Interrupt System

Introduction

This module is used to explain the interrupt system of the F2833x Digital Signal Controller.
So what is an interrupt?

Before we go into the technical terms, let us start with an analogy: Think of a nice evening
and you are working at your desk, preparing the laboratory experiments for the next day.
Suddenly the phone rings, you answer it and then you get back to work (after the
interruption). The shorter the phone call, the better! Of course, if the call comes from your
girlfriend you might have to re-think your next step due to the “priority” of the
interruption... Anyway, sooner or later you will have to get back to the preparation of the
task for the next day; otherwise you might not pass the next exam.

This analogy touches some basic definitions for interrupts;
e interrupts appear “suddenly”: in technical terms, this is called “asynchronous”
e interrupts might be more or less important: they have a “priority”
o they must be dealt with before the phone stops ringing: “immediately”

o the laboratory preparation should be continued after the call - the “interrupted task is
resumed”

o the time spent to search the phone should be as small as possible — “interrupt
latency”.

o after the call, you should continue your work from the exact place where you left it -
“context save” and “context restore”

To summarize the technical terms:

Interrupts are defined as asynchronous events, generated by an external or internal hardware
unit. An event causes the controller to interrupt the execution of the current program and to
start a service routine, which is dedicated to this event. After the execution of this interrupt
service routine, the program that was interrupted will be resumed.

The quicker a CPU performs this “task-switch”, the more this controller is suited for real-
time control. After going through this chapter, you will be able to understand the F2833x
interrupt system.

At the end of this chapter, we will perform an exercise with a program controlled by
interrupts that uses one of the 3 core timers of the CPU. The core timer’s period interrupt
will be used to perform a periodic task.

F2833x - Interrupts 6-1

Module Topics

Module Topics

QLT 0T o1 YA =] o SOOI RR 6-1
Tl [FTed 1T] FO OSSOSO SRS TSTR 6-1
T T LU T o] oSS PPRRP 6-2
F2833X COre INTEITUPL LINES...c.viitiiieieeeieecte e st e st e ettt et e et e tesbesteeseenae e e nteseesrenrenneaneas 6-3
THE F2833X RESET ...ttt bbbt bbbkttt bbbt nee s 6-4
RESEE BOOHIOAURTeieieiiite et b e et b ettt b et b e et sbe et sbe e ebeanes 6-5
INEEITUPE SOUICES. ...ttt ettt etttk e b ekt e b e e bt e bt et e e e e e e he e ebe e bt et e aabeeabenbeenbeesbeenbennneas 6-9
Maskable INterrupt PrOCESSINGoiiiiiiiieie ittt ettt seesb bbb 6-10
Peripheral INterrupt EXPANSIONoociiiiiie et se bbbt 6-12
Hardware INtErrUPt RESPONSEcoui ettt sttt e e bt b e bt ettt seesbe b e b saeebeene e 6-15
F2833X CPU TIMIS. c.cieetieeeite ettt ettt bbbt h et b et e b e b e bt b e et e m b e b e sb e sb e e beeb e e nees b e sbe b e nbesaeebeane e 6-16
SUMIMIATY Z ettt ettt h e bt b stk e eh e e b e e bt e bt 4R bt £ he e eh e e eb £ e bt em ke eh b e eh b e nb e e eb e e ke e b e e e e ebneereenis 6-18
Lab 6: CPU Timer 0 INterrupt @nd 4 LEDSc.ccvooveieiineie e st sie et snenneens 6-19

(@] 4] 1=Tod 11 OSSOSOV UR TSR 6-19
PIOCEUUIE ...ttt bbb bbbtttk b bbb bbbt e bttt n et 6-19
Create @ ProOJECt FIlE.....ooiiiie et ne s 6-19
(o] T=To 2107 o @] o) T PSPPSR 6-20
MOiTY the SOUICE COUEoiuiieieicieieie sttt st sre e s e e e e e seesrenreaneeneas 6-20
BUITA, LOBA AN TESL... vttt bbbt bt bbbt e b e b sbe st e eneeneas 6-21
MOdiTy SOUICE COUR = PAIT 2 ...ttt ettt sbe bbb eneas 6-21
BUIA, LOBA AN TEST.....ecuee ettt bbbt bbb et b e b sbesbesaeeneas 6-24

6-2 F2833x - Interrupts

F2833x Core Interrupt Lines

F2833x Core Interrupt Lines

The core interrupt system of the F2833x consists of 16 interrupt lines; two of them are called
“Non-Maskable” (RESET, NMI). The other 14 lines are ‘maskable’ - this means the
programmer can allow or disable interrupts from these 14 lines.

What does the phrase “mask” stand for?

A “mask” is a binary combination of ‘1" and ‘0’. A ‘1’ stands for an enabled interrupt line, a
‘0’ for a disabled one. By loading the mask into register “IER” we can select, which interrupt
lines will be enabled to request an interrupt service from the CPU.

For a “non-maskable” interrupt, we cannot disable an interrupt request. Once the signal line
goes active, the running program will be suspended and the dedicated interrupt service
routine will start. Generally, “non-maskable” interrupts are used for high priority and safety
based events e.g. emergency stop.

