
F2833x - Interrupts 6 - 1

Introduction
This module is used to explain the interrupt system of the F2833x Digital Signal Controller.

So what is an interrupt?

Before we go into the technical terms, let us start with an analogy: Think of a nice evening
and you are working at your desk, preparing the laboratory experiments for the next day.
Suddenly the phone rings, you answer it and then you get back to work (after the
interruption). The shorter the phone call, the better! Of course, if the call comes from your
girlfriend you might have to re-think your next step due to the “priority” of the
interruption… Anyway, sooner or later you will have to get back to the preparation of the
task for the next day; otherwise you might not pass the next exam.

This analogy touches some basic definitions for interrupts;

• interrupts appear “suddenly”: in technical terms, this is called “asynchronous”

• interrupts might be more or less important: they have a “priority”

• they must be dealt with before the phone stops ringing: “immediately”

• the laboratory preparation should be continued after the call - the “interrupted task is
resumed”

• the time spent to search the phone should be as small as possible – “interrupt
latency”.

• after the call, you should continue your work from the exact place where you left it -
“context save” and “context restore”

To summarize the technical terms:

Interrupts are defined as asynchronous events, generated by an external or internal hardware
unit. An event causes the controller to interrupt the execution of the current program and to
start a service routine, which is dedicated to this event. After the execution of this interrupt
service routine, the program that was interrupted will be resumed.

The quicker a CPU performs this “task-switch”, the more this controller is suited for real-
time control. After going through this chapter, you will be able to understand the F2833x
interrupt system.

At the end of this chapter, we will perform an exercise with a program controlled by
interrupts that uses one of the 3 core timers of the CPU. The core timer’s period interrupt
will be used to perform a periodic task.

 Interrupt System

Module Topics

6 - 2 F2833x - Interrupts

Module Topics
Interrupt System .. 6-1

Introduction ... 6-1

Module Topics ... 6-2

F2833x Core Interrupt Lines ... 6-3

The F2833x RESET ... 6-4

Reset Bootloader ... 6-5

Interrupt Sources ... 6-9

Maskable Interrupt Processing ... 6-10

Peripheral Interrupt Expansion .. 6-12

Hardware Interrupt Response ... 6-15

F2833x CPU Timers.. 6-16

Summary: .. 6-18

Lab 6: CPU Timer 0 Interrupt and 4 LEDs .. 6-19
Objective ... 6-19
Procedure .. 6-19
Create a Project File .. 6-19
Project Build Options .. 6-20
Modify the Source Code ... 6-20
Build, Load and Test ... 6-21
Modify Source Code - Part 2 .. 6-21
Build, Load and Test ... 6-24

 F2833x Core Interrupt Lines

F2833x - Interrupts 6 - 3

F2833x Core Interrupt Lines
The core interrupt system of the F2833x consists of 16 interrupt lines; two of them are called
“Non-Maskable” (RESET, NMI). The other 14 lines are ‘maskable’ - this means the
programmer can allow or disable interrupts from these 14 lines.

What does the phrase “mask” stand for?

A “mask” is a binary combination of ‘1’ and ‘0’. A ‘1’ stands for an enabled interrupt line, a
‘0’ for a disabled one. By loading the mask into register “IER” we can select, which interrupt
lines will be enabled to request an interrupt service from the CPU.

For a “non-maskable” interrupt, we cannot disable an interrupt request. Once the signal line
goes active, the running program will be suspended and the dedicated interrupt service
routine will start. Generally, “non-maskable” interrupts are used for high priority and safety
based events e.g. emergency stop.

6 6 -- 22

F2833x Core Interrupt LinesF2833x Core Interrupt Lines

F2833xF2833x
CORECORE

 2 non2 non--maskable maskable
interrupts (RS, interrupts (RS,
““selectableselectable”” NMI)NMI)

 14 maskable interrupts 14 maskable interrupts
(INT1 (INT1 –– INT14)INT14)

INT1INT1
INT2INT2
INT3INT3
INT4INT4
INT5INT5
INT6INT6
INT7INT7
INT8INT8
INT9INT9

INT10INT10
INT11INT11
INT12INT12
INT13INT13
INT14INT14

RSRS
NMINMI

All 16 lines are connected to a table of ‘interrupt vectors’, which consists of 32 bit memory
locations per interrupt. It is the responsibility of the programmer to fill this table with the
start addresses of dedicated interrupt service routines. However, in case of the F2833x, this
table is in ROM and filled with addresses, defined by Texas Instruments in such a way, that
“RESET (RS¯¯)” points to address 0x00 0040, NMI to address 0x00 0042 an so on. All these
addresses are in RAM, so the programmer has to fit a single 32-bit instruction into these
memory locations.

The F2833x RESET

6 - 4 F2833x - Interrupts

The F2833x RESET
A high to low transition at the external “RESET (RS¯¯)” pin will cause a reset of the Digital
Signal Controller. The next rising edge of RS¯¯ will force the CPU to read the code start
address from address 0x3F FFC0 in code memory. This event is not an ‘interrupt’ in the
sense that the old program will be resumed. A reset is generated during powering up the
device.

Another source for a reset is the overflow of the watchdog timer. To inform all other external
devices that the CPU has acknowledged a reset, the device itself drives the reset pin active
low. This means that the reset pin must be bi-directional!

6 6 -- 33

F2833x Reset SourcesF2833x Reset Sources

Watchdog TimerWatchdog Timer

RS pin activeRS pin active

To RS pinTo RS pin

RSRS

F2833x CoreF2833x Core

Reset will force the controller not only to start from address 0x3F FFC0, but it will also clear
all internal operation registers, reset a group of CPU-Flags to initial states and disable all 16
interrupt lines. We will not go into details about all the flags and registers for now, please
refer to the data sheet for the F2833x.

 Reset Bootloader

F2833x - Interrupts 6 - 5

Reset Bootloader
After a RESET signal has been released, the CPU starts the execution of a first code section
in ROM, called “boot loader”. This function determines the next step, depending on the
status of four GPIO -pins (GPIO87, 86, 85 and 84).

