

Mathematics outdoor with Mathematics outdoor with

Eugenia Taranto eugenia.taranto@unikore.it

Università Degli Studi Di Enna "Kore"

What is the talk about?

- Theoretical foundations on outdoor mathematical modeling
- Presentation of the MathCityMap system
- Methodology for conducting math trails with students
- Creating your own tasks: design criteria and response formats

Potential for outdoor learning

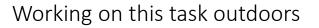
- Great potential is ascribed to learning outside of the classroom (DfES, 2006)
 - Creativity
 - Developing subject-related and interdisciplinary skills
 - Attitude towards learning
 - Motivation
- Long-lasting memories of learning outside (Dillon et al., 2006)

Potential for outdoor learning of mathematics

(Sauerborn & Brühne, 2009)

Potentials	Challenges		
Primary experiences	 Additional logistical, legal, and 		
 Learning by active construction 	organisational effort		
 Immediate application of theoretical 	 Curriculum and assessment 		
concepts	Abuse of freedom		
 Increased interest 			
 Interdisciplinary Learning 			

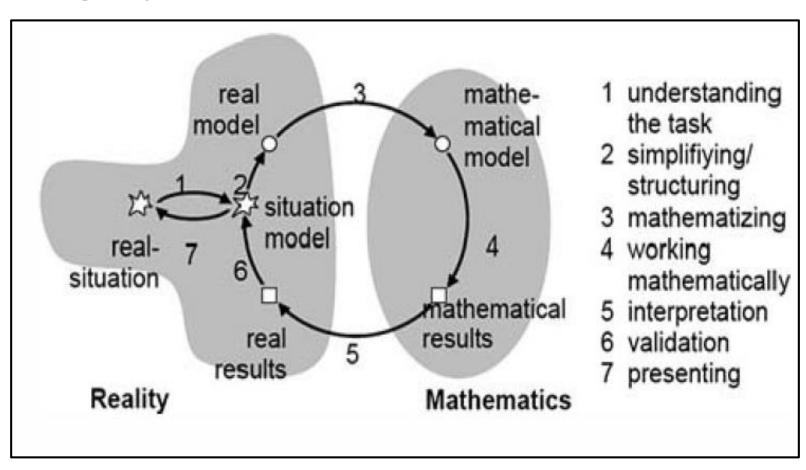
Mathematical modelling


- Mathematical modelling is mostly done within the classroom
- The required data is usually provided in image or text form

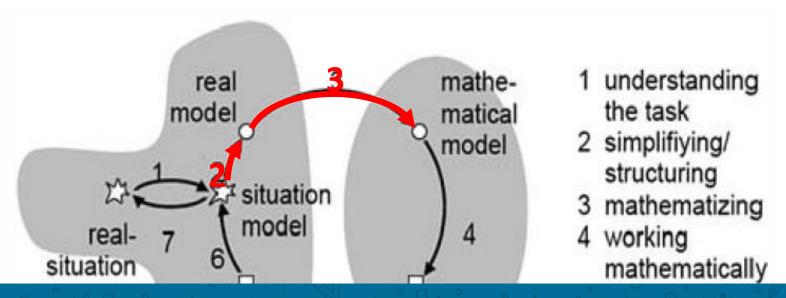
Container task

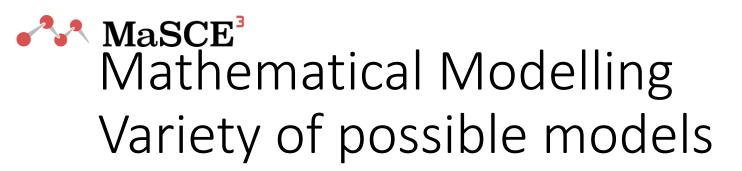
The container is supposed to be filled up to the top. How much sands fits inside the container?

Tasks & Picture from: Greefrath (2018)



Modelling cycle according to Blum and Leiß, 2005





Modelling challenges (Schukajlow, 2006)

- Finding an adequate real model and a mathematical model for the given situation (steps 2 & 3)
- Deciding which data must be collected: mathematization of the situation, definition of variables

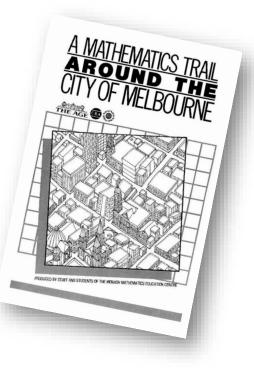
Determine the weight of this stone at Camps Bay Beach, South Africa (in kg) 1 cm³ weighs approx. 2.6g.

8

Possible mathematical models:

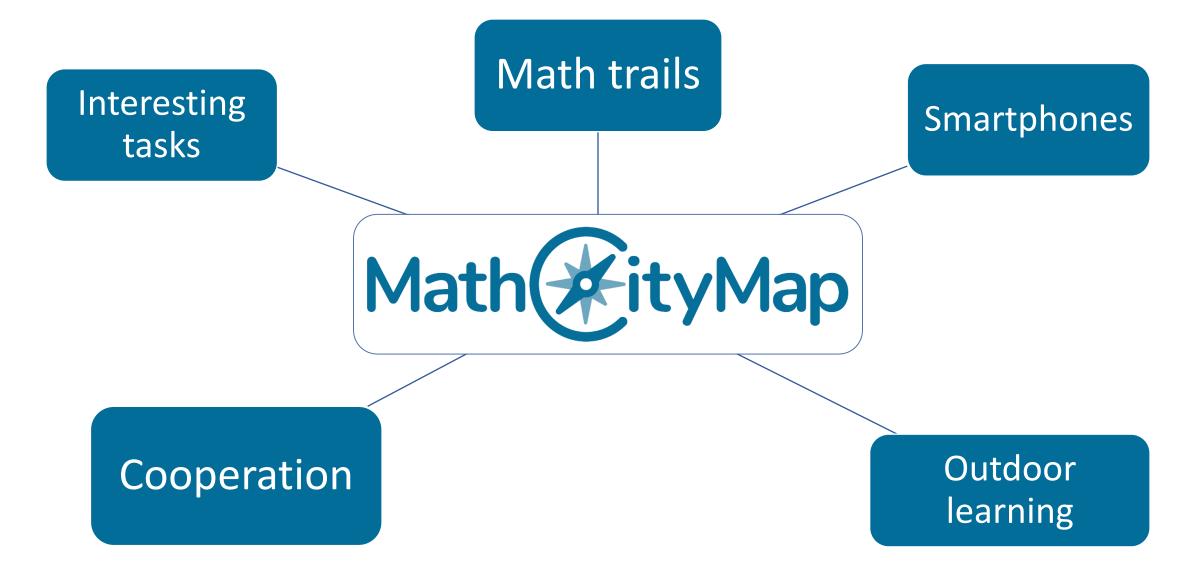
- Sphere
- Cylinder
- Cuboid
- Prism
- Ellipsoid