F2833x Core Interrupt Lines

RS [—
NMI ——
INTL [——

LUy ¢ 2non-maskable
INT3 [«—

T2 interrupts (RS,
Fogazy INTS “selectable” NMI)

INT6 *— & 14 maskable interrupts
CORE INT7 f—— (INT1 -1INT14)

INT8 [«——

INTO [—
INT10 *+~—
INT11 +~—
INT12 +~—
INT13 *+~—
INT14 «~—

All 16 lines are connected to a table of “interrupt vectors’, which consists of 32 bit memory
locations per interrupt. It is the responsibility of the programmer to fill this table with the
start addresses of dedicated interrupt service routines. However, in case of the F2833x, this
table is in ROM and filled with addresses, defined by Texas Instruments in such a way, that
“RESET (RS)” points to address 0x00 0040, NMI to address 0x00 0042 an so on. All these
addresses are in RAM, so the programmer has to fit a single 32-bit instruction into these
memory locations.

F2833x - Interrupts 6-3

The F2833x RESET

The F2833x RESET

A high to low transition at the external “RESET (RS)” pin will cause a reset of the Digital
Signal Controller. The next rising edge of RS will force the CPU to read the code start
address from address 0x3F FFCO in code memory. This event is not an ‘interrupt’ in the
sense that the old program will be resumed. A reset is generated during powering up the
device.

Another source for a reset is the overflow of the watchdog timer. To inform all other external
devices that the CPU has acknowledged a reset, the device itself drives the reset pin active
low. This means that the reset pin must be bi-directional!

F2833x Reset Sources

F2833x Core
Watchdog Timer

RS

RS pin active

To RS pin

Reset will force the controller not only to start from address 0x3F FFCO, but it will also clear
all internal operation registers, reset a group of CPU-Flags to initial states and disable all 16
interrupt lines. We will not go into details about all the flags and registers for now, please
refer to the data sheet for the F2833x.

6-4 F2833x - Interrupts

Reset Bootloader

Reset Bootloader

After a RESET signal has been released, the CPU starts the execution of a first code section
in ROM, called “boot loader”. This function determines the next step, depending on the

status of four GP1O -pins (GP1087, 86, 85 and 84).

Reset — Bootloader

Reset

OBJMODE =0 AMODE =0
ENPIE=0 INTM=1

Bootloader sets
OBJMODE =1

Reset vector fetched
from boot ROM

AMODE =0

Boot determined by
state of GPIO pins

0x3F FFCO
Execution Bootloading
Entry Point Routines
FLASH SCI-A / SPI-A
MO SARAM 12C
OTP eCAN-A
XINTF McBSP-A
GPIO / XINTF

Bootloader Options

GPIO pins
87/ 86/ 85/ 84/
XA15 XA14 XA13 XA12

1 1 1 1

O 0O 0O R RPRREPRRERPREP P R
P PR PR O O0OOOLRBR R
OO Fr PR OORPRPROOLR
OFr OFr OFRP OFP OFR O

jump to FLASH address 0x33 FFF6

bootload code to on-chip memory via SCI-A

bootload external EEPROM to on-chip memory via SPI-A
bootload external EEPROM to on-chip memory via I12C
Call CAN_Boot to load from eCAN-A mailbox 1

bootload code to on-chip memory via McBSP-A

jump to XINTF Zone 6 address 0x10 0000 for 16-bit data
jump to XINTF Zone 6 address 0x10 0000 for 32-bit data
jump to OTP address 0x38 0400

bootload code to on-chip memory via GPIO port A (parallel)
bootload code to on-chip memory via XINTF (parallel)
jump to MO SARAM address 0x00 0000

F2833x - Interrupts

Reset Bootloader

The F28335ControlCard pulls all four GPIO - input lines to “1’, so by default the start option
“jump to FLASH address 0x3F FFF6” is selected. This will force the controller to continue
the code sequence in FLASH memory. However, we do not currently have anything
programmed into FLASH memory. So why did all of our previous labs work? The answer is:
we over-ruled the hardware - sequence and forced the DSC into our own code entry point by
using three of Code Composer Studio Debug commands:

e Reset CPU - force the DSC to Reset Address 0x3F FFCO

e Restart - force the DSC directly to code entry point
“c_int00”, bypassing the hardware start sequence

e Go Main - finish the “c_int00”, call “main()” and stop at the
first instruction of “main()”.

With the help of jumper J18 (SCI - Boot) on the Peripheral Explorer Board, we could change
the hardware sequence. If this jumper is closed, GP1084 will be ‘0’ and the start sequence is:
“boot load code to on-chip memory via SCI-A”. In this operation mode, the chip would wait
for a serial communication stream from a host, which is of no use for us for now. This mode
will be used in chapter 15.

The next flowchart summarises the reset code flow for all start options of the F2833x.

Reset Code Flow - Summary

0x00 0000 0x00 0000
MO SARAM (1Kw)

XINTF Zone 6
0x38 0400 OTP (1Kw) (x16 / x32)

0x10 0000

0%30 0000 |r
. FLASH (256Kw)
S 0x33 FFF6

Execution Entry
Point Determined -+

0x3F E000 | Boot ROM (8Kw)

Boot Code By GPIO Pins
0x3F FOCE I
BROM vector (64w) H
RESET BB Ox3F FFCO| Ox3F FOCE Bootloading
Routines

(SCI-A, SPI-A, 12C,
....................... eCAN-A, McBSP-A
GPIO, XINTF)

6-6

The option ‘Flash Entry’ is usually used at the end of a project development phase when the
software flow is bug free. To load a program into the flash you will need to use a specific
program, available either as Code Composer Studio plug in or as a stand-alone tool. For our
current lab exercises we will refrain from loading (or “burning’) the flash memory.