6 6 -- 44

Reset Reset –– BootloaderBootloader

ResetReset
OBJMODE = 0 AMODE = 0OBJMODE = 0 AMODE = 0

ENPIE = 0 INTM = 1ENPIE = 0 INTM = 1

Boot determined by Boot determined by
state of GPIO pinsstate of GPIO pins

Reset vector fetched Reset vector fetched
from boot ROMfrom boot ROM

0x3F FFC00x3F FFC0

ExecutionExecution BootloadingBootloading
Entry PointEntry Point RoutinesRoutines

FLASH SCIFLASH SCI--A / SPIA / SPI--AA
M0 SARAMM0 SARAM I2CI2C

OTPOTP eCANeCAN--AA
XINTFXINTF McBSPMcBSP--AA

GPIO / XINTFGPIO / XINTF

BootloaderBootloader setssets
OBJMODE = 1OBJMODE = 1

AMODE = 0AMODE = 0

6 6 -- 55

BootloaderBootloader OptionsOptions

1 1 1 1 jump to 1 1 1 1 jump to FLASHFLASH address 0x33 FFF6 address 0x33 FFF6
1 1 1 0 1 1 1 0 bootloadbootload code to oncode to on--chip memory via chip memory via SCISCI--AA
1 1 0 1 1 1 0 1 bootloadbootload external EEPROM to onexternal EEPROM to on--chip memory via chip memory via SPISPI--AA
1 1 0 0 1 1 0 0 bootloadbootload external EEPROM to onexternal EEPROM to on--chip memory via chip memory via I2CI2C
1 0 1 1 Call 1 0 1 1 Call CAN_BootCAN_Boot to load from to load from eCANeCAN--AA mailbox 1mailbox 1
1 0 1 0 1 0 1 0 bootloadbootload code to oncode to on--chip memory via chip memory via McBSPMcBSP--AA
1 0 0 1 jump to 1 0 0 1 jump to XINTFXINTF Zone 6 address 0x10 0000 for 16Zone 6 address 0x10 0000 for 16--bit databit data
1 0 0 0 jump to 1 0 0 0 jump to XINTFXINTF Zone 6 address 0x10 0000 for 32Zone 6 address 0x10 0000 for 32--bit databit data
0 1 1 1 jump to 0 1 1 1 jump to OTPOTP address 0x38 0400 address 0x38 0400
0 1 1 0 0 1 1 0 bootloadbootload code to oncode to on--chip memory via chip memory via GPIO port AGPIO port A (parallel)(parallel)
0 1 0 1 0 1 0 1 bootloadbootload code to oncode to on--chip memory via chip memory via XINTFXINTF (parallel)(parallel)
0 1 0 0 jump to 0 1 0 0 jump to M0 SARAMM0 SARAM address 0x00 0000 address 0x00 0000
0 0 1 1 branch to check boot mode
0 0 1 0 branch to Flash without ADC calibration (TI debug only)
0 0 0 1 branch to M0 SARAM without ADC calibration (TI debug only)
0 0 0 0 branch to SCI-A without ADC calibration (TI debug only)

87 /87 /
XA15XA15

86 /86 /
XA14XA14

85 /85 /
XA13XA13

84 /84 /
XA12XA12

GPIO pinsGPIO pins

Reset Bootloader

6 - 6 F2833x - Interrupts

The F28335ControlCard pulls all four GPIO - input lines to ‘1’, so by default the start option
“jump to FLASH address 0x3F FFF6” is selected. This will force the controller to continue
the code sequence in FLASH memory. However, we do not currently have anything
programmed into FLASH memory. So why did all of our previous labs work? The answer is:
we over-ruled the hardware - sequence and forced the DSC into our own code entry point by
using three of Code Composer Studio Debug commands:

• Reset CPU - force the DSC to Reset Address 0x3F FFC0

• Restart - force the DSC directly to code entry point
 “c_int00”, bypassing the hardware start sequence

• Go Main - finish the “c_int00”, call “main()” and stop at the
 first instruction of “main()”.

With the help of jumper J18 (SCI - Boot) on the Peripheral Explorer Board, we could change
the hardware sequence. If this jumper is closed, GPIO84 will be ‘0’ and the start sequence is:
“boot load code to on-chip memory via SCI-A”. In this operation mode, the chip would wait
for a serial communication stream from a host, which is of no use for us for now. This mode
will be used in chapter 15.

The next flowchart summarises the reset code flow for all start options of the F2833x.

6 - 6

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (256Kw)

OTP (1Kw)

0x33 FFF6

0x38 0400

0x30 0000

0x00 0000

0x3F E000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (64w)
0x3F F9CE

Boot Code

•
•

•
•

RESET

Execution Entry
Point Determined

By GPIO Pins

Bootloading
Routines

(SCI-A, SPI-A, I2C,
eCAN-A, McBSP-A

GPIO, XINTF)

0x3F F9CE

XINTF Zone 6
(x16 / x32)
0x10 0000

0x00 0000

The option ‘Flash Entry’ is usually used at the end of a project development phase when the
software flow is bug free. To load a program into the flash you will need to use a specific
program, available either as Code Composer Studio plug in or as a stand-alone tool. For our
current lab exercises we will refrain from loading (or ‘burning’) the flash memory.

The boot loader options via serial interface (SPI / SCI / I2C / eCAN / McBSP) or parallel
port (GPIO / XINTF) are usually used to download the executable code from an external

 Reset Bootloader

F2833x - Interrupts 6 - 7

host or to update the contents of the flash memory. For these modes, please refer to chapters
15 and 16.

OTP-memory is a ‘one time programmable’ memory; there is no second chance to fit code
into this non-volatile memory. This option is usually used for company specific startup
procedures only. Again, to program this portion of memory you would need to use a Code
Composer Studio plug in. You might assess your experimental code to be worth storing
forever, but for sure your teacher will not. So, PLEASE do not upset your supervisor by
using this option, he want to use the boards for future classes!

The next two slides show the status of important core registers and status bits after a reset.

6 6 -- 77

Register Bits Initialized at ResetRegister Bits Initialized at Reset

Register bits defined by resetRegister bits defined by reset
PCPC 0x3F FFC00x3F FFC0 PC loaded with reset vectorPC loaded with reset vector
ACCACC 0x0000 00000x0000 0000 Accumulator clearedAccumulator cleared
XAR0 XAR0 -- XAR7 XAR7 0x0000 00000x0000 0000 Auxiliary RegistersAuxiliary Registers
DPDP 0x00000x0000 Data Page pointer points to page 0Data Page pointer points to page 0
PP 0x0000 00000x0000 0000 P register clearedP register cleared
XTXT 0x0000 00000x0000 0000 XT register clearedXT register cleared
SPSP 0x04000x0400 Stack Pointer to address 0400Stack Pointer to address 0400
RPCRPC 0x00 00000x00 0000 Return Program Counter clearedReturn Program Counter cleared
IFRIFR 0x00000x0000 no pending interruptsno pending interrupts
IERIER 0x00000x0000 maskable interrupts disabledmaskable interrupts disabled
DBGIERDBGIER 0x00000x0000 debug interrupts disableddebug interrupts disabled

All internal math registers (ACC, P, XT) and auxiliary registers (XAR0 to XAR7) are
cleared, interrupts are disabled (IER) and pending interrupts, which have been requested
before RESET, are cancelled (IFR). The stack pointer (SP) is initialized to address 0x400
and the program counter (PC) points to hardware start address 0x3F FFC0.

