° No step is possible. Set W (N) = 0 and restart
2° All steps other than the step right backward are possible, set W(N)=W(N-1)

3° Only m steps are possible with 1 < m < 3 (2D) or 1 < m < 5 (3D). In this case we
choose randomly one of the possible steps, and set W(N) = ZW (N — 1) (2D) or
W(N) =2W(N — 1)(3D).

27

SAW

The correct value of the final average (AR?(IN)) is obtained by weighting R>(IN) for each step
N in a given walk ¢ with the weight W;(IN) obtained in the same walk. To get the average, we

have to divide by the sum of W;(N) instead of IV, i.e.

N walks

Z Wz‘(N)R?(N)

1=1

(AR*(N)) =

W (0) is initialized to 1.0.

28

Statistical averages and
stochastic fluctuations

29

Macroscopic systems
towards equilibrium

simple example of non-interacting classical particles in a box
(gas diffusion)

A box is divided into two parts communicating through a

small hole. One particle randomly can pass through the hole
per unit time, from the left to the right or viceversa.

N,.s(t): number of particles present at time t in the left side
Given N, (0), what is N (t) ?

30

Macroscopic systems
towards equilibrium

»

Another version: particles blue/red in both sides
(interdiffusion of two gases):

per unit time, one from each side is picked at random and put in the
other side: NiePlue(t)+Niered(t)=constant; Nierced(t)=?

Paul Ehrenfest (1880-1933)

31

Stochastic fluctuations

Fluctuations are always present, due to the nature
of the system, also when evolving towards equilibrium.

A simple example: non-interacting classical particles in a box (gas diffusion)

1000

T T
’box.out’ ———

900 —\
800 | \

700 \

600

Nleft(t)

Y
\v\m\ P

b, ﬂm Wl

500 |- e " y NMWWW,WMWW»W\/WAVW MW/W W

400 Il Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Approach to equilibrium
with fluctuations
32

Stochastic fluctuations

1000
900 4
800 -\

700

\Amltlal N(left)=1000
500 | Mw W Pt N MWW% m W‘%

Nleft(t)

400 Il Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

How to reduce fluctuations?

- more particles
- average over many simulation runs

What can we do with fluctuations?

33

Approach to equilibrium

macrostate: specified by the number of particles 71 on the left side;
microstate: specified by the specific list of the 71 particles on the left side

34

Macroscopic dynamics can also be studied exactly.
n_left(t) is a Markov chain with transition probability:

P(n —-n—1)

i
N
1 —

P(n —n+1) %

(notes on Stat Mech by Nino Zanghi’ - web source)

35

Equilibrium and entropy

ber of microstat N N N
number of microstates = — —
nl(N —n)! n N —n

The number of microstates for the “particle in a box” model with N=10.
The macrostate is specified by the number of particles on the left side, n.
The total number of microstates for N=10 is 210=1024

n # of microstates |log(# of-midr)".

0 I 0

I 10 2,3

2 45 3,81

3 120 479

4 210 5,35

5 252 5,53 1 %)
” v =35 {- the most “random”!
7 120 479 Equilibrium =

8 45 3,81 Maximum number of

9 10 2,3 possible microstates =

10 | 0, Maximum entropy

(optional) Entropy: Coincidence method

(S.K.Ma, . Stat. Phys. 26,221 (1981))
Equilibrium = Maximum entropy = Maximum number of possible microstates

Too much effort to enumerate all of them!

Alternative procedure (good for computing):

A system evolving in time will duplicate a microstate, before or later...

The longer it takes for duplication, the fewer are the microstates in the
corresponding macrostate. Hence, the lower is the entropy.

|dea: measure the ratio of the number of pairs of duplicated microstates to
the total number of possible pairs; entropy is the log of the inverse ratio.