The boot loader options via serial interface (SPI1/ SCI / 12C / eCAN / McBSP) or parallel
port (GP1O / XINTF) are usually used to download the executable code from an external

6-6 F2833x - Interrupts

Reset Bootloader

host or to update the contents of the flash memory. For these modes, please refer to chapters
15 and 16.

OTP-memory is a ‘one time programmable’ memory; there is no second chance to fit code
into this non-volatile memory. This option is usually used for company specific startup
procedures only. Again, to program this portion of memory you would need to use a Code
Composer Studio plug in. You might assess your experimental code to be worth storing
forever, but for sure your teacher will not. So, PLEASE do not upset your supervisor by
using this option, he want to use the boards for future classes!

The next two slides show the status of important core registers and status bits after a reset.

Register Bits Initialized at Reset

Reqister bits defined by reset

PC 0x3F FFCO PC loaded with reset vector
ACC 0x0000 0000 Accumulator cleared

XARO - XAR7 0x0000 0000 Auxiliary Registers

DP 0x0000 Data Page pointer points to page 0
P 0x0000 0000 P register cleared

XT 0x0000 0000 XT register cleared

SP 0x0400 Stack Pointer to address 0400
RPC 0x00 0000 Return Program Counter cleared
IFR 0x0000 no pending interrupts

IER 0x0000 maskable interrupts disabled
DBGIER 0x0000 debug interrupts disabled

All internal math registers (ACC, P, XT) and auxiliary registers (XARO to XAR7) are
cleared, interrupts are disabled (IER) and pending interrupts, which have been requested
before RESET, are cancelled (IFR). The stack pointer (SP) is initialized to address 0x400
and the program counter (PC) points to hardware start address 0x3F FFCO.

F2833x - Interrupts 6-7

Reset Bootloader

The two registers STO and ST1 combine all control and status flags of the CPU. Slide 6-8
explains the reset status of all the bits. STO contains all math bits such as zero (2), carry (C)
and negative (N), whereas ST1 covers some more general operating mode bits.

We will postpone the discussion of the individual meaning of the bits until later chapters.

Control Bits Initialized at Reset

Status Register 0 (ST0)

SXM=0 Sign extension off

OVM =0 Overflow mode off N=0 negative flag
TC=0 test/control flag V=0 overflow bit

Cc=0 carry bit PM =000 set to left-shift-by-1
Z=0 zero flag OVC =00 0000 overflow counter
Status Register 1 (ST1)

INTM =1 Disable all maskable interrupts - global

DBGM =1 Emulation access/events disabled

PAGEO =0 Stack addressing mode enabled/Direct addressing disabled
VMAP =1 Interrupt vectors mapped to PM 0x3F FFCO — Ox3F FFFF
SPA=0 stack pointer even address alignment status bit

LOOP =0 Loop instruction status bit

EALLOW =0 emulation access enable bit
IDLESTAT =0 Idle instruction status bit
AMODE =0 C27x/C28x addressing mode
OBJMODE =0 C27x object mode
MOM1MAP =1 mapping mode bit

XF=0 XF status bit

ARP =0 ARP points to ARO

F2833x - Interrupts

Interrupt Sources

Interrupt Sources

As you can see from the next slide the F2833x has a large number of interrupt sources (96 at
the moment) but only 14 maskable interrupt inputs. The question is: How do we handle this
‘bottleneck’?

Obviously we have to use a single INT-line for multiple sources. Each interrupt line is
connected to its interrupt vector, a 32-bit memory space inside the vector table. This memory
space holds the address for the interrupt service routine. In case of multiple interrupts this
service routine must be used for all incoming interrupt requests. This technique forces the
programmer to use a software based separation method on entry of this service routine. This
method will cost additional time that is often not available in real time applications. So how
can we speed up this interrupt service?

Interrupt Sources

Internal Sources

TINT2
TINTO ————] XRS
ePWM, eCAP, - NMI
eQEP, ADC, SCI, et INTL
SPI, 12C, eCAN, P INT2

Interrupt
MISIERSIF, (1R 1D Expansion) a INT3

External Sources i
__________ INT12
: INT13
XINT1 = XINT7 —+———
— INT14
TZx !
XRS :
XNMI_XINT13 —

6-9

The answer from Texas Instruments is sweet, they simply used a pie. PIE stands for
Peripheral Interrupt Expansion unit.

This unit ‘expands’ the vector address table into a larger scale, reserving individual 32 bit
entries for each of the 96 possible interrupt sources. An interrupt response with the help of
this unit is much faster than without it. To use the PIE we will have to re-map the location of
the interrupt vector table to address Ox 00 0DO0O. This is in volatile memory! Before we can
use this memory we will have to initialise it.

Do not worry about the PIE-procedure for the moment, we will exercise all this during Lab6.

F2833x - Interrupts 6-9

Maskable Interrupt Processing

Maskable Interrupt Processing

Before we dive into the PIE-registers, we have to discuss the remaining path from an
interrupt request to its acknowledgement by the DSC. As you can see from the next slide, we
have to close two more switches to allow an interrupt request.