Reset Bootloader

6 - 8 F2833x - Interrupts

The two registers ST0 and ST1 combine all control and status flags of the CPU. Slide 6-8
explains the reset status of all the bits. ST0 contains all math bits such as zero (Z), carry (C)
and negative (N), whereas ST1 covers some more general operating mode bits.

We will postpone the discussion of the individual meaning of the bits until later chapters.

6 6 -- 88

Control Bits Initialized at ResetControl Bits Initialized at Reset
Status Register 0 (ST0)Status Register 0 (ST0)
SXM = 0SXM = 0 Sign extension offSign extension off
OVM = 0OVM = 0 Overflow mode offOverflow mode off
TC = 0TC = 0 test/control flagtest/control flag
C = 0C = 0 carry bitcarry bit
Z = 0Z = 0 zero flagzero flag

Status Register 1 (ST1)Status Register 1 (ST1)
INTM = 1INTM = 1 Disable all maskable interrupts Disable all maskable interrupts -- globalglobal
DBGM = 1DBGM = 1 Emulation access/events disabled Emulation access/events disabled
PAGE0 = 0PAGE0 = 0 Stack addressing mode enabled/Direct addressing disabledStack addressing mode enabled/Direct addressing disabled
VMAP = 1VMAP = 1 Interrupt vectors mapped to PM 0x3F FFC0 Interrupt vectors mapped to PM 0x3F FFC0 –– 0x3F FFFF0x3F FFFF
SPA = 0SPA = 0 stack pointer even address alignment status bitstack pointer even address alignment status bit
LOOP = 0LOOP = 0 Loop instruction status bitLoop instruction status bit
EALLOW = 0EALLOW = 0 emulation access enable bitemulation access enable bit
IDLESTAT = 0IDLESTAT = 0 Idle instruction status bitIdle instruction status bit
AMODE = 0AMODE = 0 C27x/C28x addressing modeC27x/C28x addressing mode
OBJMODE = 0OBJMODE = 0 C27x object modeC27x object mode
M0M1MAP = 1M0M1MAP = 1 mapping mode bitmapping mode bit
XF = 0XF = 0 XF status bitXF status bit
ARP = 0ARP = 0 ARP points to AR0ARP points to AR0

N = 0N = 0 negative flagnegative flag
V = 0V = 0 overflow bitoverflow bit
PM = 000PM = 000 set to leftset to left--shiftshift--byby--11
OVC = 00 0000OVC = 00 0000 overflow counteroverflow counter

 Interrupt Sources

F2833x - Interrupts 6 - 9

Interrupt Sources
As you can see from the next slide the F2833x has a large number of interrupt sources (96 at
the moment) but only 14 maskable interrupt inputs. The question is: How do we handle this
‘bottleneck’?

Obviously we have to use a single INT-line for multiple sources. Each interrupt line is
connected to its interrupt vector, a 32-bit memory space inside the vector table. This memory
space holds the address for the interrupt service routine. In case of multiple interrupts this
service routine must be used for all incoming interrupt requests. This technique forces the
programmer to use a software based separation method on entry of this service routine. This
method will cost additional time that is often not available in real time applications. So how
can we speed up this interrupt service?

6 6 -- 99

Interrupt SourcesInterrupt Sources

ePWM, eCAP, ePWM, eCAP,
eQEPeQEP, ADC, SCI, , ADC, SCI,
SPI, I2C, eCAN,SPI, I2C, eCAN,

McBSP, DMA, WDMcBSP, DMA, WD

Internal SourcesInternal Sources

External SourcesExternal Sources

XINT1 XINT1 –– XINT7XINT7

TZxTZx

XRSXRS

XNMI_XINT13XNMI_XINT13

NMINMI

F2833x COREF2833x CORE

INT1INT1

INT13INT13

INT2INT2
INT3INT3

INT12INT12

INT14INT14

XRSXRS

••••••

PIE PIE
(Peripheral(Peripheral
InterruptInterrupt

Expansion)Expansion)

TINT2TINT2
TINT1TINT1
TINT0TINT0

The answer from Texas Instruments is sweet, they simply used a pie. PIE stands for
Peripheral Interrupt Expansion unit.

This unit ‘expands’ the vector address table into a larger scale, reserving individual 32 bit
entries for each of the 96 possible interrupt sources. An interrupt response with the help of
this unit is much faster than without it. To use the PIE we will have to re-map the location of
the interrupt vector table to address 0x 00 0D00. This is in volatile memory! Before we can
use this memory we will have to initialise it.

Do not worry about the PIE-procedure for the moment, we will exercise all this during Lab6.

Maskable Interrupt Processing

6 - 10 F2833x - Interrupts

Maskable Interrupt Processing
Before we dive into the PIE-registers, we have to discuss the remaining path from an
interrupt request to its acknowledgement by the DSC. As you can see from the next slide, we
have to close two more switches to allow an interrupt request.

6 6 -- 1010

 A valid signal on a specific interrupt line causes the latch A valid signal on a specific interrupt line causes the latch
to display a to display a ““11”” in the appropriate bitin the appropriate bit

Maskable Interrupt Processing Maskable Interrupt Processing
Conceptual Core OverviewConceptual Core Overview

11

00

11

((IFRIFR))
““LatchLatch””

INT1INT1

INT2INT2

INT14INT14

CoreCore
InterruptInterrupt

F2833xF2833x
CoreCore

((INTMINTM))
““Global SwitchGlobal Switch””

((IERIER))
““SwitchSwitch””

 If the individual and global switches are turned If the individual and global switches are turned ““onon”” the the
interrupt reaches the coreinterrupt reaches the core

6 6 -- 1111

Interrupt Flag Register (IFR)Interrupt Flag Register (IFR)
RTOSINTRTOSINT DLOGINTDLOGINT INT14INT14 INT13INT13 INT12INT12 INT11INT11 INT10INT10 INT9INT9

8899101011111212131314141515

INT8INT8 INT7INT7 INT6INT6 INT5INT5 INT4INT4 INT3INT3 INT2INT2 INT1INT1
0011223344556677

Pending :Pending : IFR IFR BitBit = 1= 1
Absent :Absent : IFRIFR BitBit = 0= 0

 Compiler generates atomic instructions (nonCompiler generates atomic instructions (non--interruptible) for setting/clearing IFRinterruptible) for setting/clearing IFR
 If interrupt occurs when writing IFR, interrupt has priorityIf interrupt occurs when writing IFR, interrupt has priority
 IFR(bit) cleared when interrupt is acknowledged by CPUIFR(bit) cleared when interrupt is acknowledged by CPU
 Register cleared on reset Register cleared on reset

