
Exercises Lecture XI

Lattice gas

Simulated annealing

1. Self-diffusion coefficient in a lattice gas model

Consider a finite square lattice with sites randomly occupied by particles with a given density ρ. The
particles can move randomly to empty nearest sites (two particles can not occupy the same site). It is an
example of a restricted random walk. A meaningful physical quantity is the self-diffusion coefficient D of
an individual particle. D is the limit t → ∞ of D(t), where D(t) is given by:

D(t) =
1

2dt
⟨∆R2(t)⟩,

with d which is the dimensionality of the system and ⟨∆R2(t)⟩ is the net instantaneous mean square
displacement per particle, averaged over all particles, after t units of time (⟨...⟩ here indicates the average
over particles and not temporal averages).
The dynamical model can be summarized by the following algorithm:

i) Occupy at random the L× L sites of a square lattice with N particles subject to the condition that
no double occupancy is allowed, with the desired density ρ = N/L2 ≤ 1. Tag each particle, that is,
distinguish it from the others, and record its initial position in an array.

ii) At each step choose a particle (randomly, or, alternatively, in an ordered way) and one of its nearest
neighbor sites at random. If the neighbor site is empty, the particle moves to this site; otherwise it
does not. Loop over the particles.

Note 1: The measure of “time” in this context is arbitrary. The usual definition is that during one unit
of time or one Monte Carlo step, each particle on average attempts one jump. Time goes on even if the
particles do not move, i.e., the tentative move is not accepted.
Note 2: Consider periodic boundary conditions, but note that reliable results can be obtained only for
⟨∆R2(t)⟩ < (L/2)2 (this sets a limit to number of MC steps). Otherwise, they could be affected by the
imposed periodicity.

Do a Monte Carlo simulation to determine D and its dependence on the particles concentration ρ.

See for instance the code latticegas.f90. Internal units for Monte Carlo time step and displacement
should be preferred. For comparison with a realistic situation, such as for instance diffusion in solids,
we may consider Monte Carlo time step equal to 1 ns and the unit length to 2 Å, properly rescaling the
internal quantities at the end of the calculations.

(a) Study ⟨∆R2(t)⟩ as a function of time for a fixed value of ρ = 0.03 and for a fixed number of particles
(e.g., 13 particles in a 20×20 lattice). What do you see increasing time (within the limit mentioned
above)? Make a fit and compare your result (the slope) with the expected behavior of a standard
random walk.

1



(b) Repeat for ρ = 0.2.

(c) Plot D(t) as a function of time: after a certain equilibration time, it fluctuates. Calculate the
amplitude of the fluctuations as a function of t (from the distribution of data over the particles).
These fluctuations remain also by increasing t.

(d) In order to estimate D, which is defined as the limit of D(t) for t → ∞, do a temporal average
⟨D(t)⟩T (⟨...⟩T here indicates a ”global” temporal average on t from 0 to T or some block average).
Plot together D(t) and ⟨D(t)⟩T . Change the seed, do another run and compare ⟨D(t)⟩T with the
previous results. An estimate of D can be obtained by averaging ⟨D(t)⟩T over different runs.

(e) Better statistics forD(t) (and consequently forD) can be obtained by calculating ⟨∆R2(t)⟩ as average
over many particles (i.e., for a given ρ, considering a lattice with L as large as possible; it is suggested
L ≥ 40). Verify that fluctuations of D(t) (and the deviations of ⟨D(t)⟩T over more runs from its
mean value) are proportional to the inverse square root of the number of particles.

(f) Study the dependence of D on the concentration, using for instance ρ=0.1, 0.2, 0.3, 0.5, and 0.7.
You should find that D is a monotonically decreasing function of ρ. Why?

(g) To gain some insight into this dependence, determine the dependence on ρ of the probability that if
a particle jumps to a vacancy at time t, it returns to its previous position at time t + 1. Is there a
qualitative relation between the density dependence of D and this probability?

