

F2833x - Analogue Digital Converter 8 - 1

Introduction
One of the most important peripheral units of an embedded controller is the Analogue to
Digital Converter (ADC). This unit provides an interface between the controller and the real
world. Most physical signals such as temperature, humidity, pressure, current, speed and
acceleration are analogue signals. With the aid of the appropriate transducer, almost all of
these can be represented as an electrical voltage between Vmin and Vmax, e.g. 0...3V, which is
proportional to the original signal. The purpose of the ADC is to convert this analogue
voltage to a digital number. The relationship between the analogue input -voltage (Vin), the
number of binary digits to represent the digital number (n) and the digital number (D) is
given by:

−
−+ +

−
−∗

= REFn
REFREF

in VVVDV
12

)(

VREF+ and VREF- are reference voltages and are used to limit the analogue voltage range. Any
input voltage beyond these reference voltages will produce a saturated digital number.
NOTE: Of course, all voltages must remain within the limits of their maximum ratings, as
specified in the data sheet.

In the case of the F2833x, the voltage VREF- is fixed at 0V and VREF+ is connected to +3.0V.
The F2833x internal ADC has a 12-bit resolution (n =12) for the digital number D. This
gives a simplified equation:

4095
0.3 VDVin

∗
=

Most applications require not only one analogue input signal to be converted into a digital
value, but their control loop usually needs several different sensor input signals. Therefore,
the F2833x is equipped with 16 dedicated input pins to measure analogue voltages. These 16
signals are multiplexed internally, which means they are processed sequentially. To perform
a conversion, the ADC has to ensure that during the conversion procedure there is no change
of the analogue input voltage Vin, otherwise the digital number would be erroneous. An
internal “sample and hold unit (s&h)” takes care of this. The F2833x is equipped with two
s&h-units, which can be used in parallel. This allows us to convert two input signals (e.g.
two currents of a 3-phase system) at the same time.

In addition, the F2833x ADC has an “auto-sequencer” capability of 16 stages. This means
that the ADC can automatically continue with the conversion of the next input channels after
the previous channels are completed. Thanks to this enhancement, we do not have to fetch
the digital results in the middle of a measurement sequence, the task being carried out by a
single interrupt service routine at the end of the sequence.

 F2833x Analogue Digital Converter

Module Topics

8 - 2 F2833x - Analogue Digital Converter

Module Topics

F2833x Analogue Digital Converter ... 8-1

Introduction ... 8-1

Module Topics ... 8-2

ADC Module Overview ... 8-3

ADC operating modes ... 8-4

ADC in Cascaded Mode .. 8-5

ADC in Dual Sequencer Mode .. 8-6

ADC Conversion Time .. 8-7

ADC Register Block .. 8-8
ADC Control Register 1.. 8-9
ADC Control Register 2.. 8-10
ADC Control Register 3.. 8-12
ADC MAXCONV Register .. 8-13
ADC Input Channel Select Registers .. 8-14
Example: 3 phase control system & measurement... 8-15
ADC Result Register Set .. 8-16
ADCREFSEL Register ... 8-17

Lab 8_1: Two Potentiometer Voltages .. 8-18
Objective ... 8-19
Procedure .. 8-19
Open Files, Create Project File ... 8-19
Project Build Options .. 8-20
Modify Source Code ... 8-20
Build, Load and Test ... 8-21
Add ADC Initialization ... 8-22
Add ePWM2 Initialization .. 8-23
Add ADC-Interrupt system ... 8-23
Build, Load and Test ... 8-24
Run .. 8-24

Lab 8_2: Analogue Speed Control of “LED- counter” ... 8-25
Objective ... 8-25
Procedure .. 8-25
Open Project ... 8-25
Modify Source Code ... 8-26
Build, Load and Test ... 8-26
Modify the main loop.. 8-26
Rebuild, Load and Test ... 8-27

 ADC Module Overview

F2833x - Analogue Digital Converter 8 - 3

ADC Module Overview
Before we go into the details of how to program the internals of the ADC, let us first
summarize some of the features of the ADC Module. It was stated earlier that the digital
resolution of the converted number is 12 bits. Assuming an input voltage range from 0...+3V,
we obtain a voltage resolution of 3.0V/4095 = 0.732mV per bit.