/*** Manual setting/clearing IFR ***//*** Manual setting/clearing IFR ***/
extern cregister volatile unsigned int IFR;extern cregister volatile unsigned int IFR;

IFR |= 0x0008;IFR |= 0x0008; //set INT4 in IFR//set INT4 in IFR
IFR &= 0xFFF7;IFR &= 0xFFF7; //clear INT4 in IFR//clear INT4 in IFR

 Maskable Interrupt Processing

F2833x - Interrupts 6 - 11

6 6 -- 1212

Interrupt Enable Register (IER)Interrupt Enable Register (IER)
RTOSINTRTOSINT DLOGINTDLOGINT INT14INT14 INT13INT13 INT12INT12 INT11INT11 INT10INT10 INT9INT9

8899101011111212131314141515

INT8INT8 INT7INT7 INT6INT6 INT5INT5 INT4INT4 INT3INT3 INT2INT2 INT1INT1
0011223344556677

Enable: Set IER Enable: Set IER BitBit = 1= 1
Disable: Clear IERDisable: Clear IER BitBit = 0= 0

 Compiler generates atomic instructions (nonCompiler generates atomic instructions (non--interruptible) interruptible)
for setting/clearing IERfor setting/clearing IER

 Register cleared on resetRegister cleared on reset

/*** Interrupt Enable Register ***//*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;extern cregister volatile unsigned int IER;

IER |= 0x0008;IER |= 0x0008; //enable INT4 in IER//enable INT4 in IER
IER &= 0xFFF7;IER &= 0xFFF7; //disable INT4 in IER//disable INT4 in IER

6 6 -- 1313

Interrupt Global Mask BitInterrupt Global Mask Bit

 INTM used to globally enable/disable interrupts:INTM used to globally enable/disable interrupts:
 Enable:Enable:INTM = 0INTM = 0
 Disable:Disable: INTM = 1 (reset value)INTM = 1 (reset value)

 INTM modified from assembly code only:INTM modified from assembly code only:

INTMINTMST1ST1
Bit 0Bit 0

/*** Global Interrupts ***//*** Global Interrupts ***/
asm(asm(““ CLRC INTMCLRC INTM””); //enable global interrupts); //enable global interrupts
asm(asm(““ SETC INTMSETC INTM””); //disable global interrupts); //disable global interrupts

Peripheral Interrupt Expansion

6 - 12 F2833x - Interrupts

Peripheral Interrupt Expansion
All 96 possible sources are grouped into 12 PIE-lines, 8 sources per line. To enable/disable
individual sources we have to program another group of registers: ‘PIEIFRx’ and ‘PIEIERx’.

6 6 -- 1414

Peripheral Interrupt Expansion Peripheral Interrupt Expansion -- PIEPIE

Pe
rip

he
ra

l I
nt

er
ru

pt
s

 1
2x

8
=

96
Pe

rip
he

ra
l I

nt
er

ru
pt

s
 1

2x
8

=
96

IF
R

IF
R

IE
R

IE
R

IN
TM

IN
TM 28x28x

CoreCore

28x Core Interrupt logic28x Core Interrupt logic

PIE module for 96 InterruptsPIE module for 96 Interrupts

INT1.x interrupt groupINT1.x interrupt group
INT2.x interrupt groupINT2.x interrupt group
INT3.x interrupt groupINT3.x interrupt group
INT4.x interrupt groupINT4.x interrupt group
INT5.x interrupt groupINT5.x interrupt group
INT6.x interrupt groupINT6.x interrupt group
INT7.x interrupt groupINT7.x interrupt group
INT8.x interrupt groupINT8.x interrupt group
INT9.x interrupt groupINT9.x interrupt group
INT10.x interrupt groupINT10.x interrupt group

INT11.x interrupt groupINT11.x interrupt group
INT12.x interrupt groupINT12.x interrupt group

INT1 INT1 –– INT 12INT 12

12 Interrupts12 Interrupts

9696

INT1.1INT1.1

INT1.2INT1.2

INT1.8INT1.8

1

0

1

••
••
••

••
••
••

INT1INT1

PIEIFR1PIEIFR1 PIEIER1PIEIER1
Interrupt Group 1Interrupt Group 1

INT13 INT13 (TINT1 / XINT13)
INT14 INT14 (TINT2)
NMINMI

6 6 -- 1515

PIE RegistersPIE Registers

INTx.2INTx.2INTx.3INTx.3INTx.4INTx.4INTx.5INTx.5INTx.6INTx.6INTx.7INTx.7INTx.8INTx.8 INTx.1INTx.1

001122334455667715 15 -- 88

reserved

PIEIFRx register (x = 1 to 12)PIEIFRx register (x = 1 to 12)

INTx.2INTx.2INTx.3INTx.3INTx.4INTx.4INTx.5INTx.5INTx.6INTx.6INTx.7INTx.7INTx.8INTx.8 INTx.1INTx.1

001122334455667715 15 -- 88

reserved

PIEIERx register (x = 1 to 12)PIEIERx register (x = 1 to 12)

reserved PIEACKxPIEACKx

PIE Interrupt Acknowledge Register (PIEACK)PIE Interrupt Acknowledge Register (PIEACK)
112244 335566778899 001010111115 15 -- 1212

ENPIEENPIEPIEVECTPIEVECT

PIECTRL registerPIECTRL register 0015 15 -- 11

#include “DSP2833_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx5 = 1; //enable CAPINT1 in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

All interrupt sources are connected to interrupt lines according to this assignment table:

 Peripheral Interrupt Expansion

F2833x - Interrupts 6 - 13

6 6 -- 1616

F2833x PIE Interrupt Assignment TableF2833x PIE Interrupt Assignment Table
INTx.8INTx.8 INTx.7INTx.7 INTx.6INTx.6 INTx.5INTx.5 INTx.4INTx.4 INTx.3INTx.3 INTx.2INTx.2 INTx.1INTx.1