2. Simulated annealing

Simulated annealing is a stochastic method for global energy minimization, considering the system star-
ting from a sufficiently high temperature; at each temperature it goes towards equilibrium according to
the Boltzmann factor (see the application of the Metropolis algorithm in the canonical ensemble); then
the temperature is slightly reduced and the equilibration procedure is repeated, and so on, until a global
equilibrium state is reached at T=0. The method can be efficiently used for function minimization, even
if the function is not representing an energy. In program simulated annealing.f90 it is implemented
for the minimization of f(x) = (x + 0.2) ∗ x + cos(14.5 ∗ x − 0.3). Initial temperature, initial position
and scaling factor for the temperature are input quantities. Test the program by choosing different initial
parameters and scaling factor for the temperature. For instance:

(a) Annealing rate: Try different annealing factors (0.8, 0.9, 0.95) with different random seeds. How
slowly do you have to anneal to settle down in the global minimum over 90% of the time? Just
estimate the quantity, but provide some explanation and data to support your answer.

(b)
√
T scaling: It is often convenient to scale by

√
T the step size used in the Metropolis algorithm.

Why? Hint, look at the acceptance ratios, and think about diffusion and thermal distributions in
parabolic wells
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

latticegas.f90 - from Gould-Tobochnick

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program latticegas

implicit none

logical, allocatable :: lattice(:,:)

integer, allocatable :: x(:),y(:)

double precision, allocatable :: dx(:),dy(:)

Integer :: Nsteps,Np,L

integer :: istep,isubstep

integer :: dir,i,j,nfail,njumps

integer, dimension(1) :: seed

integer, parameter :: MAXINT=1000000000 ! Variables for counting

! allowed directions

integer :: free(4),nfree

integer :: dxtrial(4),dytrial(4)

integer :: xnew(4),ynew(4)

Real, dimension(2) :: rnd(2)

real :: rnd1

double precision :: dxsum,dysum,dxsqsum,dysqsum

double precision :: t,deltat,drsqave,D,a,help

! Set average time between jumps and jump length Units is s and cm

! although actually this is not needed for the simulation

deltat=1.d0 ! or 1d-9 in order to consider 1 ns

a=1.d0 ! or 2e-8 in order to consider 2 Ang

print*," Nsteps>"

read*, Nsteps

print*," Np>"

read*, Np

print*," L>"

read*, L

print*," seed>"

read*, seed

call random_seed(put=seed)

print *,’Doing lattice gas walk to’,Nsteps,’MC steps, initial seed’,seed

print *,’using’,Np,’ particles on a’,L,’^2 square lattice’

if (Np >= L*L) then
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print *,’Number of particles > number of sites !!!’

STOP ’Too small lattice’

endif

allocate(lattice(0:L-1,0:L-1))

allocate(x(Np),y(Np))

allocate(dx(Np),dy(Np))

! Mark all positions as empty

do i=0,L-1

do j=0,L-1

lattice(i,j) = .false.

enddo

enddo

! Enumeration of directions: 1=right; 2=left; 3=up; 4=down

dxtrial(1)=+1; dytrial(1)= 0;

dxtrial(2)=-1; dytrial(2)= 0;

dxtrial(3)= 0; dytrial(3)=+1;

dxtrial(4)= 0; dytrial(4)=-1;

Nfail=0; njumps=0;

! Generate particles on lattice

do i=1,Np

do ! Loop until empty position found

! To be on safe side, check that upper limit not reached

call random_number(rnd)

x(i)=int(rnd(1)*L); if (x(i)>=L) x(i)=L-1;

y(i)=int(rnd(2)*L); if (y(i)>=L) y(i)=L-1;

if (lattice(x(i),y(i))) then

! Position already filled, loop to find new trial

cycle

else

lattice(x(i),y(i))=.true.

! Success, go to next particle

exit

endif

enddo

dx(i)=0.0d0; dy(i)=0.0d0;

enddo

T=0.0;

do istep=0,Nsteps-1 ! Loop over MC steps

do isubstep=1,Np ! Do all particles on average once every MC step

! Pick one particle at random

call random_number(rnd1)
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i=int(rnd1*Np)+1; if (i>Np) i=Np;

! Find possible directions, store it in free()

Nfree=0

do j=1,4

xnew(j)=x(i)+dxtrial(j);

if (xnew(j) >= L) xnew(j)=0; if (xnew(j)<0) xnew(j)=L-1;

ynew(j)=y(i)+dytrial(j);

if (ynew(j) >= L) ynew(j)=0; if (ynew(j)<0) ynew(j)=L-1;

if (.not. lattice(xnew(j),ynew(j))) then

! Success: position free

nfree=nfree+1

free(nfree)=j

endif

enddo

! If no possible directions, get new particle

If (nfree == 0) then

nfail=nfail+1

cycle

endif

njumps=njumps+1

! Pick one of the possible directions randomly

! Note that the dir>nfree check here really is needed!