We have two Sample-and-Hold units, which can be used in parallel; the corresponding
operating mode is called “simultaneous sampling”. Each sample and hold unit is connected
to 8 multiplexed input lines. There is also an auto sequencer, which is a programmable state
machine that is capable of automatically converting up to 16 input signals. Each state of the
auto sequencer stores a measurement in its own dedicated result register.

The fastest conversion time is 80ns per sample in a sequence and 160ns for the very first
sample. Of course we will have to adapt this conversion rate to the signal system that is
actually used.

8 - 2

ADC Module
 12-bit resolution Analogue to Digital Converter
 Sixteen analog input channels, voltage range 0…3V
 Equation:

 Vin = Analogue input voltage, range 0…3V
 Vref+ = 3.0V Vref- = 0V n = 12
 D = digital result, 12 Bit resolution

 Maximum Conversion Rate: 12.5 MSPS (80 ns)
 Two analog input multiplexers / two sample/hold units
 Sequential and simultaneous sampling modes
 Auto sequencing capability - up to 16 auto conversions
 Sixteen individually addressable result registers
 Trigger sources for start-of-conversion

 External trigger, S/W or ePWM - Modules

−
−+ +

−
−∗

= REFn
REFREF

in VVVDV
12

)(

A start of a conversion sequence can be initiated from three sources:

• By software - just set a start bit to 1

• By an external signal on pin “GPIO/XINT2_ADCSOC”

• By an event (period, compare or underflow) of one of the PWM-units ePWM1 to
ePWM6

ADC operating modes

8 - 4 F2833x - Analogue Digital Converter

ADC operating modes
The ADC module can operate in different setups. An operating mode is always a
combination of the three different basic selections:

• Sequencer Mode

• Sampling Mode

• Start Mode

Not all of the 8 possible combinations do actually make sense, so be careful what you select.
The Sequencer Mode selects whether we use state machine of the Auto sequencer as a single
16 stage state machine (“Cascaded Mode”) or as a pair of two independent 8-stage
measurement units (“Dual Sequencer Mode”). By selecting “Simultaneous Sampling” for
the sampling mode we convert 2 analogue input signals at one time. If we choose
“Sequential Sampling” only one multiplexed input channel is converted at one time. Finally
by selecting “Single Sequence Mode” (or “Start/Halt - Mode”) the Auto sequencer starts at
the first input trigger signal, performs the predefined number of conversions and stops at the
end of this conversion sequence - then to wait for a second trigger. In continuous mode the
Auto sequencer starts all over again at the end of the first conversion sequence without
waiting for another trigger input signal.

8 - 3

ADC Operating Modes

 Sequencer Mode:
 Cascaded Sequencer Mode (16 states)

 Dual Sequencer Mode (2 x 8 states)

 Sampling Mode:
 Sequential Sampling (1 channel at a time)

 Simultaneous Sampling (2 channels at a time)

 Start Mode:
 Single Sequence Mode (stop at end of sequence)

 Continuous Mode (wrap sequencer at end of
sequence)

 ADC in Cascaded Mode

F2833x - Analogue Digital Converter 8 - 5

ADC in Cascaded Mode

8 - 4

ADC Sequencer in Cascaded Mode

12-bit A/D
Converter

SOC EOC

Software

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
U

X

MUX
A

RESULT0
RESULT1
RESULT2

RESULT15

Result
MUX

ePWM_SOC_A
ePWM_SOC_B

MUX
B

Ch Sel (CONV00)
Ch Sel (CONV01)
Ch Sel (CONV02)
Ch Sel (CONV03)

Ch Sel (CONV15)

MAX_CONV1

Autosequencer

Start Sequence
Trigger

SEQ1
ADC full-scale
input range is 0

to 3V

External Pin
(GPIO/XINT2_ADCSOC)

The slide above (Slide 8-4) shows the block diagram for the ADC operating in “cascaded
mode”. One Auto-Sequencer controls the flow of the conversion. Before we can start a
conversion, we have to setup the number of conversions (“MAX_CONV1”) and which input
line should be converted in which stage (“CHSELxx”). The results are buffered in individual
result registers (“RESULT0” to “RESULT15”) for each stage.

We can choose between two more options: “Simultaneous” and “Sequential” sampling. In
the case of simultaneous sampling, both sample and hold units are used in parallel. Two
input lines with the same input code (for example ADCINA3 and ADCINB3) are converted
at the same time by stage CONV00. In “Sequential mode”, the input lines can be connected
to any of the states of the auto sequencer.