INT1INT1 WAKEINTWAKEINT TINT0TINT0 ADCINTADCINT XINT2XINT2 XINT1XINT1 SEQ2INTSEQ2INT SEQ1INTSEQ1INT

INT2INT2 EPWM6EPWM6
_TZINT_TZINT

EPWM5EPWM5
_TZINT_TZINT

EPWM4EPWM4
_TZINT_TZINT

EPWM3EPWM3
_TZINT_TZINT

EPWM2EPWM2
_TZINT_TZINT

EPWM1EPWM1
_TZINT_TZINT

INT3INT3 EPWM6EPWM6
_INT_INT

EPWM5EPWM5
_INT_INT

EPWM4EPWM4
_INT_INT

EPWM3EPWM3
_INT_INT

EPWM2EPWM2
_INT_INT

EPWM1EPWM1
_INT_INT

INT4INT4 ECAP6ECAP6
_INT_INT

ECAP5ECAP5
_INT_INT

ECAP4ECAP4
_INT_INT

ECAP3ECAP3
_INT_INT

ECAP2ECAP2
_INT_INT

ECAP1ECAP1
_INT_INT

INT5INT5 EQEP2EQEP2
_INT_INT

EQEP1EQEP1
_INT_INT

INT6INT6 MXINTAMXINTA MRINTAMRINTA MXINTBMXINTB MRINTBMRINTB SPITXINTASPITXINTA SPIRXINTASPIRXINTA

INT7INT7 DINTCH6DINTCH6 DINTCH5DINTCH5 DINTCH4DINTCH4 DINTCH3DINTCH3 DINTCH2DINTCH2 DINTCH1DINTCH1

INT8INT8 SCITXINTCSCITXINTCSCIRXINTCSCIRXINTC I2CINT2AI2CINT2A I2CINT1AI2CINT1A

INT9INT9 ECAN1ECAN1
_INTB_INTB

ECAN0ECAN0
_INTB_INTB SCITXINTBSCITXINTB SCIRXINTBSCIRXINTB SCITXINTASCITXINTA SCIRXINTASCIRXINTA

INT10INT10

INT11INT11

INT12INT12 LUFLUF LVFLVF XINT7XINT7 XINT6XINT6 XINT5XINT5 XINT4XINT4 XINT3XINT3

ECAN0ECAN0
_INTA_INTA

ECAN1ECAN1
_INTA_INTA

Examples: ADCINT = INT1.6; T2PINT = INT3.1; SCITXINTA = INT9.2

The vector table location at reset is:

6 6 -- 1717

VectorVector OffsetOffset
Default Interrupt Vector Table at ResetDefault Interrupt Vector Table at Reset

MemoryMemory
00

BROM VectorsBROM Vectors
64w64w

ENPIE = 0ENPIE = 0

0x3F FFC00x3F FFC0

0x3F FFFF0x3F FFFF

PIE VectorsPIE Vectors
256w256w

0x00 0D000x00 0D00

DATALOGDATALOG
RTOSINTRTOSINT
EMUINTEMUINT
NMINMI

0202
0404
0606
0808
0A0A
0C0C
0E0E
1010
1212
1414
1616
1818
1A1A
1C1C
1E1E
2020
2222
2424
2626
2828--3E3E

ILLEGALILLEGAL
USER 1USER 1--1212

INT1INT1
INT2INT2
INT3INT3
INT4INT4
INT5INT5
INT6INT6
INT7INT7
INT8INT8
INT9INT9
INT10INT10
INT11INT11
INT12INT12
INT13INT13
INT14INT14

RESETRESET 0000 Default Vector TableDefault Vector Table
ReRe--mapped whenmapped when

ENPIE = 1ENPIE = 1

PieVectTableInitPieVectTableInit{ }{ }
Used to initialize PIE vectorsUsed to initialize PIE vectors

The PIE re-maps the location like this:

Peripheral Interrupt Expansion

6 - 14 F2833x - Interrupts

6 6 -- 1818

PIE Vector Mapping PIE Vector Mapping (ENPIE = 1)(ENPIE = 1)

 PIE vector location – 0x00 0D00 – 256 words in data memory
 RESET and INT1-INT12 vector locations are re-mapped
 CPU vectors are re-mapped to 0x00 0D00 in data memory

INT13INT13 0x00 0D1A0x00 0D1A XINT13 Interrupt or CPU Timer 1 XINT13 Interrupt or CPU Timer 1 (RTOS)(RTOS)
INT14INT14 0x00 0D1C0x00 0D1C CPU Timer 2 CPU Timer 2 (RTOS)(RTOS)
DATALOGDATALOG 0x00 0D1D0x00 0D1D CPU Data logging InterruptCPU Data logging Interrupt

………… ………… …………
USER12USER12 0x00 0D3E0x00 0D3E UserUser--defined Trap defined Trap
INT1.1INT1.1 0x00 0D400x00 0D40 PIEINT1.1 Interrupt VectorPIEINT1.1 Interrupt Vector
………… ………… …………

………… ………… …………
INT12.1INT12.1 0x00 0DF00x00 0DF0 PIEINT12.1 Interrupt VectorPIEINT12.1 Interrupt Vector

INT1.8INT1.8 0x00 0D4E0x00 0D4E PIEINT1.8 Interrupt VectorPIEINT1.8 Interrupt Vector

INT12.8INT12.8 0x00 0DFE0x00 0DFE PIEINT12.8 Interrupt VectorPIEINT12.8 Interrupt Vector
………… ………… …………

PIE vector address PIE vector DescriptionPIE vector address PIE vector Description
not usednot used 0x00 0D000x00 0D00 Reset vector (never fetched here)Reset vector (never fetched here)
Vector nameVector name

INT1INT1 0x00 0D020x00 0D02 INT1 reINT1 re--mapped to PIE group belowmapped to PIE group below
………… ………… ………… rere--mapped to PIE group belowmapped to PIE group below

INT12INT12 0x00 0D180x00 0D18 INT12 reINT12 re--mapped to PIE group belowmapped to PIE group below

As you can see from Slide 6-18, the addresses 0x00 0D40 to 0x00 0DFF are used as the
expansion area. Now we do have 32 bits for each individual interrupt vector PIEINT1.1 to
PIEINT12.8.

6 6 -- 1919

Device Vector Mapping Device Vector Mapping -- SummarySummary

_c_int00:_c_int00:
.

CALL main()CALL main()

main()main()
{ initialization();{ initialization();

.
}}

Initialization()Initialization()
{{
Load PIE VectorsLoad PIE Vectors
Enable the PIEEnable the PIE
Enable PIEIEREnable PIEIER
Enable Core IEREnable Core IER
Enable INTMEnable INTM

}}

PIE Vector TablePIE Vector Table
256 Word RAM256 Word RAM

0x00 0D00 0x00 0D00 –– 0DFF0DFF

RESETRESET
<0x3F FFC0><0x3F FFC0>

Reset Vector <0x3F F9A9> = Boot Code Reset Vector <0x3F F9A9> = Boot Code
Flash Entry Point <0x33 FFF6 > = LB _c_int00Flash Entry Point <0x33 FFF6 > = LB _c_int00
User Code Start < _c_int00 >User Code Start < _c_int00 >

 Hardware Interrupt Response

F2833x - Interrupts 6 - 15

Hardware Interrupt Response
After an interrupt has been acknowledged by the CPU, an automatic hardware context switch
sequence is started. It includes an auto-save of 14 internal registers with the all-important
internal control and status bits, and loads the program counter (PC) with the address of the
ISR.