E.g.: suppose as in the previous slide N=10, and the macrostate n=1;
consider 20 different microstates labelled with the “name” of the particle:

s@0I0D2902 00309062924

Possible pairs: 20%(20-1)/2=190. Here: 6 pairs for particle “2”; | pair with
particle “10” etc etc... Sum all of them: get |5.
Ratio = 15/190 , Entropy: Se=log(190/15)~2.5

37

http://dx.doi.org/10.1007/BF01013169

Remind the definition of entropy:

S = kg Z P.ln P, in the canonical ensemble

S = kplog{) in the microcanonical ensemble,
where all the microstates
corresponding to a macrostate have
the same energy
(Q) is the number of microstates)

38

Metropolis method in the
canonical ensemble and the

simulated annealing

a general purpose global optimization algorithm
(Kirkpatrick S, Gelatt CD Jr, Vecchi MP
Science 220(4598), 671-80, 1983)

(more tomorrow - A. Marrazzo)

39

Metropolis and
simulated annealing - |

®Stochastic search for global minimum. Monte
Carlo optimization.

® The concept is based on the manner in which
liquids freeze or metals recrystallize. Sufficiently
high starting temperature and slow cooling are
important to avoid freezing out in metastable
states. A “cost function” is treated as the energy.

40

Metropolis and
simulated annealing - ||

® Thermodynamic system at temperature T, energy E.
® Perturb configuration (generate a new one).
usual ' ' '
Metropolis e Compute ;hapge in energy dE. (f dE 's negative the new
procedure J CONfiguration is accepted. If dE is positive it is accepted
in the with a probability given by the Boltzmann factor :

canonical

ensemble exp(—dE/kT)
® [he process is repeated many times for good sampling

of configuration space,

othen the temperature is slightly lowered and the entire
procedure repeated, and so on, until a frozen state is
achieved.

41

Metropolis and
simulated annealing - ||

necessary:.

® Thermodynamic system at temperature T, energy E. 2 move
®Perturb configuration (generate a new one). <«— 8eneration
usual | @ Compute change in energy dE. If dE is negative the new' " &/

Metropolis

procedure J CONfiguration is accepted. If dE is positive it is accepted
in the with a probability given by the Boltzmann factor :

canonical

ensemble exp(—dE/kT)

® [he process is repeated many times for good sampling
of configuration space. — 1!;232?5
othen the temperature is slightly lowered and the entire
procedure repeated, and so on, until a frozen state is
achieved. <+— 3 stopping
criterion

42

Example

in simulated annealing.f90:
minimization of

f(x)=(x+0.2)*x+cos(14.5*x-0.3)
considered as an energy function and
using a fictitious temperature

12

T (X)) —

Rastrigin function:
® non-convex function used as a performance test problem for optimization algorithm
® typical example of non-linear multimodal function;
e first proposed by Rastrigin as a 2-dimensional function; later generalized by Rudolph.

Global minimem ot [0 0]

rastrigin
40 1
35 1
30
25 1
> 20 1 4
-5

15 -
10

5 -

0 -] “o“.'— :

-4 -2 0 2 4 .5

I
~

n
f(x)=nA+ Z;[xl?‘ — Acos(2mx;)] i ..n: independent variables
i=1

Function to be minimized: £ (x) ; Starting point: x, fx=f(x)

initial (high) temperature: temp
Annealing schedule: annealing temperature reduction factor: tfactor (<1)
number of steps per block: nsteps
‘ad hoc’ parameter for trial move: scale

DO WHILE (temp > 1lE-5) ! anneal cycle

DO istep = 1, nsteps

CALL RANDOM NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
X new = X + scale*SQRT(temp)*(rand(l) - 0.5) ! stochastic move
fx new = func(x _new) ! new object function value
IF (EXP(-(fx new - fx)/temp) > rand(2)) THEN ! success, save
fx = fx new
X = X new
END IF
IF (fx < fx min) THEN
fx min = fx

X min = X
PRINT '(3ES13.5)', temp, x min, fx min
END IF
END DO

temp = temp * tfactor ! decrease temperature
END DO

f(x)

120

100 +

80

60 |-

40 |

20 |

-20

210 5 0 5 10
2
final T: 2.50315E-01
final x: -1.95067E-01

f(x) —
1000 trial steps @ initial T, from x=1 <+
some relative minima during such steps X

final f(x):-1.00088E+00

initial T: 10 (Ks units)
initial x: 1.000000
initial f£(x): 1.137208

relative minima with decreasi

1 05

0.5

of