MaSCE³ Mathematical Modelling Variety of possible models


Mathematical model	Mathematical calculations (with measuring deviations of 2cm)	Result
Cuboid length: 112cm width: 78cm height: 58 cm	$(112m \pm 2cm) \cdot (78cm \pm 2cm) \cdot (58cm \pm 2cm)$ = 507680cm ³ ± 39500cm ³	$1320kg \pm 103kg$
Cylinder	$536018cm^3 \pm 37008cm^3$	$1393kg \pm 96kg$
Ellipsoid	$199215cm^3 \pm 15369cm^3$	$518kg \pm 40kg$ Bad model!

Math trails

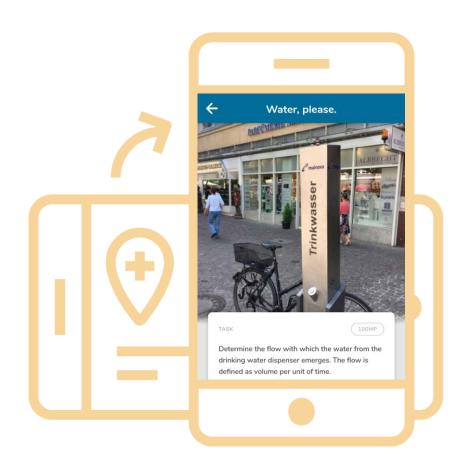
- A math trail is a mathematical walking trail
 - A walk through which mathematics can be experienced (Shoaf, Pollak & Schneider, 2004)
 - Discovering mathematics in intersting places and at interesting objects
- Can take place anywhere and is suitable for all age groups (Ludwig, Jesberg & Weiß, 2013)
- First math trail already over 30 years ago on Australia: A Mathematics Trail Around the City of Melbourne (Blane & Clarke, 1984)
- Helpful: A guide (real person or paper guide)


Math trails

Methodological characteristics:

- Form of outdoor learning
- Working in small groups
- Realistic and authentic problems
- Interdisciplinary learning
- Importance of mathematics in everyday situations

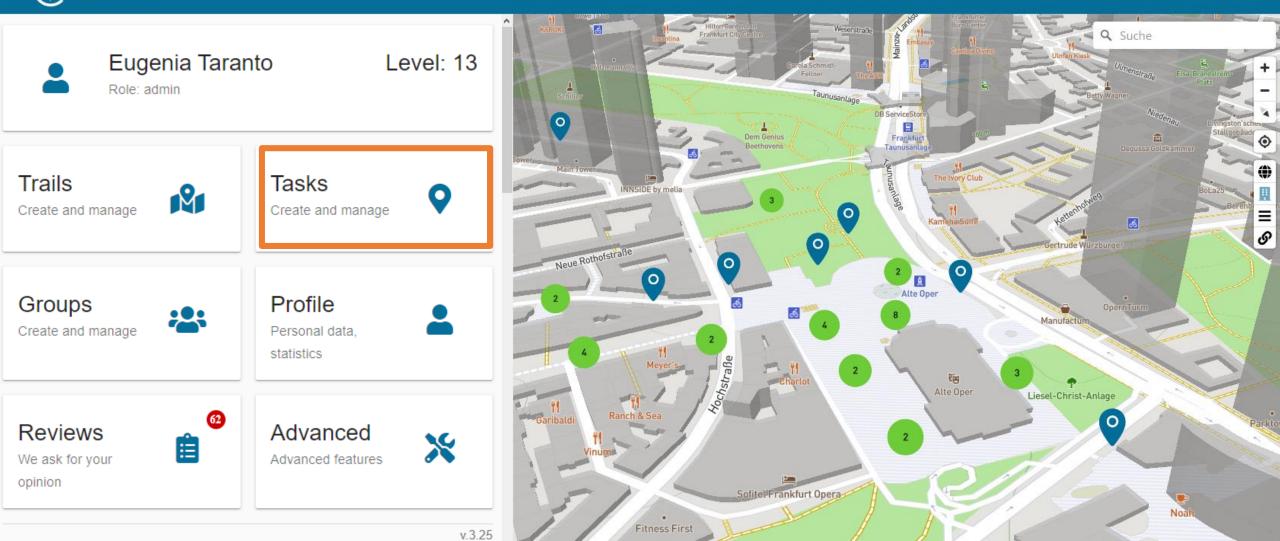
What is the talk about?


- Theoretical foundations on outdoor mathematical modeling
- Presentation of the MathCityMap system
- Methodology for conducting math trails with students
- Creating your own tasks: design criteria and response formats

The MathCityMap system

MathCityMap idea: Web portal

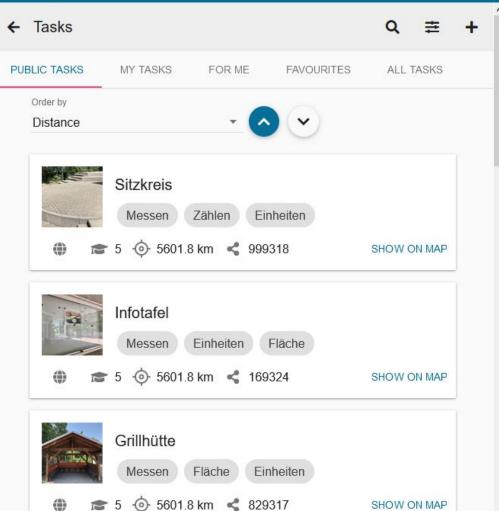
• The tasks are marked on a map!

