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Part I - From projections to slices



Why tomography?

 Planar radiography is inadequate in
 visualize structures along the direction of x-ray propagation
 distinguish soft tissues (with similar absorption coefficients), 

which contrast is of the order of 2% or smaller

 Computed Tomography can overcome these two 
difficulties. The general principle is always based on 
"cutting" narrow slices (the name tomography comes 
from the Greek word "tomo", to cut). 

 Actually different methods can be called tomographic 
imaging (namely image of a section). Here we focus on 
(Axial) Computed Tomography, or simply CT



 Lack of depth information

 In both cases we have

Limitations of planar radiography
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Stacking several different slices 
allows to obtain 3D images using 
volume rendering (A) and to 
virtually cut additional 2D images 
on planes oriented along any 
desired direction (e.g. B)

Several (~ 100) different 
projections are acquired, 
while x-ray source and 
detectors rotate around 
an axis corresponding to 
the longitudinal direction 
of the patient

Axial Computed Tomography (CT)

The digital projection data 
are used to obtain a 2D 
image of the irradiated slice 



CT images and Hounsfield Units

 CT images are essentially maps of the linear 
attenuation coefficient (μ) of each voxel. 

 In clinics, μ is measured in Hounsfield Units sometimes 
also called CT numbers:



 Consider a 2x2 pixel axial slice with:
 square pixels d x d in size
 unknown linear attenuation coefficients

 Horizontal projections are as follows:

Taking projections means making sums 
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 The same applies for
vertical projections:

 …and for all directions

Taking projections means making sums 
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From projections to slices

 The mathematical problem of reconstructing the 
images of the slices from the projections is:
 an inverse problem
 an ill-posed problem

(a unique and stable solution is not guaranteed)

 In principle the problem can be modeled as a linear 
system of n2 unknowns, where n is the number of 
rows (and columns) of the digital image

 A simple example with n=2 is shown in the following



From projections to slices



From projections to slices

 In the simple example with n=2 the algebraic 
approach is simple and effective 

 However, with typical values of n=512 or n =1024,
this approach may be unpractical

 Two practical approaches are:
 Iterative methods (where the algebraic approach is 

applied iteratively – computationally demanding)
 filtered back projection (an entirely different approach 

that can be applied also with relatively small computer 
power)



Part II – Iterative methods in CT 

 The Physics of medical imaging / edited by 
Steve Webb (1988)



Iterative methods

 Basic idea: the section consists of an array of unknowns, 
and we set up algebraic equations for the unknowns in 
terms of the measured projection data.

 This can be applied also when:
 it is not possible to measure a large number of projections, 

or
 the projections are not uniformly distributed over 180° (or 

360°)

both these conditions being necessary requirements for 
the back-projections techniques to produce results with 
the accuracy desired in medical imaging.



Iterative methods

 Recently, the fast development of computers has allowed to 
approach the reconstruction problem in CT by means of 
iterative methods, obtaining sufficient accuracy and speed of 
implementation.

 Iterative methods are of increasing importance. For instance, 
they can be used when the data are incomplete or affected 
by a large background noise, as in the case of
 Low-dose Tomography
 Emission Tomography

 Various variants of iterative method exist, e.g. 
 ART- Algebraic Reconstruction Technique
 SIRT - Simultaneous Iterative Reconstruction Technique
 SART - Simultaneous Algebraic Reconstruction Technique
 ILST - Iterative Least Square Technique



Iterative methods

 The image matrix represents 
an estimate of the object
 𝐼𝐼 2D square pixels
 𝜇𝜇𝑖𝑖 1 ≤ 𝑖𝑖 ≤ 𝐼𝐼

 The projections
that would occur if this were
the real object are:

where            is the average 
path length traversed by the    

projections through the 
ith cell.
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Iterative methods

 Let us consider the equation:
 it symbolically represents a set of thousands equations
 it cannot be solved by numerically inverting

 Iterative methods consist in solving this equation by:
 guess/adjust the values of the μi

 calculate the computed projections
 evaluate the difference between calculated and 

measured projections
 stop when a “good agreement” is found

 These final values μi are then taken to be the solution, 
i.e. the image.
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Iterative methods

 Because of measurement noise, and the approximations 
engendered by the model, there will not be a single exact 
solution.