call random_number(rnd1)

dir=int(rnd1*nfree)+1; if (dir>nfree) dir=nfree

j=free(dir)

! Now x(i),y(i) is old position and xnew(j),ynew(j) new

! Double check that new site really is free

if (lattice(xnew(j),ynew(j))) then

print *,’ERROR: THIS SHOULD BE IMPOSSIBLE’

print *,i,j,dir,nfree

print *,free

print *,x(i),y(i),xnew(j),ynew(j)

STOP ’ERROR new site bug’

endif

!Empty old position and fill new

lattice(x(i),y(i))=.false.

lattice(xnew(j),ynew(j))=.true.

X(i)=xnew(j); y(i)=ynew(j);

dx(i)=dx(i)+dxtrial(j); dy(i)=dy(i)+dytrial(j);

enddo

5



If (mod(istep*Np,1000000) == 0) then

! Calculate and print intermediate results

! Get total displacement from dx,dy

dxsum=0.0d0; dysum=0.0d0;

dxsqsum=0.0d0; dysqsum=0.0d0;

do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);

dxsqsum=dxsqsum+dx(i)*dx(i);

dysqsum=dysqsum+dy(i)*dy(i);

enddo

drsqave=(dxsqsum+dysqsum)/(1.0*Np)

if (t>0.0) then

! Get diffusion coefficient by proper scaling

D=drsqave*a*a/(4*t)

write(*,fmt=’(3(a,1pe10.2))’)&

’At ’,t,’ <dR^2>=’,drsqave*a*a,’ D=’,D,’ cm^2/s’

endif

endif

t=t+deltat

enddo

! Get total displacement from dx,dy

dxsum=0.0d0; dysum=0.0d0;

dxsqsum=0.0d0; dysqsum=0.0d0;

do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);

dxsqsum=dxsqsum+dx(i)*dx(i); dysqsum=dysqsum+dy(i)*dy(i);

enddo

print *,’dxsum’,dxsum,’ dysum’,dysum

print *,’dxsqsum’,dxsqsum,’ dysqsum’,dysqsum

drsqave=(dxsqsum+dysqsum)/(1.0*Np)

print *,’drsqave’,drsqave

print *,’Number of failed jumps’,nfail,’ number of successes’,njumps

! Get diffusion coefficient by proper scaling

D=drsqave*a*a/(4*t)

write(*,fmt=’(a,f6.4,a)’)’For Np/L^2=’,real(Np)/L**2,’ :’

write(*,fmt=’(3(a,1pe10.2))’)&

’at ’,t,’ <dR^2>=’,drsqave*a*a,’ D=’,D,’ cm^2/s’

deallocate (lattice,x,y,dx,dy)

end program latticegas
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! simulated_annealing.f90

! for function minimization; adapted from U. Schmitt, 2003-01-15

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PROGRAM anneal

IMPLICIT NONE

INTEGER :: istep, nsteps

REAL, PARAMETER :: scale=0.5 ! should be chosen for specific function

REAL :: func, fx, fx_min, fx_new, temp, tfactor, x, x_min, x_new

REAL, DIMENSION(2) :: rand ! random numbers

x = 1.0; fx = func(x); fx_min = fx ! starting point for search

PRINT *, ’Starting from x = ’, x, ’, f(x) = ’, fx

PRINT *, ’initial (high) temperature (e.g., 10)?’ ! annealing schedule

READ *, temp

PRINT *, ’annealing temperature reduction factor (e.g., 0.9)?’

READ *, tfactor

PRINT *, ’number of steps per block (equilibration, e.g., 1000)?’

READ *, nsteps

Do WHILE (temp > 1E-5) ! anneal cycle

DO istep = 1, nsteps

CALL RANDOM_NUMBER(rand) ! 2 random numbers

x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move

fx_new = func(x_new) ! new object function value

IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save

fx = fx_new

x = x_new

END IF

write(1,fmt=*)temp,x,fx

IF (fx < fx_min) THEN

fx_min = fx

x_min = x

PRINT ’(3ES13.5)’, temp, x_min, fx_min

END IF

END DO

temp = temp * tfactor ! decrease temperature

END DO

End PROGRAM anneal

REAL FUNCTION func(x) ! Function to minimize

Implicit NONE

REAL :: x

func = (x + 0.2)*x + cos(14.5*x - 0.3)

END FUNCTION
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