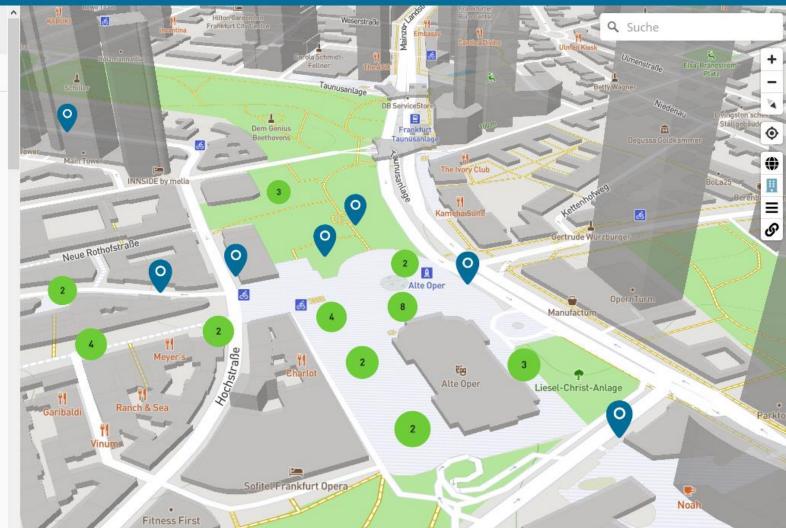


Web portal: Home page

M Web portal

Q 🖨 English 💌 💄 🗮

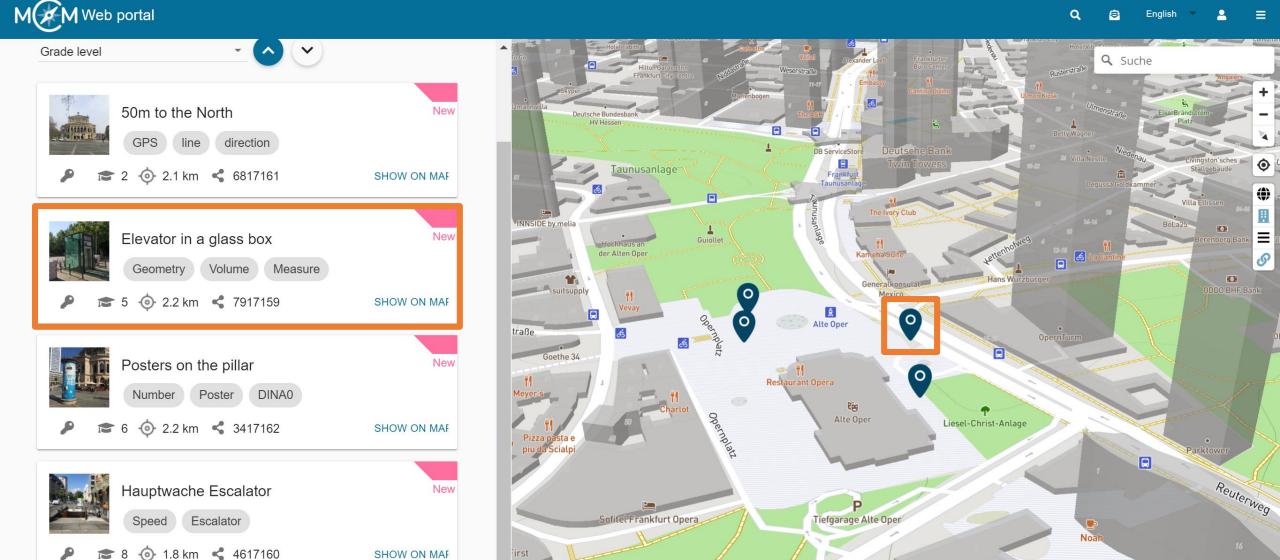




Web portal: Map view

M Web portal

🔍 😰 English 💌 💄 🚍


MathCityMap-Idea: Webportal

- The tasks are marked on a map
- Tasks can be accessed in the portal

Web portal: Calling up tasks

٢

۲

ų.

≡

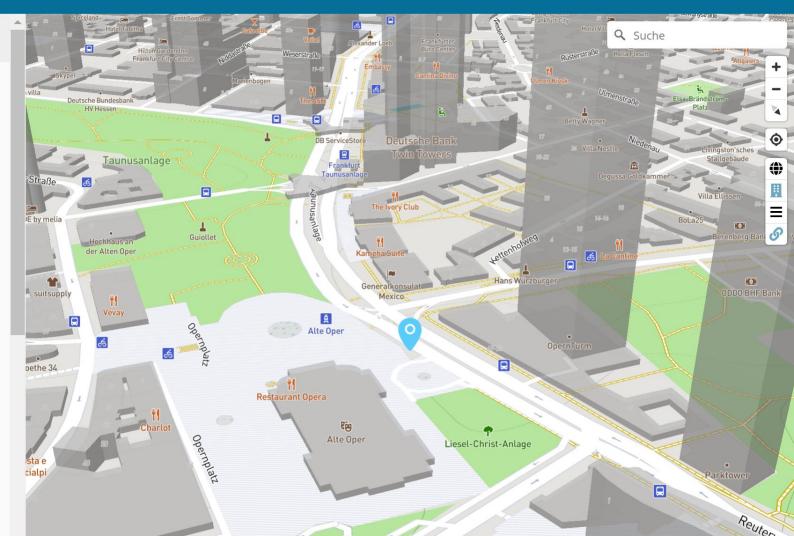
S

:0:

Web portal: Calling up tasks

M Web portal

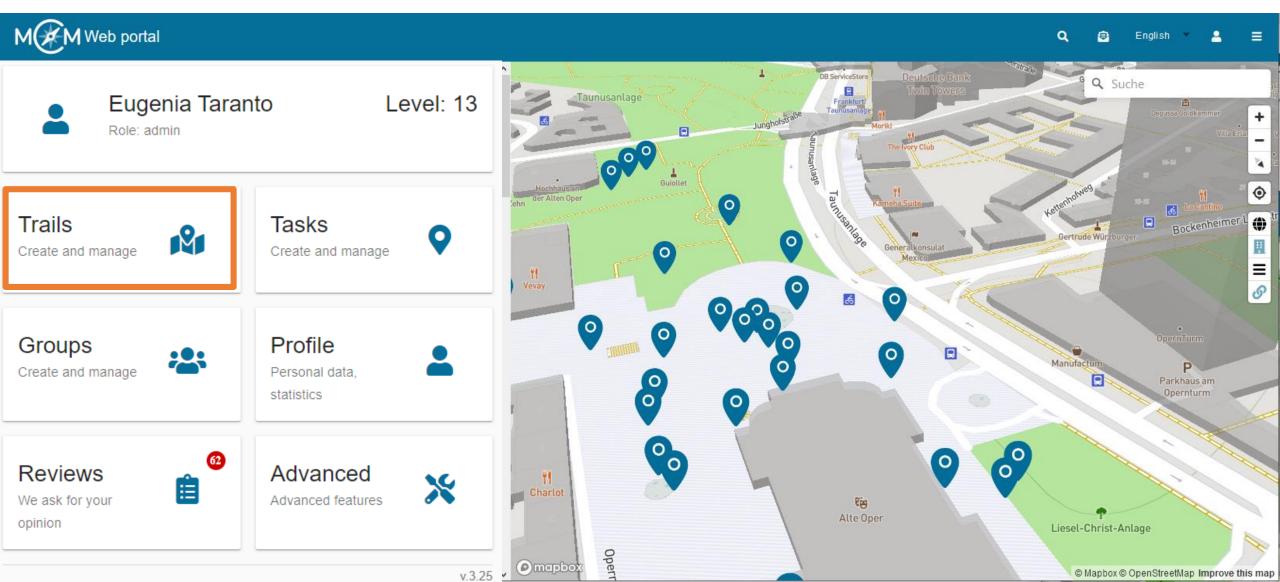
🔍 🖻 English 👻 🚊


← Task: Elevator in a glass box

Elevator in a glass box

You can access the subway through an elevator in a glass box. What is the volume of the glass box in m³? (Note: Use the outer dimensions)

Geometry	Volume	Measure				
		5	Yî,	P	¢	5

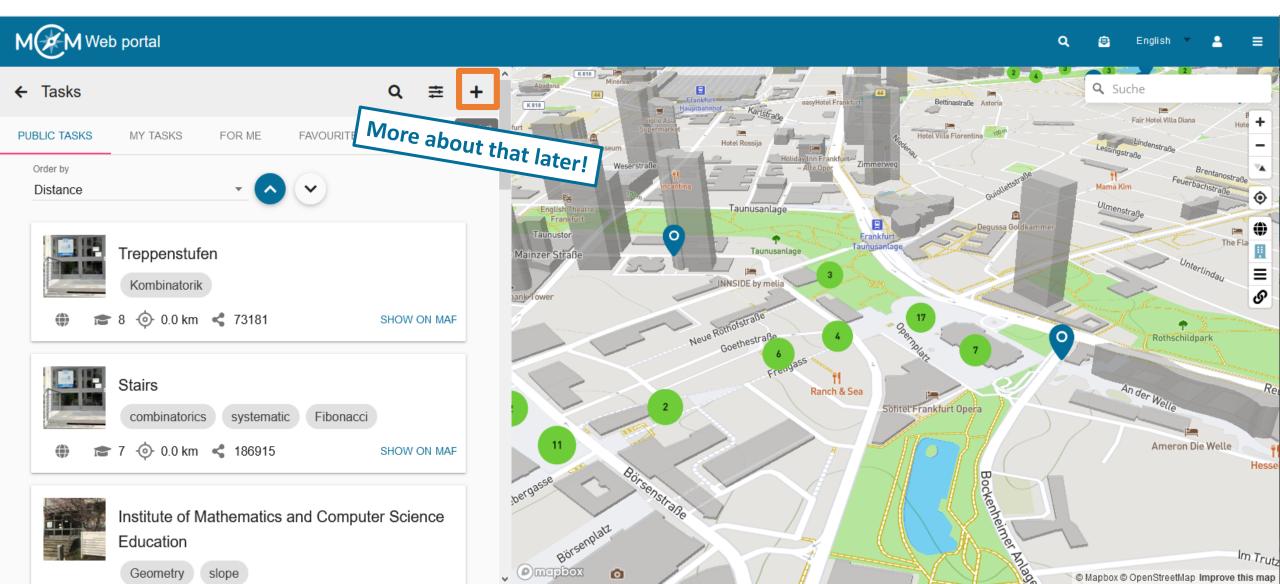

MathCityMap idea: Web portal

- The tasks are marked on a map
- Tasks can be accessed or created in the portal
- Several tasks form a Math trail

Web portal: Home page

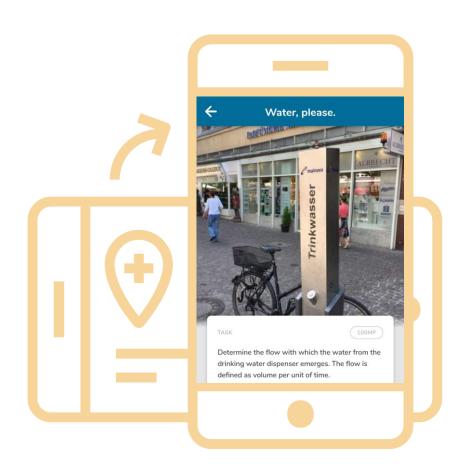
MathCityMap idea: Web portal

- The tasks are marked on a map
- Tasks can be accessed or created in the portal
- Several tasks form a math trail
- The tasks are set in such a way that they can only be solved on site
 - e.g. measurements must be collected

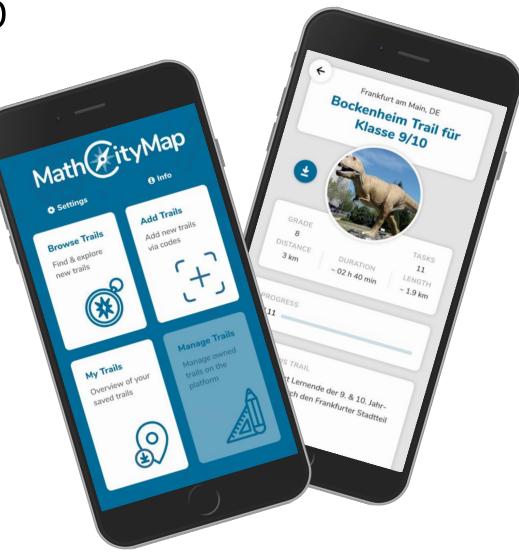

MathCityMap idea: Web portal

- The tasks are marked on a map
- Tasks can be accessed or created in the portal
- Several tasks form a math trail
- The tasks are set in such a way that they can only be solved on site e.g. measurements must be collected
- Everyone can participate and create their own tasks and math trails