 Part of the difficulty of implementing iterative methods is in 
deciding upon the correct criteria for testing the convergence 
of the intermediate steps and knowing when to stop (ill-posed 
problem).

 The many iterative algorithms may differ in the manner in 
which the corrections are calculated and reapplied during 
each iteration.
 additively or multiplicatively
 immediately after being calculated or stored and applied only at 

the end of each round of iteration
 The order in which the projection data are taken into 

consideration may differ as well.



Iterative methods: a simple example

 In the following, we give a simple example of a 
additive, immediate-correction iterative method:



Iterative methods: a simple example
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Iterative methods: a simple example

NE-SW

'2212 PPII −+=



Iterative methods: a simple example

NE-SW

''3323 PPII −+=



Iterative methods: a simple example

NW-SE

-(1+1/3)



Iterative methods: a simple example

'''4434 PPII −+=



Part III – Back projection: LSBP and FBP

 The Physics of medical imaging / edited by 
Steve Webb (1988)



Linear superposition of back projections: 
a simple numerical example
 In this simple numerical example, our section (object plane) consists 

of a square, represented by a 4-elements matrix. The matrix values 
represent the (unknown) absorption coefficients:

 We begin letting our beam cross the square from left to right (from 
"West" to "East"). As already said, one single measurement provides 
only the sum of the absorption coefficients. The projection "West to 
East" gives, for the upper and lower rows respectively, the values 11 
and 8 (the sum of the values of the elements in each row).

 We shall call "profile" of our object the sum of the intensities 
obtained in one given direction. Therefore the profile measured from 
W to E consists in the two numbers 11 an 8.



 These values obtained (namely the profile obtained with the 
first exposure) are initially assigned, row by row, to each 
element of each row, getting the values

 The values obtained as a sum of the elements by rows (the 
profile) have been "back projected" (in the E-W direction) on 
the various matrix elements.

 We indicate with “a)” the temporary result of this back-
projection procedure

Linear superposition of back projections: 
a simple numerical example – a)



 Next the beam crosses the square in an oblique direction NW-
SE. The projections from NW to SE give a new profile with the 
values 7, 7, 5

 These are back projected in the oblique SE-NW direction and 
added to the values previously obtained [matrix a) in previous 
slide]

 A “linear superposition” has been performed. We indicate with 
“b)” the temporary result of this procedure

Linear superposition of back projections: 
a simple numerical example - b)



 We now perform the N-S projections. They give for 
the N-S profiles the values 9, 10

 Back projecting in the vertical S-N direction, and 
adding these values to matrix “b)” we get the values:

 We indicate with “c)” the temporary result of this 
back-projection procedure

Linear superposition of back projections: 
a simple numerical example – c)



 The last projections are the NE-SW, giving for the 
profiles the values 4, 12, 3

 Back projecting in an oblique SW-NE direction and 
adding these values to those of matrix c), the 
following matrix “d)” is obtained:

Linear superposition of back projections: 
a simple numerical example – d)



 Finally we subtract from each element in the matrix d) the 
number 19 (the total sum of all the unknown elements of 
the starting matrix, obtained as the sum of all the 
projections), which represents the "background“

 We further divide each matrix element by 3 (the number 
of the projections after the first one), obtaining eventually 
the numbers 4, 7, 3, 5, namely exactly the matrix to be 
found.

Linear superposition of back projections: 
a simple numerical example – e)



 We now consider a very simple object that will give 
the same profile (*) when seen from any view

 One single back projection of such profile is a stripe 
of uniform density: 

 (*) sometimes we will use “profile” instead of “projection” when 
referring to a 1D projection

object
profile

back projection

Linear Superposition of Back Projections



 We now consider the linear superposition of 6 such back 
projections (corresponding to 6 profiles taken 30° from one 
another)

 The resulting image shows a central build-up, corresponding to 
the object image, but surrounded by a figure roughly star-like 
with 12 spikes

 It is quite easy to realize that the back projections taken from n 
angular directions will produce, once added, a figure with 2n 
spikes

Linear Superposition of Back Projections



 Increasing the number of projections (12 in the figure 
below), the number of spikes increases but every single 
spike becomes less visible