Maskable Interrupt Processing
Conceptual Core Overview

Core (IFR) (IER) (INTM)

Interrupt “Latch” “Switch” “Global Switch”

INT1 [1] -

iNT2. ——{0] o . F2833x
L] L] L] °
. . . Core
L] L] L]

INT14 ——[1] e

¢ Avalid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

¢ If the individual and global switches are turned “on” the
interrupt reaches the core

Interrupt Flag Register (IFR)
3 12 11

15 14 1 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INTS | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INTL |

Pending: IFRg;=1
Absent : IFR ;=0

[** Manual setting/clearing IFR ***/

extern cregister volatile unsigned int IFR;
IFR |= 0x0008; //set INT4 in IFR
IFR &= OxFFF7; llclear INT4 in IFR

& Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
< If interrupt occurs when writing IFR, interrupt has priority

¢ |IFR(bit) cleared when interrupt is acknowledged by CPU

& Register cleared on reset

6-10 F2833x - Interrupts

Maskable Interrupt Processing

Interrupt Enable Register (IER)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INTS | INT4 | INT3 | INT2 | INTL |

Enable: Set IER g =1
Disable: Clear IERg;=0

[*** Interrupt Enable Register ***/

extern cregister volatile unsigned int IER;
IER |=0x0008; /lenable INT4 in IER
IER &= OXFFF7; /[disable INT4 in IER

& Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

¢ Register cleared on reset

Interrupt Global Mask Bit

Bit 0
ST1 INTM

¢ INTM used to globally enable/disable interrupts:
+ Enable:INTM =0
« Disable: INTM =1 (reset value)

¢ INTM modified from assembly code only:

[*** Global Interrupts ***/
asm(* CLRC INTM"); /lenable global interrupts
asm(* SETC INTM”); /l/disable global interrupts

F2833x - Interrupts 6-11

Peripheral Interrupt Expansion

Peripheral Interrupt Expansion

All 96 possible sources are grouped into 12 PIE-lines, 8 sources per line. To enable/disable
individual sources we have to program another group of registers: ‘PIEIFRx’ and ‘PIEIERX’.

Peripheral Interrupt Expansion - PIE

Interrupt Group 1
PIEIFR1 PIEIER1

INTL1.x interrupt group |NT1_1/_

INT2.x interrupt grou
. Pralenp |NT1.2_.@_/_
INT3.x interrupt group . TNTI

INT4.x interrupt group - o
INT5.x interrupt group :
INT6.x interrupt group
INT7.x interrupt group

PIE module for 96 Interrupts

96

18

28x Core Interrupt logic

INT8.x interrupt group

INT9.x interrupt group INTL—INT 12
INT10.x interrupt group 12 Interrupts E 5 E 28x
=1 |=1| |Z] |Core

Peripheral Interrupts 12x8

INT11.x interrupt group

|| INT12.x interrupt group :q

INT13 (TINTL/XINT13)
INT14 (TINT2)
NMI

PIE Registers

PIEIFRx register (x =1to 12)
15-8 7 6 5 4 3 2 1 0

reserved INTX.8| INTX.7| INTX.6| INTX.5[INTX.4 [INTX.3[INTX.2| INTX.1

PIEIERx register (x =1t0 12)
15-8 7 6 5 4 3 2 1 0

reserved INTX.8| INTX.7| INTX.6| INTX.5[INTX.4 [INTX.3[INTX.2| INTX.1

PIE Interrupt Acknowledge Register (PIEACK)
6 5

15-12 11 10 9 8 7 4 3 2 1 0

reserved PIEACKXx

PIECTRL register 15-1 0
PIEVECT ENPIE

#include “DSP2833_Device.h”
PieCtrIRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrIRegs.PIEIER3.bit.INTx5 = 1; //enable CAPINT1 in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrIRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

All interrupt sources are connected to interrupt lines according to this assignment table:

6-12 F2833x - Interrupts

Peripheral Interrupt Expansion

INTX.8 INTX.7 INTX.6 INTX.5 INTx.4 INTX.3 INTX.2 INTx.1
INTL |WAKEINT| TINTO | ADCINT | XINT2 XINTL SEQ2INT | SEQ1INT
INT2 EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWM1
_TZINT | _TZINT | _TZINT | _TZINT | _TZINT | _TZINT
INT3 EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWM1
_INT _INT _INT _INT _INT _INT
INT4 ECAP6 | ECAP5 | ECAP4 | ECAP3 | ECAP2 | ECAP1
_INT _INT _INT _INT _INT _INT
EQEP2 | EQEP1
INTS CINT CINT
INT6 MXINTA | MRINTA | MXINTB | MRINTB [SPITXINTA|SPIRXINTA
INT7 DINTCH6 | DINTCH5 | DINTCH4 | DINTCH3 | DINTCH2 | DINTCH1
INT8 SCITXINTCSCIRXINTC I2CINT2A | I2CINT1A
ECAN1 | ECANO | ECAN1 | ECANO
INT9 “INTB “INTB ~INTA “(NTA. [SCITXINTB SCIRXINTB|SCITXINTAISCIRXINTA
INT10
INT11
INT12 LUF LVF XINT? XINT6 XINT5 XINT4 XINT3
6-16

Examples: ADCINT = INT1.6; T2PINT = INT3.1; SCITXINTA = INT9.2

The vector table location at reset is:

Vector Offset
RESET 00
INT1 02
INT2 04
INT3 06
INT4 08
INT5 0A
INT6 (0]03
INT7 OE
INT8 10
INT9 12
INT10 14
INT11 16
INT12 18
INT13 1A
INT14 1C
DATALOG 1E
RTOSINT 20
EMUINT 22
NMI 24
ILLEGAL 26
USER 1-12 28-3E

