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Terminology
• Syntax: A set of syntactic rules that allow us to construct formulas from 

specific ground terms 

• Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules 

• Model-checking/Verification: 𝑀 ⊨ 𝜙 ⟺ ∀𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀 𝑠 𝜑, 𝐱, 0 = 1

• Monitoring: computing 𝑠 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

• Statistical Model Checking: “doing statistics” on s 𝜑, 𝐱, 0 for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 𝑀



STL Monitor
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An STL monitor is a transducer that transforms x into Boolean or a quantitative signal



Statistical Model Checking (SMC)
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Average robustness degree

Robustness Distribution                                                                            

Indicators 
• (the average robustness degree)
• and                                    (the conditional averages) 6



u Requirement-based testing for closed-loop control models

u Falsification Analysis

u Parameter Synthesis

u Mining Specifications/Requirements from Models

u Online Monitoring

u …

The many uses of STL
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Example

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

Simulink model of a Car Automatic Gear Transmission Systems 



Black Box Assumption
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u For simplicity, consider the composed plant model, controller and communication to be a 
model 𝑀 that is excited by an input signal 𝐮(𝑡) and produces some output signal 𝐲 𝑡
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Black Box Assumption



Falsification/Testing
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u For simplicity, 𝐮 is a function from 𝕋 to ℝ!; let the set of all possible 
functions representing input signals be 𝑈

u Verification Problem: 
Prove the following: ∀𝐮 ∈ 𝑈: 𝐲 = 𝑀 𝐮 ⊨ 𝜑(𝐮, 𝐲)

u Falsification/Testing Problem: 
Find a witness to the query: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊭ 𝜑 𝐮, 𝐲

u These formulations are quite general, as we can include the following 
“model uncertainties” as input signals: Initial states, tunable parameters in 
both plant and controller, time-varying parameter values, noise, etc., 

Verification vs. Testing
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Falsification CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations
• Functional Input Space



Given:
u Set of all such input signals : 𝑈
u Input signal 𝐮 :𝕋 → 𝐷"×⋯×𝐷! , where 𝕋 ⊆ 0, 𝑇 , 𝐷# ⊂ ℝ compact set
u Model 𝑀 s.t. 𝑀 𝐮 = 𝐲, 𝐲: 𝕋 → ℝ$
𝑀 maps 𝐮 to some signal 𝐲 with the same domain as 𝐮, and co-domain 
some subset of ℝ$

u Property 𝜑 that can be evaluated to true/false over given 𝐮 and 𝐲

Check: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊨ ¬𝜑 𝐮, 𝐲

Falsification re-framed
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Common input patterns used for testing
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Finite Parameterization
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N Control points

N variable



u Given: a finite parameterization for input signals, a model that can be 
simulated and an STL property

u While the number of allowed iterations is not exhausted do:
�pick values for the signal parameters
�generate an input signal
�run simulation with generated input signal to get output signal
�compute robustness value of given property w.r.t. the input/output signals
� if robustness value is negative, HALT
�pick a new set of values for the signal parameters based on certain 

heuristics

Step-by-step of how falsification works
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Falsification using Optimization
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𝜌 𝑦, 𝜑 < 0



u Pick random sampling as a (not very good) strategy!
u Basic method: locally approximate the gradient of the function 𝜌 locally, and chose the 

direction of steepest descent (greedy heuristic to take you quickly close to a local 
optimum)

u Challenge 1: cost surface may not be convex, thus you could have many local optima
u Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just 

gradient-based methods may not work well
u Heuristics rely on:

� combining gradient-based methods with perturbing the search strategy (e.g. simulated 
annealing, stochastic local search with random restarts)

� evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), 
genetic algorithms etc.

� probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian
optimization

Picking new parameter values to explore
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Parameter Synthesis

20

Parameter Synthesis



Problem
Given a model, depending on a set of parameters 𝜃 ∈ Θ, and a specification 𝜙 

(STL formula), find the parameter combination θ s.t. the system satisfies φ as 
more as possible

Solution Strategy
• rephrase it as a optimisation problem (maximizing 𝜌) 
•  evaluate the function to optimise   
•  solve the optimisation problem 

Parameter Synthesis



Problem
Find the parameter configuration that maximizes E[Rφ](θ), of which we 

have few costly and noisy evaluations. 

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): E[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 

Parameter Synthesis
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Gaussian Process Regression

Under Gaussian noise                           
predictions have an analytic expression.

Gaussian Processes can be used for Bayesian prediction and classification tasks. 

Idea: put a GP prior on functions; condition on observed data (training set) (𝑥!, 𝑦!); 
we compute a posterior distribution on functions; make predictions. 

Latent function: 𝑓 , GP ;  Noise model: 𝑝(𝑦!|𝑓(𝑥!))

Prediction (latent function 𝑓∗ at 𝑥∗)



(1) Sample
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Collection of the training set {(θ(i),y(i)), i = 1,...,m} for parameters values θ. 



(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 



Simone Silvetti - PhD Thesis Outline

(2) The GP Regression
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We have noisy observations y of the function value distributed around 
an unknown true value f (θ) with spherical Gaussian noise 
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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(3) The GP-UCB Algorithm

28

Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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Balance Exploration and Exploitation: we maximise the 95% upper 
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31

Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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(3) The GP-UCB Algorithm
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Balance Exploration and Exploitation: we maximise the 95% upper 

quantile of the distribution:
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