Create your own tasks & math trails



The MathCityMap system

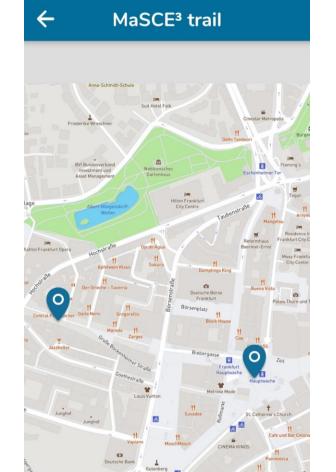


MaSCE^³

MathCityMap idea: App

- Trails are downloaded to the smartphone
- The MathCityMap app is free of charge and advertisements and it respects personal data protection (GDPR)
- The app is available for Android & iOS

Paper guide and/or smartphone app


6. Task: Hauptwache Escalator

Determine the speed of the escalator. A trip on the escalator takes about 29.5 seconds. The slope covered during this trip has a length of 17.1 m. Enter the result in kilometers per hour (km/h). Round to two decimals.

First guess:

The tasks are called up via the smartphone and/or a paper guide is used

← Hauptwache Escalat...

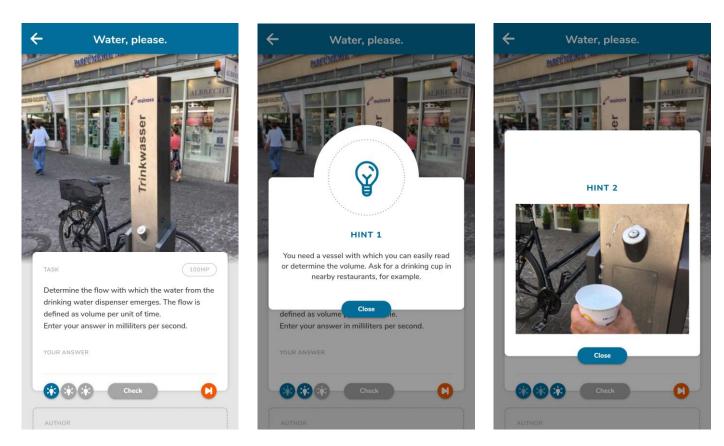
(100MP

Determine the speed of the escalator. A trip on the escalator takes about 29.5 seconds. The slope covered during this trip has a length of 17.1 m. Enter the result in kilometers per hour (km/h).

Checl

Round to two decimals.

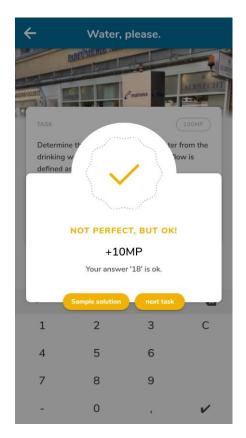
YOUR ANSWER

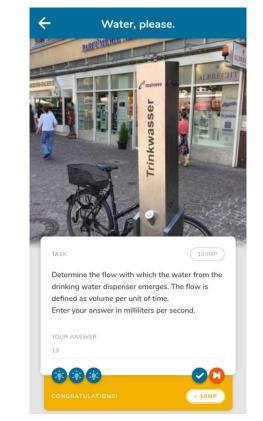

Calculation:

MaSCE^³

MathCityMap idea: App

- Trails are downloaded to the smartphone
- The tasks are called up via the smartphone and/or a paper giude is used
- Help or hints can be called up via the app




MaSCE^³

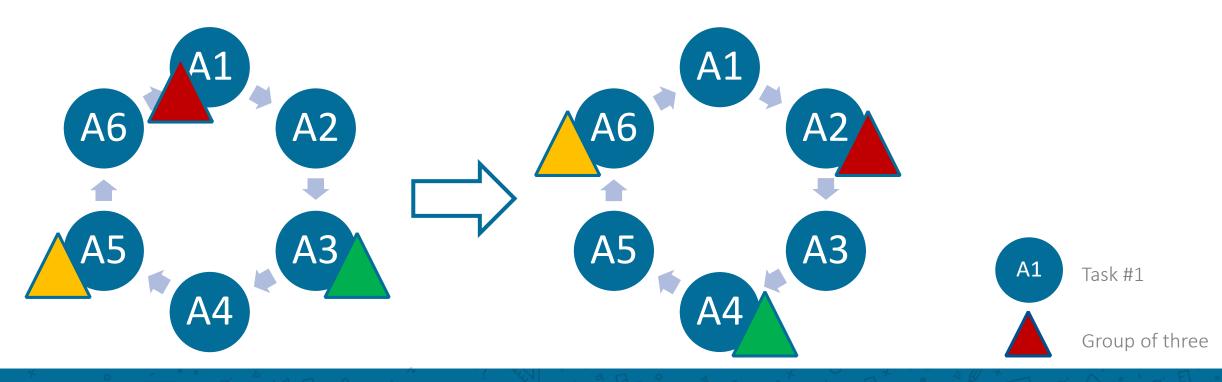
MathCityMap idea: App

- Trails are downloaded to the smartphone
- The tasks are called up via the smartphone and/or a paper giude is used
- Help or hints can be called up via the app
- The solution is checked by the app

What is the talk about?

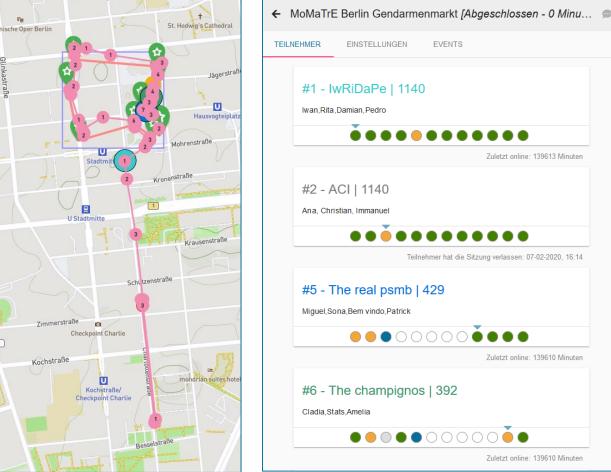
- Theoretical foundations on outdoor mathematical modeling
- Presentation of the MathCityMap system
- Methodology for conducting math trails with students
- Creating your own tasks: design criteria and response formats