Default Interrupt Vector Table at Reset

Memory

Default Vector Table
Re-mapped when

ENPIE=1

PIE Vectors
256w

0x00 0D00

BROM Vectors
64w
ENPIESC Ox3F FFFF

OX3F FECO

PieVectTablelnit{ }
Used to initialize PIE vectors

The PIE re-maps the location like this:

F2833x - Interrupts

Peripheral Interrupt Expansion

PIE Vector Mapping eneie=1)
Vector name |PIE vector address PIE vector Description
not used 0x00 0D00 Reset vector (never fetched here)
r— INT1 0x00 0D02 INT1 re-mapped to PIE group below
| [I S | re-mapped to PIE group below
| INT12 0x00 0D18 INT12 re-mapped to PIE group below
| INT13 0x00 OD1A XINT13 Interrupt or CPU Timer 1 (RTOS)
| INT14 0x00 0D1C CPU Timer 2 (RTOS)
| DATALOG 0x00 0D1D CPU Data logging Interrupt
: USER12 0x00 OD3E User-defined Trap
—> INT1.1 0x00 0D40 PIEINT1.1 Interrupt Vector
INT1.8 0x00 OD4E PIEINT1.8 Interrupt Vector
INT12.1 0x00 ODFO PIEINT12.1 Interrupt Vector
INT12.8 0x00 ODFE PIEINT12.8 Interrupt Vector
+ PIE vector location — 0x00 0D00 — 256 words in data memory
o RESET and INT1-INT12 vector locations are re-mapped
+ CPU vectors are re-mapped to 0x00 0D0O0 in data memory 6-18

As you can see from Slide 6-18, the addresses 0x00 0D40 to 0x00 ODFF are used as the
expansion area. Now we do have 32 bits for each individual interrupt vector PIEINT1.1 to
PIEINT12.8.

Device Vector Mapping - Summary

RESET
<0x3F FFCO>
Reset Vector <Ox3F F9A9> = Boot Code

Flash Entry Point <0x33 FFF6 >= LB _c_int00
User Code Start < _c_int00 >

_c_int00:

CALL main(Q)
Initialization()
{

N Load PIE Vectors
mainQ Enable the PIE
{ initialization(); Enable PIEIER

... Enable Core IER
} Enable INTM
b

6-14 F2833x - Interrupts

Hardware Interrupt Response

Hardware Interrupt Response

After an interrupt has been acknowledged by the CPU, an automatic hardware context switch
sequence is started. It includes an auto-save of 14 internal registers with the all-important

internal control and status bits, and loads the program counter (PC) with the address of the
ISR.

Interrupt Response - Hardware Sequence

CPU Action Description

Registers — stack 14 Register words auto saved

0 - IFR (bit) Clear corresponding IFR bit

0 — IER (bit) Clear corresponding IER bit

1 — INTM/DBGM Disable global ints/debug events
Vector —» PC Loads PC with int vector address
Clear other status bits | Clear LOOP, EALLOW, IDLESTAT

Note: some actions occur simultaneously, none are interruptible

T STO
AH AL
PH PL
AR1 ARO
DP ST1
DBSTAT| IER
PC(msw)| PC(Isw)
6-20
Interrupt Latency
------------ ‘ Latency
ext. Internal
interrupt interrupt Assumes ISR in
occurs occurs internal RAM
here | here | R
1 7 T >
e ©@ © © © @ ™
- ISR
Sync ext. Recognition Getvector PF1/PF2/D1 Save D2/R1/R2 of i
signal delay (3) and (3 reg. of ISR return ISR g‘xsérclfftgg”
- SP all%nment palrz instruction address instruction gn next
interrupt @ SRR (@ ;ea%e%?"s cycle
only)
Above is for PIE enabled or disabled
¢ Minimum latency (to when real work occurs in the ISR):
» Internal interrupts: 14 cycles
» External interrupts: 16 cycles
& Maximum latency: Depends on wait states, ready, INTM, etc.
6-21

F2833x - Interrupts 6-15

F2833x CPU Timers

F2833x CPU Timers

The F2833x features 3 independent 32-bit core timers. The block diagram for one timer is
shown below in Slide 6-22:

F2833x CPU Timers

RESET

Timer Reload

16 - Bit divide down i .
TDDRH:TDDR 3%RBDIﬁ:%e|£Bd

A

SYSCLKOUT
16 - Bit prescaler 32 - Bit counter
PSCH:PSC TIMH:TIM
TCR.4 1
BORROW J

INT

As you can see, the clock source is the internal clock “SYSCLKOUT”, which is usually
150MHz, assuming an external oscillator of 30MHz and a PLL-ratio of 10/2. Once the timer
is enabled (TCR-bit 4 = 0), the incoming clock counts down a 16-bit prescaler (PSCH: PSC).
On underflow, its borrow signal is used to count down the 32-bit counter (TIMH: TIM). At
the end, when this timer underflows, an interrupt request is transferred to the CPU.

The 16-bit divide down register (TDDRH: TDDR) is used as a reload register for the
prescaler. Each times the prescaler underflows, the value from the divide down-register is
reloaded into the prescaler. A similar reload function for the counter is performed by the 32-
bit period register (PRDH_PRD).