6 6 -- 2020

Interrupt Response Interrupt Response -- Hardware SequenceHardware Sequence

Note: some actions occur simultaneously, none are interruptibleNote: some actions occur simultaneously, none are interruptible

CPU ActionCPU Action DescriptionDescription

TT ST0ST0
AHAH ALAL
PHPH PLPL
AR1AR1 AR0AR0
DPDP ST1ST1
DBSTATDBSTAT IERIER
PC(msw)PC(msw) PC(lsw)PC(lsw)

RegistersRegisters →→ stackstack 14 Register words auto saved14 Register words auto saved
00 →→ IFR (bit)IFR (bit) Clear corresponding IFR bitClear corresponding IFR bit
00 →→ IER (bit)IER (bit) Clear corresponding IER bitClear corresponding IER bit
11 →→ INTM/DBGMINTM/DBGM Disable global ints/debug eventsDisable global ints/debug events
VectorVector →→ PCPC Loads PC with int vector addressLoads PC with int vector address
Clear other status bitsClear other status bits Clear LOOP, EALLOW, IDLESTATClear LOOP, EALLOW, IDLESTAT

6 6 -- 2121

Interrupt LatencyInterrupt Latency
LatencyLatency

Depends on wait states, ready, INTM, etc.Depends on wait states, ready, INTM, etc. Maximum latency:Maximum latency:

Recognition Recognition
delay (3) and delay (3) and
SP alignment SP alignment

(1)(1)

44

 Minimum latency (to when real work occurs in the ISR): Minimum latency (to when real work occurs in the ISR):
 Internal interrupts: 14 cyclesInternal interrupts: 14 cycles

 External interrupts: 16 cyclesExternal interrupts: 16 cycles

Get vector Get vector
(3 reg. (3 reg.
pairs pairs

saved)saved)

33
PF1/PF2/D1 PF1/PF2/D1

of ISR of ISR
instruction instruction

(3 reg. pairs (3 reg. pairs
saved)saved)

33
Save Save
return return

addressaddress

11
D2/R1/R2 of D2/R1/R2 of

ISR ISR
instructioninstruction

33
Sync ext. Sync ext.

signalsignal
(ext. (ext.

interrupt interrupt
only)only)

22
cycles

Above is for PIE enabled or disabledAbove is for PIE enabled or disabled

Assumes ISR in Assumes ISR in
internal RAMinternal RAM

Internal Internal
interrupt interrupt
occurs occurs
herehere

ext. ext.
interrupt interrupt
occurs occurs
herehere

ISR ISR
instruction instruction
executed executed
on next on next
cyclecycle

F2833x CPU Timers

6 - 16 F2833x - Interrupts

F2833x CPU Timers
The F2833x features 3 independent 32-bit core timers. The block diagram for one timer is
shown below in Slide 6-22:

6 - 22

F2833x CPU Timers
RESET

Timer Reload

SYSCLKOUT

TCR.4

16 - Bit divide down
TDDRH:TDDR

16 - Bit prescaler
PSCH:PSC

32 - Bit period
PRDH:PRD

32 - Bit counter
TIMH:TIM

BORROW

INT

As you can see, the clock source is the internal clock “SYSCLKOUT”, which is usually
150MHz, assuming an external oscillator of 30MHz and a PLL-ratio of 10/2. Once the timer
is enabled (TCR-bit 4 = 0), the incoming clock counts down a 16-bit prescaler (PSCH: PSC).
On underflow, its borrow signal is used to count down the 32-bit counter (TIMH: TIM). At
the end, when this timer underflows, an interrupt request is transferred to the CPU.

The 16-bit divide down register (TDDRH: TDDR) is used as a reload register for the
prescaler. Each times the prescaler underflows, the value from the divide down-register is
reloaded into the prescaler. A similar reload function for the counter is performed by the 32-
bit period register (PRDH_PRD).

Timer 1 and Timer 2 are usually used by Texas Instruments for the real time operation
system “DSP/BIOS”, whereas Timer 0 is generally free for general usage. Lab 6 will use
Timer 0. This will not only preserve Timer 1 and 2 for later use together with DSP/BIOS, but
also help us to understand the PIE-unit, because Timer 0 is the only timer of the CPU that
goes through the PIE, as can be seen in the following slide, Slide 6-23:

 F2833x CPU Timers

F2833x - Interrupts 6 - 17

6 6 -- 2323

F2833x Timer Interrupt SystemF2833x Timer Interrupt System

IF
R

IF
R

IE
R

IE
R

IN
TM

IN
TM 28x28x

CoreCore

28x Core Interrupt logic28x Core Interrupt logic

PIE unitPIE unit

INT1.7 interruptINT1.7 interrupt

INT1INT1

TINT1 / XINT13TINT1 / XINT13

TINT2TINT2

TINT0TINT0

INT13INT13

INT14INT14

A timer unit is usually initialized by a set of registers. In Lab6, we will perform an exercise
with the registers of CPU Timer 0. However, instead of setting every single bit by ourselves,
we will use a hardware abstraction function, for which we only have to specify the desired
timer period and the clock speed of our processor. This function is provided by Texas
Instruments as part of a set of such functions.

6 6 -- 2424

Address Register Name
0x0000 0C00 TIMER0TIM Timer 0, Counter Register Low
0x0000 0C01 TIMER0TIMH Timer 0, Counter Register High
0x0000 0C02 TIMER0PRD Timer 0, Period Register Low
0x0000 0C03 TIMER0PRDH Timer 0, Period Register High
0x0000 0C04 TIMER0TCR Timer 0, Control Register
0x0000 0C06 TIMER0TPR Timer 0, Prescaler Register
0x0000 0C07 TIMER0TPRH Timer 0, Prescaler Register High
0x0000 0C08 TIMER1TIM Timer 1, Counter Register Low
0x0000 0C09 TIMER1TIMH Timer 1, Counter Register High
0x0000 0C0A TIMER1PRD Timer 1, Period Register Low
0x0000 0C0B TIMER1PRDH Timer 1, Period Register High
0x0000 0C0C TIMER1TCR Timer 1, Control Register
0x0000 0C0D TIMER1TPR Timer 1, Prescaler Register
0x0000 0C0F TIMER1TPRH Timer 1, Prescaler Register High

0x0000 0C10 to 0C17 Timer 2 Registers ; same layout as above

F2833x Timer RegistersF2833x Timer Registers

6 - 18 F2833x - Interrupts

It is worthwhile to inspect the control register, as this is the most important register of a timer
unit.