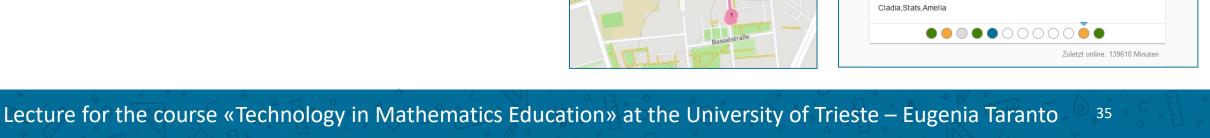
MathCityMap in class Preparation in the classroom


- Form groups of 3 members each
- Take one math trail set per group: folding rule, measuring tape, trail guide, pen
- Each group needs only 1 active smartphone with the MCM app
- There are 3 roles changing the rolls is desired:
 - Navigator operates the app, helps to find tasks
 - Measurement expert responsible for exact measurements and tools
 - Secretary records measured values and solution path

MathCityMap in class Conduction of outdoor learning

Circle of stations: app guides groups to the next task


Zuletzt online: 139613 Minuten


Zuletzt online: 139610 Minuter

EVENTS

▲ MaSCE³ MathCityMap in class **Digital classroom**

- Digital real-time representation of a class along a trail
- Three functions: •
 - **Organisational function: Location** & progress of each group

MaSCE³ MathCityMap in class Digital classroom

- Digital real-time representation of a class along a trail
- Three functions:
 - Organisational function
 - Communication function: Chat between teacher & pupil groups

CHAT EVENTS Co you need help? 23.03, 16:26 Ves. The hints did not help. 23.03, 16:27 We have already figured that out. 23.03, 16:27 Cou work on the Apples task, right? Home many apples does he have before the last gate? 23.03, 16:27 23.03, 16:28 Ves. very good. And before that? 23.03, 16:28 10 and then 22 23.03, 16:28 Lastly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 16:29 Corry, these have of course been 3 of 7 gates. 23.03, 16:29	← Kätzchen	Inaktiv)		>
Yes. The hints did not help. 23.03, 15:26 We have already figured that out. 23.03, 15:27 You work on the Apples task, right? Home many apples cases he have before the last gate? 23.03, 15:28 Yes. very good. And before that? 23.03, 15:28 Sora, 15:28	CHAT EVENT	ŝ		
Yes. The hints did not help. 23.03, 15.26 We have already figured that out. 23.03, 15.27 You work on the Apples task, right? Home many apples does he have before the last gate? 23.03, 15.27 4 23.03, 15.28 Yes, very good. And before that? 23.03, 15.28 10 and then 22 23.03, 15.28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15.28		1	Do you need help?	
23.03, 15:28 We have already figured that out. 23.03, 15:27 Vou work on the Apples task, right? Home many apples does he have before the last gate? 23.03, 15:27 23.03, 15:28 Use, very good. And before that? 23.03, 15:28 10 and then 22 23.03, 15:28 Ltactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29			23.03, 15:25	
We have already figured that out. 23.03, 15:27 You work on the Apples task, right? Home many apples does he have before the last gate? 23.03, 15:27 4 23.03, 15:28 Yes, very good. And before that? 23.03, 15:28 10 and then 22 23.03, 15:28 It can be and the seventh gate. 23.03, 15:28 It can be and the seventh gate. 23.03, 15:28	Yes. The hints did	not help.		
23.03, 15:27 You work on the Apples task, right? Home many apples does he have before the last gate? 23.03, 15:27 4 23.03, 15:28 Yes, very good. And before that? 23.03, 15:28 10 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	23.03, 15:26			
You work on the Apples task, right? Home many apples does he have before the last gate? 23.03, 15:27 4 23.03, 15:28 Yes, very good. And before that? 23.03, 15:28 10 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	We have already	figured that out.		
does he have before the last gate? 23.03, 15:27 4 23.03, 15:28 Yes, very good. And before that? 23.03, 15:28 10 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	23.03, 15:27			
4 23.03, 15:28 Yes, very good. And before that? 23.03, 15:28 In and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29				
23.03, 15:28 Yes, very good. And before that? 23.03, 15:28 10 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29			23.03, 15:27	
Yes, very good. And before that? 23.03, 15:28 I0 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	4			
23.03, 15:28 10 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	23.03, 15:28			
10 and then 22 23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29		Yes, very good	I. And before that?	
23.03, 15:28 Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29			23.03, 15:28	
Exactly, these have been 2 of 7 gates. Continue like that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	10 and then 22			
that until you arrive at the seventh gate. 23.03, 15:29 Sorry, these have of course been 3 of 7 gates 23.03, 15:29	23.03, 15:28			
Sorry, these have of course been 3 of 7 gates				
23.03, 15:29			23.03, 15:29	
		Sorry, these have of course	been 3 of 7 gates	
We made it.			23.03, 15:29	
	We made it.			

MaSCE³ MathCityMap in class Digital classroom

- Digital real-time representation of a class along a trail
- Three functions:
 - Organisational function
 - Communication function
 - Evaluation function: Detection of potential errors through event view