Timer 1 and Timer 2 are usually used by Texas Instruments for the real time operation
system “DSP/BIOS”, whereas Timer O is generally free for general usage. Lab 6 will use
Timer 0. This will not only preserve Timer 1 and 2 for later use together with DSP/BIOS, but
also help us to understand the PIE-unit, because Timer O is the only timer of the CPU that
goes through the PIE, as can be seen in the following slide, Slide 6-23:

6-16 F2833x - Interrupts

F2833x CPU Timers

F2833x Timer Interrupt System

PIE unit
TINTO -
INT1.7 interrupt | ,
28x Core Interrupt logic
INT1
D ——
TINT1 / XINT13 INT13 o o E 28x
[T T S
= |~ <| |Core
INT14
TINT2

A timer unit is usually initialized by a set of registers. In Lab6, we will perform an exercise
with the registers of CPU Timer 0. However, instead of setting every single bit by ourselves,
we will use a hardware abstraction function, for which we only have to specify the desired
timer period and the clock speed of our processor. This function is provided by Texas
Instruments as part of a set of such functions.

F2833x Timer Registers
Address Register Name
0x0000 0C00 TIMEROTIM Timer 0, Counter Register Low
0x0000 0C01 TIMEROTIMH Timer 0, Counter Register High
0x0000 0C02 TIMEROPRD Timer 0, Period Register Low
0x0000 0C03 TIMEROPRDH Timer 0, Period Register High
0x0000 0C04 TIMEROTCR Timer 0, Control Register
0x0000 0C06 TIMEROTPR Timer 0, Prescaler Register
0x0000 0C07 TIMEROTPRH Timer 0, Prescaler Register High
0x0000 0C08 TIMERITIM Timer 1, Counter Register Low
0x0000 0C09 TIMERITIMH Timer 1, Counter Register High
0x0000 0COA TIMER1PRD Timer 1, Period Register Low
0x0000 0C0OB TIMER1PRDH Timer 1, Period Register High
0x0000 0COC TIMERITCR Timer 1, Control Register
0x0000 0COD TIMERITPR Timer 1, Prescaler Register
0x0000 OCOF TIMERITPRH Timer 1, Prescaler Register High
0x0000 0C10 to 0C17 Timer 2 Registers ; same layout as above

6-24
F2833x - Interrupts 6-17

It is worthwhile to inspect the control register, as this is the most important register of a timer
unit.

F2833x Timer Control Registers
TIMERXTCR

Emulator Interaction
1x = run free

Timer Interrupt Flag
Write 1 clear bit

Timer Interrupt Enable

Write 1 to enable INT

\

15 14

T

13 12 11 10

9

TIF TIE

reserved

reserved | FREE SOFT

reserved

reserved

7 6

5 4 3 2

1

0

reserved

reserved

reserved

TRB TSS reserved

reserved

reserved

Timer Reload Bit
1 =reload

Timer Stop Status
0 =start/ 1 =stop

Summary:

Sounds pretty complicated, doesn’t it? Well, nothing is better suited to understand the PIE
unit than a lab exercise. In Lab 6 you will add the initialization of the PIE vector table to re-
map the vector table to address 0x00 0DO0O0. You will also use CPU Timer 0 as a clock time
base for the source code of Lab 5_1 (“4 bit LED-counter”).

Remember, so far we generated time periods with a software-loop in function
“delay_loop()”. This was quite a waste of processor time, not very precise and poor
programming technique.

The procedure on the next page will guide you through the necessary steps to modify the
source code step by step.

Take your time, no pain no gain!

We will use functions, pre-defined by Texas Instruments as often as we can. This principle
will save us a lot of development time; we do not have to re-invent the wheel again and
again!

F2833x - Interrupts

Lab 6: CPU Timer O Interrupt and 4 LEDs

Lab 6: CPU Timer O Interrupt and 4 LEDs

Objective

The objective of this lab is to include a basic example of the interrupt system in the “LED-
counter” project of Lab5_1. Instead of using a software delay loop to generate the time
interval between the output steps, which is a poor use of processor time, we will now use one
of the 3 core CPU timers to do the job. One of the simplest tasks for a timer is to generate a
periodic interrupt request. We can use its interrupt service routine to perform periodic
activities OR to increment a global variable. This variable will then contain the number of
periods that are elapsed from the start of the program.

CPU Timer 0 is using the Peripheral Interrupt Expansion (PIE) Unit. This gives us the
opportunity to exercise this unit as well. Timer 1 and 2 bypass the PIE-unit and they are
usually reserved for Texas Instruments real-time operating system, called “DSP/BIOS”.
Therefore we implement Timer 0 as the core clock for this exercise.

Procedure

Create a Project File

1. Using Code Composer Studio, create a new project, called Lab6.pjt in
C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. Define the size of the C system stack. In the project window, right click at project
“Lab6” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

3. Open the file Lab5_1.c from C:\DSP2833x_V4\Labs\Lab5 and save it as Lab6.c in
C:\DSP2833x_V4\Labs\Lab6.

Next, we will take advantage of some useful files, which have been created and provided by
Texas Instruments and should be already available on your hard disk drive C as part of the
so-called "Header File" package (sprc530.zip). If not, ask a technician to install that package
for you!

4. Inthe C/C++ perspective, right click at project “Lab6” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

o DSP2833x_GlobalVariableDefs.c

This file defines all global variable names to access memory mapped peripheral
registers.