6 6 -- 2525

F2833x Timer Control Registers F2833x Timer Control Registers
TIMERxTCRTIMERxTCR

Emulator Interaction
1x = run free

00

reservedTRB

11223344556677

reservedreservedTSS reservedreservedreserved

TIE reservedFREE

8899101011111212131314141515

reservedSOFTreservedreservedTIF

Timer Stop Status
0 = start / 1 = stop

Timer Reload Bit
1 = reload

Timer Interrupt Flag
Write 1 clear bit

Timer Interrupt Enable
Write 1 to enable INT

Summary:
Sounds pretty complicated, doesn’t it? Well, nothing is better suited to understand the PIE
unit than a lab exercise. In Lab 6 you will add the initialization of the PIE vector table to re-
map the vector table to address 0x00 0D00. You will also use CPU Timer 0 as a clock time
base for the source code of Lab 5_1 (“4 bit LED-counter”).

Remember, so far we generated time periods with a software-loop in function
“delay_loop()”. This was quite a waste of processor time, not very precise and poor
programming technique.

The procedure on the next page will guide you through the necessary steps to modify the
source code step by step.

Take your time, no pain no gain!

We will use functions, pre-defined by Texas Instruments as often as we can. This principle
will save us a lot of development time; we do not have to re-invent the wheel again and
again!

 Lab 6: CPU Timer 0 Interrupt and 4 LEDs

F2833x - Interrupts 6 - 19

Lab 6: CPU Timer 0 Interrupt and 4 LEDs

Objective
The objective of this lab is to include a basic example of the interrupt system in the “LED-
counter” project of Lab5_1. Instead of using a software delay loop to generate the time
interval between the output steps, which is a poor use of processor time, we will now use one
of the 3 core CPU timers to do the job. One of the simplest tasks for a timer is to generate a
periodic interrupt request. We can use its interrupt service routine to perform periodic
activities OR to increment a global variable. This variable will then contain the number of
periods that are elapsed from the start of the program.

CPU Timer 0 is using the Peripheral Interrupt Expansion (PIE) Unit. This gives us the
opportunity to exercise this unit as well. Timer 1 and 2 bypass the PIE-unit and they are
usually reserved for Texas Instruments real-time operating system, called “DSP/BIOS”.
Therefore we implement Timer 0 as the core clock for this exercise.

Procedure

Create a Project File
1. Using Code Composer Studio, create a new project, called Lab6.pjt in

C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. Define the size of the C system stack. In the project window, right click at project
“Lab6” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

3. Open the file Lab5_1.c from C:\DSP2833x_V4\Labs\Lab5 and save it as Lab6.c in
C:\DSP2833x_V4\Labs\Lab6.

Next, we will take advantage of some useful files, which have been created and provided by
Texas Instruments and should be already available on your hard disk drive C as part of the
so-called "Header File" package (sprc530.zip). If not, ask a technician to install that package
for you!

4. In the C/C++ perspective, right click at project “Lab6” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

This file defines all global variable names to access memory mapped peripheral
registers.

5. Repeat the “Link Files to Project” step. From C:\tidcs\c28\dsp2833x\v131\
DSP2833x_common\source add:

• DSP2833x_CodeStartBranch.asm

• DSP2833x_SysCtrl.c

Lab 6: CPU Timer 0 Interrupt and 4 LEDs

6 - 20 F2833x - Interrupts

• DSP2833x_ADC_cal.asm

• DSP2833x_usDelay.asm

6. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link to project “Lab6”:

• DSP2833x_Headers_nonBIOS.cmd

This linker command file will connect all global register variables to their
corresponding physical addresses.

Project Build Options
7. We also have to extent the search path of the C-Compiler for include files. Right click at

project “Lab6” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Modify the Source Code
8. Open Lab6.c to edit: double click on “Lab6.c” inside the project window. At the start of

your code, add the function prototype statement for the external function "InitSysCtrl()":

extern void InitSysCtrl(void);

9. Remove the function prototype for the local function "InitSystem()" at the beginning and
the whole function definition at the end of Lab6.c

10. In main replace the function call "InitSystem()" by "InitSysCtrl()".

11. Since "InitSysCtrl()" disables the watchdog, but we would like the watchdog to be
active, we have to re-enable the watchdog. Add the following lines just after the call of
function "InitSysCtrl()":

EALLOW;
SysCtrlRegs.WDCR = 0x00AF;
EDIS;

 Lab 6: CPU Timer 0 Interrupt and 4 LEDs

F2833x - Interrupts 6 - 21

Build, Load and Test
12. Click the “Rebuild Active Project ” button or perform:

Project  Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as ne-
cessary.

13. Load the output file in the debugger session:

Target  Debug Active Project

and switch into the “Debug” perspective.

14. Verify that in the debug perspective the window of the source code “Lab6.c” is high-
lighted and that the blue arrow for the current Program Counter position is placed under
the line “void main(void)”.

15. Perform a real time run.

Target  Run

16. Verify that the LEDs behave as expected. In this case you have successfully finished the

first part of Lab6. Halt the Device (Target  Halt). Switch back into the “C/C++” –
Perspective.

Modify Source Code - Part 2

17. At the beginning of “Lab6.c” add a function prototype for a new interrupt service func-

tion for CPU Timer 0:

interrupt void cpu_timer0_isr(void);

18. In “main()”, directly after the function call "Gpio_select()", add a function call to:

InitPieCtrl();

This is a function that is provided by TI’s header file examples. We use this function “as it
is”. The purpose of this function is to clear all pending PIE-Interrupts and to disable all PIE
interrupt lines. This is a useful step when we would like to initialize the PIE-unit. Function
“InitPieCtrl ()” is defined in the source code file “DSP2833x_PieCtrl.c”; we have to link this
file to our project:

19. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link to project:

DSP2833x_PieCtrl.c

Also, add an external function prototype at the beginning of Lab6.c:

 extern void InitPieCtrl(void);

Lab 6: CPU Timer 0 Interrupt and 4 LEDs

6 - 22 F2833x - Interrupts

20. Inside “main()”, directly after the function call “InitPieCtrl();”, add a function call to:

 InitPieVectTable();

This function will initialize the PIE-memory to an initial state. It uses a predefined
interrupt table “PieVectTableInit()” - defined in source code file “DSP2833x_PieVect.c”
and copies this table to the global variable “PieVectTable” - defined in
“DSP2833x_GlobalVariableDefs.c”. Variable “PieVectTable” is linked to the physical
memory of the PIE area.