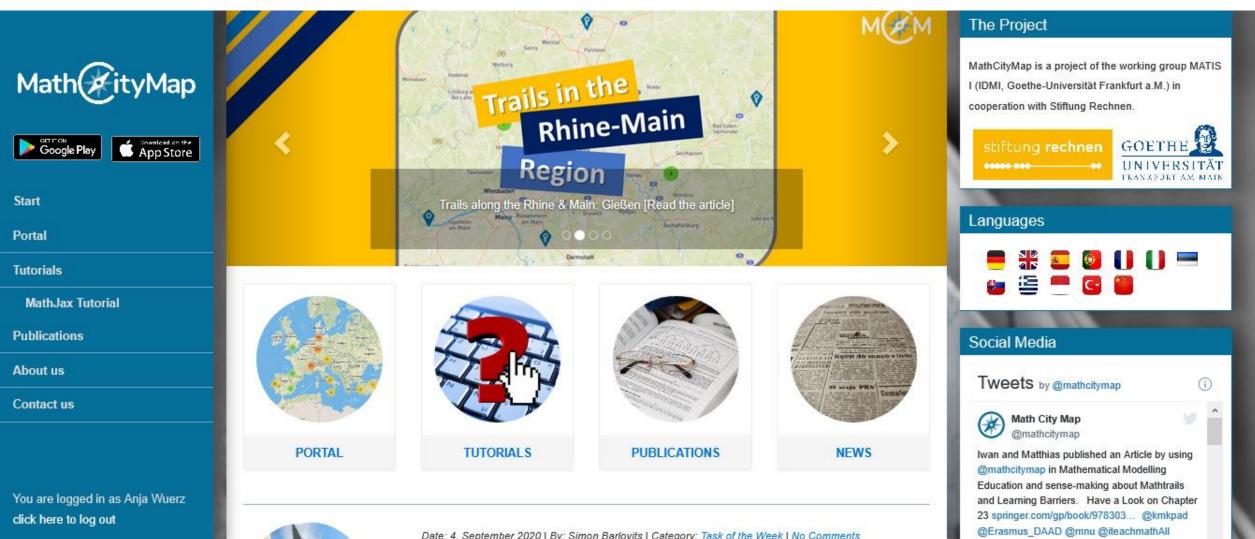
CHAT EVENTS	
Kätzchen: Completed task	
Task: Äpfel (13815) Score: 10 Answer: ["382"]	
2020-03-23 15:31:51	
Kätzchen: Wrong answer entered	
Task: Ápfel (13815) Answer: ["282"]	
2020-03-23 15:31:51	
Kätzchen: Wrong answer entered	
Task: Äpfel (13815) Answer: ["188"]	
2020-03-23 15:31:01	
Kätzchen: Wrong answer entered	
Task: Äpfel (13815) Answer: ["190"]	
2020-03-23 15:30:31	
Kätzchen: Opened task	
Task: Äpfel (13815)	
2020-03-23 15:30:21	
Kätzchen: Opened task preview	
Task: Äpfel (13815)	
2020-03-23 15:30:21	
Kätzchen: Opened trail map	
2020-03-23 15:30:21	
Kätzchen: Closed chat view	
2020-03-23 15:30:21	

MaSCE³ MathCityMap in class Digital classroom – data protection

- The data is processed and stored in Germany (1&1 Frankfurt).
- The collected data is <u>not</u> personalized
 - No registration for students necessary
 - Identification through radom temporary keys (no clear names or e-mails necessary)
 - Encrypted data transmission (SSL)
- MathCityMap complies with the provisions of the GDPR

What is the talk about?

- Theoretical foundations on outdoor mathematical modeling
- Presentation of the MathCityMap system
- Methodology for conducting math trails with students
- Creating your own tasks: design criteria and response formats



Own tasks & Math trails

- MathCityMap is a participatory project: Anyone can create a math trail in their own city
- Web portal: <u>https://mathcitymap.eu</u>

Own tasks & Math trails Web portal

Education

Geometry

slope

Im Trutz

Create your own tasks & Math trails

M Web portal O 8 Q Suche ← Tasks Q Bettinastraße Astoria <u>1</u> Fair Hotel Villa Diana + ALL TASKS Hotel Villa Florentina PUBLIC TASKS MY TASKS FOR ME FAVOURITES Weserstral Order by Brentanostraße ~ \sim Mama Kim Distance ۲ Taunusanlage ۲ aunustor 0 Frankt The Fla Treppenstufen Taunusanlage Mainzer Straße nterlindau ≡ Kombinatorik INNSIDE by meli Ø Neue Rothofstraß 🞓 8 💿 0.0 km < 73181 SHOW ON MAF Goethestraß 0 Rothschildpark Stairs An der Welle Ranch & Sea Sofitel Frankfurt Opera combinatorics systematic Fibonacci Ameron Die Welle 🞓 7 💿 0.0 km < 186915 SHOW ON MAF Hesse Bockenheimer Anlage Birsenstraße Institute of Mathematics and Computer Science

Börsenplatz

Ó

(D)mapbox

© Mapbox © OpenStreetMap Improve this map

Own tasks & Math trails

- MathCityMap is a participatory project: Anyone can create a math trail in their own city
- Web portal: https://mathcitymap.eu
- Registration is required to create tasks
- To create a math trail, several tasks are combined into one such trail

Own tasks & Math trails

- Own content (tasks & trails) are private by default
- They can be shared by code or in a working group
- Publication of own contents possible on request
 - Tasks go through a review process
 - Tasks are checked for the following quality citeria

Criteria for a MCM task I

• Clarity:

For each task, a **picture** must be created that allows the clear identification of the situation or the object the task is about.

• Presence:

The task can only be solved **on site**, i.e. the task data must be collected on site. This also means that the picture or the task description must not be sufficient to successfully solve the task.

• Activity:

The person who solves the task must be **active** and do something (e.g. measuring or counting).

Criteria for a MCM task II

• Multiple solutions:

The task should be solvable in **different ways**.

• Reality:

The task should be **application-oriented**, realistic and not too contrived.

• Graduated hints:

At least two **hints** should be added to each task.

School mathematics and "tags":

The task should have a clear relation to school mathematics: Use the prepared tags or add new **terms**. The task should also be assigned to a **class level.**

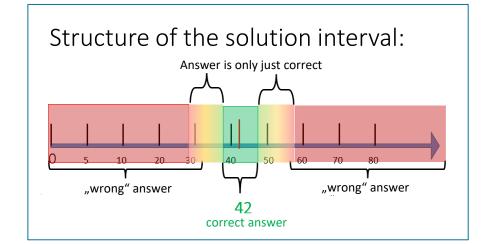
Criteria for a MCM task III

• Solution formats:

The solution of the task should be expressed through one of the **response formats** that the sistem provides.

• Tools:

No special tools should be required to solve the task.


• Sample solution:

One should offer a **detailed solution and hints** (only visable in the portal) for teachers.

Respone formats

- Exact solutions
- Multiple choice
- Intervals

Which response format fits best to my task idea?