5. Repeat the “Link Files to Project” step. From C:\tidcs\c28\dsp2833x\v131\
DSP2833x_common\source add:

o DSP2833x_CodeStartBranch.asm
. DSP2833x_SysCitrl.c

F2833x - Interrupts 6-19

Lab 6: CPU Timer O Interrupt and 4 LEDs

o DSP2833x_ADC cal.asm
. DSP2833x_usDelay.asm
6. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link to project “Lab6”:

e DSP2833x_Headers _nonBIOS.cmd

This linker command file will connect all global register variables to their
corresponding physical addresses.

Project Build Options

7. We also have to extent the search path of the C-Compiler for include files. Right click at
project “Lab6” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Specify a preinclude file (—preinclude) | Browse .. |

Add dirto Hinclude search path (-include_path, -I) & W E '1}| IQ_r|
"$ICG TOOL ROOTVinclude"

Close the Property Window by Clicking <OK>.

Modify the Source Code

8. Open Lab6.c to edit: double click on “Lab6.c” inside the project window. At the start of
your code, add the function prototype statement for the external function "InitSysCtrl()":

extern void InitSysCtrl(void);

9. Remove the function prototype for the local function "InitSystem()" at the beginning and
the whole function definition at the end of Lab6.c

10. In main replace the function call "InitSystem()" by "InitSysCtrl()".

11. Since "InitSysCtrl()" disables the watchdog, but we would like the watchdog to be
active, we have to re-enable the watchdog. Add the following lines just after the call of
function "InitSysCtrl()":

EALLOW,;
SysCtrIRegs.WDCR = 0x00AF;
EDIS;

6-20 F2833x - Interrupts

Lab 6: CPU Timer O Interrupt and 4 LEDs

Build, Load and Test

12. Click the “Rebuild Active Project ” button or perform:
Project - Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as ne-
cessary.

13. Load the output file in the debugger session:
Target = Debug Active Project
and switch into the “Debug” perspective.

14. Verify that in the debug perspective the window of the source code “Lab6.c” is high-
lighted and that the blue arrow for the current Program Counter position is placed under
the line “void main(void)”.

15. Perform a real time run.
Target = Run

16. Verify that the LEDs behave as expected. In this case you have successfully finished the
first part of Lab6. Halt the Device (Target =» Halt). Switch back into the “C/C++” —
Perspective.

Modify Source Code - Part 2

17. At the beginning of “Lab6.c” add a function prototype for a new interrupt service func-
tion for CPU Timer 0:

interrupt void cpu_timer0_isr(void);

18. In “main()”, directly after the function call "Gpio_select()", add a function call to:
InitPieCtrl();

This is a function that is provided by TI’s header file examples. We use this function “as it
is”. The purpose of this function is to clear all pending PIE-Interrupts and to disable all PIE
interrupt lines. This is a useful step when we would like to initialize the PIE-unit. Function
“InitPieCtrl () is defined in the source code file “DSP2833x_PieCtrl.c”; we have to link this
file to our project:

19. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link to project:
DSP2833x_PieCtrl.c
Also, add an external function prototype at the beginning of Lab6.c:

extern void InitPieCtrl(void);

F2833x - Interrupts 6-21

Lab 6: CPU Timer O Interrupt and 4 LEDs

20. Inside “main()”, directly after the function call “InitPieCtrl();”, add a function call to:
InitPieVectTable();

This function will initialize the PIE-memory to an initial state. It uses a predefined
interrupt table “PieVectTablelnit()” - defined in source code file “DSP2833x_PieVect.c”
and copies this table to the global variable “PieVectTable” - defined in
“DSP2833x_GlobalVariableDefs.c”. Variable “PieVectTable” is linked to the physical
memory of the PIE area.

Also, add an external function prototype at the beginning of Lab6.c:
extern void InitPieVectTable(void);

To be able to use “InitPieVectTable()”, we need to link two more code files to our
project:

21. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source, link to project:
DSP2833x_PieVect.c and
DSP2833x_Defaultlsr.c

The code file “DSP2833x_Defaultlsr.c” will add a set of interrupt service routines to our
project. When you open and inspect this file, you will find that all ISRs consist of an
endless for-loop and a specific assembler instruction “ESTOPO”. This instruction
behaves like a software breakpoint. This is a security measure. Remember, at this point
we have disabled all PIE interrupts. If we were to now run the program, we should never
see an interrupt request. If, for some reason, for example a power supply glitch, noise
interference or just a software bug, the DSP calls an interrupt service routine, then we
can catch this event by the “ESTOPQ” break.

22. Now we have to re-map the entry for CPU-TimerO Interrupt Service from the
“ESTOPQ” operation to a real interrupt service. Editing the source code of TI’s code
“DSP2833x_Defaultlsr.c” would be one way to do this. Of course this would not be
a wise decision, because we would modify the original code for this single Lab
exercise. SO DO NOT DO THAT! A much better way is to modify the entry for
CPU-TimerO0 Interrupt Service directly inside the PIE-memory. This is done in main
by adding the next 3 lines after the function call of “InitPieVectTable();”:

EALLOW;
PieVectTable.TINTO = &cpu_timerQ_isr;
EDIS;

EALLOW and EDIS are two macros to enable and disable the access to a group of
protected registers; the PIE is part of this area. The name of our own interrupt service
routine for Timer0 is “cpu_timerQ_isr()”. We created the prototype statement earlier in
the procedure for this Lab. Please be sure to use the same name as you used in the
prototype statement!