Also, add an external function prototype at the beginning of Lab6.c:

 extern void InitPieVectTable(void);

To be able to use “InitPieVectTable()”, we need to link two more code files to our
project:

21. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source, link to project:

 DSP2833x_PieVect.c and

 DSP2833x_DefaultIsr.c

The code file “DSP2833x_DefaultIsr.c” will add a set of interrupt service routines to our
project. When you open and inspect this file, you will find that all ISRs consist of an
endless for-loop and a specific assembler instruction “ESTOP0”. This instruction
behaves like a software breakpoint. This is a security measure. Remember, at this point
we have disabled all PIE interrupts. If we were to now run the program, we should never
see an interrupt request. If, for some reason, for example a power supply glitch, noise
interference or just a software bug, the DSP calls an interrupt service routine, then we
can catch this event by the “ESTOP0” break.

22. Now we have to re-map the entry for CPU-Timer0 Interrupt Service from the
“ESTOP0” operation to a real interrupt service. Editing the source code of TI’s code
“DSP2833x_DefaultIsr.c” would be one way to do this. Of course this would not be
a wise decision, because we would modify the original code for this single Lab
exercise. SO DO NOT DO THAT! A much better way is to modify the entry for
CPU-Timer0 Interrupt Service directly inside the PIE-memory. This is done in main
by adding the next 3 lines after the function call of “InitPieVectTable();”:

EALLOW;
PieVectTable.TINT0 = &cpu_timer0_isr;
EDIS;

EALLOW and EDIS are two macros to enable and disable the access to a group of
protected registers; the PIE is part of this area. The name of our own interrupt service
routine for Timer0 is “cpu_timer0_isr()”. We created the prototype statement earlier in
the procedure for this Lab. Please be sure to use the same name as you used in the
prototype statement!

23. Inside “main()”, directly after the re-mapping instructions from above, add the
function call “InitCpuTimers();”. This function will set the core Timer0 to a known
state and it will stop this timer.

 InitCpuTimers();

 Lab 6: CPU Timer 0 Interrupt and 4 LEDs

F2833x - Interrupts 6 - 23

Also, add an external function prototype at the beginning of Lab6.c:

 extern void InitCpuTimers(void);

Again, we use a predefined function. To do so, we have to link the source code file
“DSP2833x_CpuTimers.c” to our project.

24. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link to project:

 DSP2833x_CpuTimers.c

25. Now we have to initialize Timer0 to generate a period of 100ms. TI has provided a
function “ConfigCpuTimer()”. All we have to do is to pass 3 arguments to this function.
Parameter 1 is the address of the core timer structure, e.g. “CpuTimer0”; Parameter 2 is
the internal speed of the DSP in MHz, e.g. 150 for 150MHz; Parameter 3 is the period
time for the timer overflow in microseconds, e.g. 100000 for 100 milliseconds. The
following function call will setup Timer0 to a 100ms period:

 ConfigCpuTimer(&CpuTimer0, 150, 100000);

Add this function call in “main()” directly after the line “InitCpuTimers();”

Again, add an external function prototype at the beginning of Lab6.c:

 extern void ConfigCpuTimer(struct CPUTIMER_VARS *, float, float);

26. Before we can start timer0 we have to enable its interrupt masks. We have to take care
of 3 levels to enable an individual interrupt source. Level 1 is the PIE unit. To enable it,
we have to set bit 7 of PIEIER1 to 1. Why? Because the Timer0 interrupt is directly
connected to group INT1, Bit7. Add the following line to your code after the call of
“ConfigCpuTimer()” in step 25:

PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

27. Next, enable interrupt core line 1 (INT1). Modify the register IER accordingly.

IER |= 1;

28. Next, enable control – interrupts (EINT) and debug – interrupts (ERTM) globally. This
is done by adding the two code macros:

EINT; and
ERTM;

29. Finally, we have to start Timer 0. The bit TSS inside register TCR will do the job. Add:

CpuTimer0Regs.TCR.bit.TSS = 0;

30. After the end of “main()”, we have to add our new interrupt service routine
“cpu_timer0_isr()”. Remember, we have prototyped this function at the beginning of our
modifications. Now we have to add its body. Inside this function we have to perform two
activities:

1st - increment the interrupt counter “CpuTimer0.InterruptCount”. This way we
will have global information about how often this 100 milliseconds task was called.

Lab 6: CPU Timer 0 Interrupt and 4 LEDs

6 - 24 F2833x - Interrupts

2nd - acknowledge the interrupt service as the last line before return. This step is
necessary to re-enable the next Timer 0 interrupt service. It is done by:

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

31. Now we are almost done. Inside the endless while(1) loop of “main()” we have to delete
the function call: “delay_loop(1000000);”. We do not need this function any longer; we
can also delete its prototype at the top of our code and its function body, which is still
present after the code of “main()”.

32. Inside the endless loop “while(1)“, after the “if-else”-construct, we have to implement a
statement to wait until the global variable “CpuTimer0.InterruptCount” has been
incremented to 1, which corresponds to the interval of 100 milliseconds. Remember to
reset the variable “CpuTimer0.InterruptCount” to zero when you continue after the wait
statement. Note: The global variable “CpuTimer0.InterruptCount” has been defined in
the file “DSP2833x_CpuTimers.c” as a global and volatile variable, which also has been
initialized to zero when we called the function “ConfigCpuTimer()”.

33. Done?

34. No, not quite! We forgot the watchdog! It is still alive and we removed the service
instructions together with the function “delay_loop()”. So we have to add the watchdog
reset sequence somewhere into our modified source code. Where? A good strategy is to
service the watchdog not in a single portion of our code. Our code now consists of two
independent tasks: the while-loop of main and the interrupt service routine of timer 0.
Place one of the two reset instructions for WDKEY into the ISR and the other one into
the while(1)-loop of main.

If you are a little bit fearful about being bitten by the watchdog, then disable it first; try
to get your code running without it. Later, when the code works as expected, you can re-
think the watchdog service part again.

Build, Load and Test
35. Click the “Rebuild Active Project ” button or perform:

Project  Rebuild All (Alt +B)

If you get errors or warnings debug as necessary.

36. Load the output file in the debugger session:

Target  Debug Active Project and switch into the “Debug” perspective.

37. Perform a real time run.

Target  Run

38. Verify that the LEDs behave as expected. You have successfully finished Lab6. Halt the

Device (Target  Halt). Switch back into the “C/C++” – Perspective.
End of Lab6.

	Interrupt System
	Introduction
	Module Topics
	F2833x Core Interrupt Lines
	The F2833x RESET
	Reset Bootloader
	Interrupt Sources
	Maskable Interrupt Processing
	Peripheral Interrupt Expansion
	Hardware Interrupt Response
	F2833x CPU Timers
	Summary:
	Lab 6: CPU Timer 0 Interrupt and 4 LEDs
	Objective
	Procedure
	Create a Project File
	Project Build Options
	Modify the Source Code
	Build, Load and Test
	Modify Source Code - Part 2
	Build, Load and Test