Response formats: Exact solution

- Usage scenarios:
 - Combinatorial questions with an exact answer
 - Counting tasks where the number can be determined very accurately
- Example:
 - How many windows are visible on the south side of the building? Answer: 40

- Author defines in the web portal: Number
- User enters in app: Number

Lecture for the course «Technology in Mathematics Education» at the University of Trieste – Eugenia Taranto ⁴⁹



Response formats: Interval

- Most common task type
- BUT: Badly calculated intervals can cause frustration!
- Usage scenarios:
 - All tasks that require measuring in the process.
- Example:
 - Determine the area of the (rectangular) schoolyard in m^2 . Solution: A = a · b = 100m · 50m = 5000 m²
 - BUT: Other measured values are conceivable (e.g. a = 99,5 m; b = 49,8 m)

The interval should contain all results that arise from acceptable deviations in the measurement!

51

The "measured value" method:

• A deviation is defined for each measured value which is still accepted (e.g. 3%-deviation for green& 7%-deviation for orange interval):

4704

Acceptable measurement error	Own measurement	Acceptable measurement error
a₁= 97m	a = 100m	a ₂ = 103m
b ₁ = 48,5m	b = 50m	b ₂ = 51,5m
$A = a_2 \cdot b_2 = 4704,5m^2$	A = a⋅b = 5000m ²	$A = a_2 \cdot b_2 = 5304,5m^2$

Same procedure for the orange interval

4325

• This leads to the following interval limits:

Lecture for the course «Technology in Mathematics Education» at the University of Trieste – Eugenia Taranto

5305

5725

5305

5725

Response formats: Interval

- Usage scenarios:
 - All tasks that require measuring in the process
- Example:
 - Determine the area of the (rectangular) schoolyard in m^2 . Solution: A = a · b = 100m · 50m = 5000 m²

• Author defines in the web portal: 4 numbers (limits for green & orange interval)

4325

4704

• User enters in app: Number

Response formats: Multiple choice

• Usage scenarios:

- Tasks that have several correct answers
- Tasks that have terms as answers (equations, technical terms)
- Tasks that present equivalent answers (e.g. 3.2, 6)
- Example:
 - What geometric shapes and bodies can you recognize in the Leaning Tower of Pisa?
 - a) squares
 - b) triangles
 - c) cylinders
 - d) circles
- Author defines in the web portal: 4 answers of which 1-4 may be correct
- User enters in app:

Checks all correct answers

Response format: some news

https://mathcitymap.eu/it/the-mathcitymap-task-formats/

- Vector (interval)
- Vector (exact value)
- Set
- Fraction
- Information station
- Fill in the blanks
- Support tasks

For more information

<u>Contact in Italy:</u> Eugenia Taranto

eugenia.taranto@unikore.it

Co-funded by the Erasmus+ Programme of the European Union

Literature

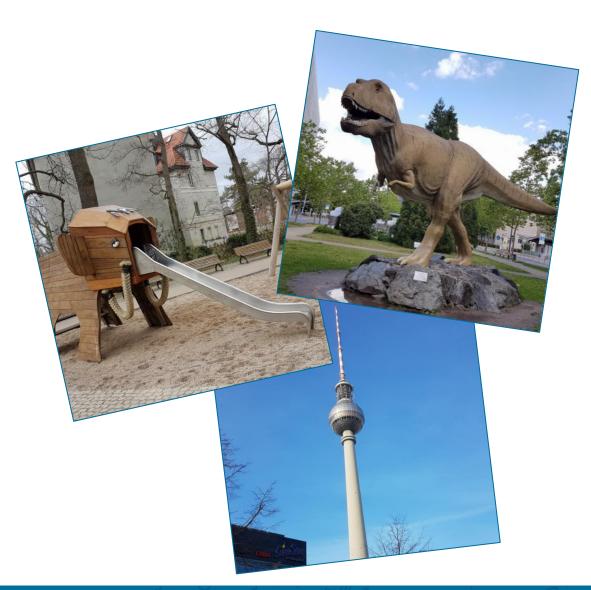
- Blane D. C., & Clarke, D. (1984). A mathematics trail around the city of Melbourne. Monash: Monash Mathematics Education Centre, Monash University.
- Blum & Leiss (2005) Blum, W. & Leiß, D. (2005). Modellieren im Unterricht mit der "Tanken"-Aufgabe. In: Mathematik lehren, (128), S. 18-21.
- Department for Education and Skills (DfES) (2006). Departmental Report 2006. Online: <u>https://www.gov.uk/government/publications/department-for-education-and-skills-departmental-report-2006</u> (letzte Prüfung: 10.08.2020).
- Dillon, J., Rickinson, M., Teamey, K., Morris, M., Choi, M., Sanders, D., & Benefield, P. (2006). The value of outdoor learning: evidence from research in the UK and elsewhere. *School Science Review*, *87* (320), S. 107-111.
- Greefrath, G. (2018): Anwendungen und Modellieren im Mathematikunterricht. Didaktische Perspektiven zum Sachrechnen in der Sekundarstufe, 2. Auflage. Berlin: Springer Spektrum.
- Kleine, M., Ludwig, M., & Schelldorfer, R. (2012). Mathematik draußen machen Outdoor Mathematics. *Praxis der Mathematik, 54* (47), S. 2-8.
- Ludwig, M., Jesberg, J., & Weiß, D. (2013). MathCityMap faszinierende Belebung der Idee mathematischer Wanderpfade. In: *Praxis der Mathematik, 55* (53), S. 14-19.
- Muller, E. (1993). *Niagara Falls Math Trail*. Ontario, Canada.
- Sauerborn, P., & Brühne, T. (2014). Didaktik des außerschulischen Lernens. Baltmannsweiler: Schneider-Verlag Hohengehren.
- Schukajlow, S., (2006). Schüler-Schwierigkeiten beim Lösen von Modellierungsaufgaben Ergebnisse aus dem DISUM-Projekt. In: *Beiträge zum Mathematikunterricht 2006.* Hildesheim: Franzbecker, S. 493-496.
- Shoaf, M. M., Pollak, H., & Schneider, J. (2004). Math Trails. The Consortium for Mathematics and Its Applications (COMAP).

Lecture for the course «Technology in Mathematics Education» at the University of Trieste – Eugenia Taranto

Same math trails as example

Matematica in giro ad UniSa - Sample solution Code: 6813326 Eugenia Taranto

Lecture for the course «Technology in Mathematics Education» at the University of Trieste – Eugenia Taranto


Now is your turn!

Divide into groups to create 8 tasks (this is the minimum number to generate a trail)

With your group, find 2 interesting objects outside (up to 17:00).

Create your tasks in the MCM system (up to 17:30) and share it in the "**Trieste**" group (code **254009**).