 Overall, we still obtain a central figure with a high 
density, corresponding to the object image, surrounded 
by a background halo, whose density decreases with 
the distance from the center

Need for a filtered back projection



 This is even more apparent for a point-like object and 
in the limit of many angles; here a linear superposition 
of 36 back projections has been used

 Again, an halo of density decreasing with the distance 
from the center is obtained

 It can actually be demonstrated that the halo 
corresponding to the LSBP of a point-like object in the 
limit of many angles is given by an 1/r function

Need for a filtered back projection



IRF of the LSBP 

point-like object δ(x,y) impulse response function 1/r(x,y)

image view

2D function
view

𝑟𝑟(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥2 + 𝑦𝑦2

1/𝑟𝑟(𝑥𝑥,𝑦𝑦) = 1/ 𝑥𝑥2 + 𝑦𝑦2



 Resolving our object plane in many points, the resulting 
image will consist in the images of the corresponding 
points in the image plane, each of them surrounded by 
its halo

 Thus the LSBP method requires appropriate corrections: 
we will now derive a filtered back projection method 
that overcomes this limit

 The derivation of the filtered back projection method 
will use the tools we have introduced in the applied 
linear system theory, and in particular we will use 2D 
Fourier Transforms to move from the image plane 
(spatial coordinates) to the 2D spatial-frequency plane 
and vice-versa  

Need for a filtered back projection



2D Notation

 We will use the following notation:
 f(x,y) is a 2D function representing the object
 g(x,y) is a 2D function representing the image
 irf(x,y) is a 2D function representing the impulse response 

function of the imaging process
 As we have seen, in LSI systems the image is a convolution 

of the object with the irf. In 2D this can be written as:

where ** indicates a 2D convolution, or more explicitly as :

where α and β are Cartesian spatial coordinates
(as are x and y)
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Filtered back projection

 The image obtained from the LSBP g(x,y) is related to the 
“true image” f(x,y) of the object by the relation:

LSBP Image = True Image ** (1/r)
where the symbol ** means a convolution, i.e.

 Moving to the spatial-frequency domain, and indicating with 
T(u,v) the characteristic function, i.e. the FT of the irf(x,y) we 
have:

 It is important to point out that we would like to obtain f(x,y)
[or equivalently F(u,v)]  while the LSBP provides g(x,y) [or 
G(u,v)]
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Filtered back projection 

 It can be shown that in this case the FT of the irf 1/r is 
given by 1/ρ, where ρ is the "distance" in the (u,v) 
space, namely:
 ρ (u,v)= (u2 + v2)1/2

 1/ρ (u,v)= (u2 + v2)-1/2

 Thus
 This means that the F(u,v) and f(x,y) can - in principle -

be obtained simply as

 This procedure is called filtered back projection since 
the back projection G(u,v) is “filtered” by the ρ function
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Filtered back projection (in principle)

 In principle, the “true” image f(x,y) can be obtained 
as follows
 perform the LSBP obtaining g(x,y)
 FT g(x,y) to yield G(u,v)
 filtering in the spatial frequency domain with the ρ

function to obtain ρ G(u,v)
 perform the FT-1 of ρ G(u,v)



The ramp filter

 As it can be seen, the filter ρ has the role of giving 
more weight to the higher frequencies, to 
compensate the defocusing process of LSBP 

 However, due to the finite sampling of f(x,y), 
the filtering function ρ must be truncated at a 
maximum frequency ρ max.

 Therefore, a “ramp” filter will be used:





>
≤

=
max

max

0
)(

ρρ
ρρρ

ρramp



Filtered back projection (in practice) 

 As a matter of fact, the filtering is done on the space 
domain rather than in the Fourier domain

 the relation:
is equivalent to:
where R(r) is the FT-1of the ramp filter, and is known as 
the Ram-Lak filter (Ramachandran – Lakshminarayanan)

 It can be shown that
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Filtered back projection (in practice) 

 Therefore, in practice, the “true” image f(x,y) could 
be obtained as follows:
 perform the LSBP obtaining g(x,y)
 evaluate R(r)
 perform a 2D convolution

 But this is not the end of the story, either
)(),(),( rRyxgyxf ∗∗=



Filtered back projection (in practice) 