23. Inside “main()”, directly after the re-mapping instructions from above, add the
function call “InitCpuTimers();”. This function will set the core Timer0 to a known
state and it will stop this timer.

InitCpuTimers();

6-22 F2833x - Interrupts

Lab 6: CPU Timer O Interrupt and 4 LEDs

Also, add an external function prototype at the beginning of Lab6.c:
extern void InitCpuTimers(void);

Again, we use a predefined function. To do so, we have to link the source code file
“DSP2833x_CpuTimers.c” to our project.

24. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link to project:
DSP2833x_CpuTimers.c

25. Now we have to initialize TimerO to generate a period of 100ms. Tl has provided a
function “ConfigCpuTimer()”. All we have to do is to pass 3 arguments to this function.
Parameter 1 is the address of the core timer structure, e.g. “CpuTimer0”; Parameter 2 is
the internal speed of the DSP in MHz, e.g. 150 for 150MHz; Parameter 3 is the period
time for the timer overflow in microseconds, e.g. 100000 for 100 milliseconds. The
following function call will setup Timer0 to a 100ms period:

ConfigCpuTimer(&CpuTimer0, 150, 100000);
Add this function call in “main()” directly after the line “InitCpuTimers();”
Again, add an external function prototype at the beginning of Lab6.c:
extern void ConfigCpuTimer(struct CPUTIMER_VARS *, float, float);

26. Before we can start timerQ we have to enable its interrupt masks. We have to take care
of 3 levels to enable an individual interrupt source. Level 1 is the PIE unit. To enable it,
we have to set bit 7 of PIEIER1 to 1. Why? Because the Timer0 interrupt is directly
connected to group INT1, Bit7. Add the following line to your code after the call of
“ConfigCpuTimer()” in step 25:

PieCtrIRegs.PIEIER1.bit.INTX7 = 1;
27. Next, enable interrupt core line 1 (INT1). Modify the register IER accordingly.
IER |= 1;

28. Next, enable control — interrupts (EINT) and debug — interrupts (ERTM) globally. This
is done by adding the two code macros:
EINT; and
ERTM;

29. Finally, we have to start Timer 0. The bit TSS inside register TCR will do the job. Add:
CpuTimerORegs.TCR.bit.TSS = 0;

30. After the end of “main()”, we have to add our new interrupt service routine
“cpu_timer0_isr()”. Remember, we have prototyped this function at the beginning of our
modifications. Now we have to add its body. Inside this function we have to perform two
activities:

1% - increment the interrupt counter “CpuTimerO.InterruptCount”. This way we
will have global information about how often this 100 milliseconds task was called.

F2833x - Interrupts 6 -23

Lab 6: CPU Timer O Interrupt and 4 LEDs

31.

32.

33.
34.

2" - acknowledge the interrupt service as the last line before return. This step is
necessary to re-enable the next Timer O interrupt service. It is done by:

PieCtrIRegs.PIEACK.all = PIEACK_GROUP1;

Now we are almost done. Inside the endless while(1) loop of “main()” we have to delete
the function call: “delay_loop(1000000);”. We do not need this function any longer; we
can also delete its prototype at the top of our code and its function body, which is still
present after the code of “main()”.

Inside the endless loop “while(1)*, after the “if-else”-construct, we have to implement a
statement to wait until the global variable “CpuTimer0.InterruptCount” has been
incremented to 1, which corresponds to the interval of 100 milliseconds. Remember to
reset the variable “CpuTimer0.InterruptCount” to zero when you continue after the wait
statement. Note: The global variable “CpuTimer0.InterruptCount” has been defined in
the file “DSP2833x_CpuTimers.c” as a global and volatile variable, which also has been
initialized to zero when we called the function “ConfigCpuTimer()”.

Done?

No, not quite! We forgot the watchdog! It is still alive and we removed the service
instructions together with the function “delay_loop()”. So we have to add the watchdog
reset sequence somewhere into our modified source code. Where? A good strategy is to
service the watchdog not in a single portion of our code. Our code now consists of two
independent tasks: the while-loop of main and the interrupt service routine of timer 0.
Place one of the two reset instructions for WDKEY into the ISR and the other one into
the while(1)-loop of main.

If you are a little bit fearful about being bitten by the watchdog, then disable it first; try
to get your code running without it. Later, when the code works as expected, you can re-
think the watchdog service part again.

Build, Load and Test

35.

Click the “Rebuild Active Project ” button or perform:
Project > Rebuild All (Alt +B)

If you get errors or warnings debug as necessary.

36. Load the output file in the debugger session:

Target = Debug Active Project and switch into the “Debug” perspective.

37. Perform a real time run.

Target = Run

38. Verify that the LEDs behave as expected. You have successfully finished Lab6. Halt the

Device (Target =» Halt). Switch back into the “C/C++" — Perspective.

End of Lab®é.

6-24 F2833x - Interrupts

	Interrupt System
	Introduction
	Module Topics
	F2833x Core Interrupt Lines
	The F2833x RESET
	Reset Bootloader
	Interrupt Sources
	Maskable Interrupt Processing
	Peripheral Interrupt Expansion
	Hardware Interrupt Response
	F2833x CPU Timers
	Summary:
	Lab 6: CPU Timer 0 Interrupt and 4 LEDs
	Objective
	Procedure
	Create a Project File
	Project Build Options
	Modify the Source Code
	Build, Load and Test
	Modify Source Code - Part 2
	Build, Load and Test