 Actually, as a matter of fact, the filter is applied on the 
single profiles before performing the back projections

 Moreover, different filters can be used:
 The Ram-Lak filter derives from a simple truncation of the 

ideal filtering function ρ at the frequency ρ max , to take the 
sampling into account

 However, in practice the high frequencies components must 
be suppressed also because they carry the noise 
contribution

 Different filter may be chosen, depending on the quality of 
the data, with the aim to optimize the image by modulating 
the contributions of the high frequencies



Filter comparison (in frequency space)



Filtered back projection (in practice) 

 Therefore, in practice, the “true” image f(x,y) can 
be obtained as follows:
 choose a suitable filter 𝜑𝜑 𝑥𝑥

(which includes optimizing the filter parameters)
 apply the filter on the single profiles

(performing a 1D convolution between the filter and the 
profiles in the real space)

 perform a backprojection of the filtered profiles, i.e. a 
Filtered Back Projection (FBP)



 The Physics of medical imaging / edited by 
Steve Webb (1988)

 Lecture notes of prof. L. Bertocchi
 Lecture slides of prof. R. Longo
 The essential physics of medical imaging 

/ Jerrold T. Bushberg ... [et al.] (2012)

Part I – More on FBP



Profiles as line integrals

 Monochromatic and collimated beam
 No scattered radiation is recorded by the detector
 f[x,y] distribution of the

linear attenuation coefficient
within the imaged slice 

 λφ(x’) object profile at angle φ
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(x,y)

 x’=xcosφ+ysenφ is the straight line x’=const
 Thus the line integral

 can be written as

 This equation expresses a linear relation between the object 
function f[x,y] and the measured profiles λφ (x'). 

 The goal of the reconstruction is indeed to invert this equation, 
i.e. to express the function f[x,y] from a set of profiles λφ (x'). 

Profiles as line integrals
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Central Section Theorem

 φ can be considered as a free parameter
 For the moment we set φ=0 so that calculations

are simpler
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Central Section Theorem

 Polar coordinates (ρ,φ) can be used in the Fourier space 
instead of the usual Cartesian coordinates [u,v]

 Generally speaking, the equations that relate these 
coordinates systems are

 However, with φ=0, they reduce to and v=0
 Thus, we have:

 And, more generally, the Central Section Theorem
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Central Section Theorem

),()( φρρφ
pF=Λ

 This theorem is also known as:
 projection-slice theorem 
 central slice theorem
 Fourier slice theorem

 It states that the results of the following two calculations 
are equal:
 Take a two-dimensional function f[x,y], project it onto a (one-

dimensional) line (Radon transform), and do a 1D Fourier 
transform of that projection.

 Take that same function, do a 2D Fourier transform first, and 
then cut off a slice through its origin, which is parallel to the 
projection line.



Central Section Theorem

λφ (x')

)(),( ρφρ φΛ=
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f[x,y]

1D FT

2D FT



Central Section Theorem

λφ (x')

)(),( ρφρ φΛ=
pF

f[x,y]

1D FT

2D FT-1



Central Section Theorem

 Thus, each profile collected in the spatial domain contributes 
to a section of the 2D FT of f[x,y] in the frequency domain

 By collecting a sufficient number of profiles, we can obtain 
sufficient knowledge on the 2D FT of f[x,y]

 Eventually a 2D FT-1 can allow us to obtain the f[x,y] itself

FT of
view2

FT of
view1

FT of
view3

Grid: 2D FT 
of f[x,y]



Obtaining f[x,y] in practice
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 FT-1 in polar coord.

 change of the integration limits

 Applying the Central Slice Theorem
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Obtaining f[x,y] in practice
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 The equation

can be split in two parts:

Linear Superposition of Filtered back projections
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Obtaining f[x,y] in practice
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 In practice:
 first the profile is 

convolved with the filter
 then f[x,y] is obtained by 

back projecting the 
filtered profiles: 



LS of filtered BP (LSFBP => simply FBP)
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Appendix: calculating the Ram-Lak filter

 The Physics of medical imaging / edited by 
Steve Webb (1988)



Calculating the Ram-Lak Filter (I)
1( ) ( ( ))R x FT ramp ρ−′ =



Calculating the Ram-Lak Filter (II)
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