To trigger a conversion sequence, we can use a software start by setting a particular bit. We
also have three more start options using hardware events. Especially useful is the hard-wired
output of an ePWM event, which leads to very precise sample periods. This is a necessity for
correct operation of digital signal processing algorithms. There is no need to trigger an
interrupt service (with its possible jitter due to interrupt response delays) to switch the input
channel between subsequent conversions because the auto-sequencer will do that.

We can use the ADC interrupt after the end of a sequence (or for some applications at the
end of every other sequence) to read out the result register block.

ADC in Dual Sequencer Mode

8 - 6 F2833x - Analogue Digital Converter

ADC in Dual Sequencer Mode

8 - 5

ADC Sequencer in Dual - Sequencer Mode

RESULT8
RESULT9

RESULT15

Result
MUX

RESULT0
RESULT1

RESULT7

Result
MUX12-bit A/D

Converter

S/H
A

S/H
B

M
U

X

Software
ePWM_SOC_A

External Pin

SOC1/
EOC1

Sequencer
Arbiter

SOC2/
EOC2

Software
ePWM_SOC_B

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

MUX
A

MUX
B

M
U

X

MUX

Ch Sel (CONV00)
Ch Sel (CONV01)

Ch Sel (CONV07)

MAX_CONV1

Autosequencer

Start Sequence
Trigger

SEQ1

(GPIO/XINT2_ADCSOC)

Ch Sel (CONV08)
Ch Sel (CONV09)

Ch Sel (CONV15)

MAX_CONV2

Autosequencer

Start Sequence
Trigger

SEQ2

The second operating mode of the ADC is called “Dual Sequencer Mode”, which splits the
Auto-Sequencer into two independent state machines (“SEQ1” and “SEQ2”). This mode
uses the signal ePWM_SOC_A (“Start Of Conversion A”) as the hardware trigger for SEQ1
and ePWM_SOC_B for SEQ2. To code the input channels for the individual states of the
two sequencers, we are free to select any of the 16 inputs for any of the 2x8 states. The
registers RESULT0 to RESULT7 contain the values from SEQ1 and registers RESULT8 to
RESULT15 for SEQ2.

The reason for this split mode is to have two independent ADCs, triggered by their own
control time base for SEQ1 and SEQ2. In the ePWM chapter you will learn that we can
generate ePWM_SOC_A and ePWM_SOC_B by various time events in any of the ePWM
units. As an example you can use ePWM1-3 as the control system for a first 3-phase motor
control unit and ePWM4-6 for a second one. In such a scenario SEQ1 will be the
measurement unit for motor 1 and SEQ for motor 2.

In case of a simultaneous start of SEQ1 and SEQ2 the Sequencer Arbiter takes care of this
situation. In this event SEQ1 has higher priority; the start of SEQ2 will be delayed until the
end of the SEQ1 conversion sequence.

 ADC Conversion Time

F2833x - Analogue Digital Converter 8 - 7

ADC Conversion Time

8 - 6

F2833x ADC Clock Diagram
CLKIN

(30 MHz)
HSPCLK

(150 MHz)

ADCCLKPS
bits

ADCTRL3

0110b

FCLK
(12.5 MHz)

FCLK = HSPCLK/(2*ADCCLKPS) ADCCLK =
FCLK/(CPS+1)

ADCCLK
(12.5 MHz)

CPS bit

ADCTRL1

0b

To ADC
pipeline

sampling
windowACQ_PS

bits

ADCTRL1

0111b

SYSCLKOUT
(150 MHz)

PLLSTS

DIVSEL
bits

10b (/2)
To CPU

sampling window = (ACQ_PS + 1)*(1/ADCCLK)

PCLKCR0.ADCENCLK = 1

HISPCP

HSPCLK
bits

000b (/1)

PLLCR

DIV
bits

1010b (x10)

Note: Maximum F2833x ADCCLK is 25 MHz, but INL (integral nonlinearity error) is greater
above 12.5 MHz. See the device datasheet (SPRU812A) for more information.

There are some limitations when setting up the ADC conversion time. First, the basic clock
source for the ADC is the internal clock HSPCLK - we cannot use any clock speed we like.
This clock is derived from the external oscillator, multiplied by PLLCR and divided by
HISPCP. We discussed these bit fields in earlier modules; so just in case you do not recall
their operation, please refer to the earlier chapters.

The second limitation is the maximum frequency for “FCLK” as the internal input signal for
the ADC unit. At the moment this signal is limited to 25MHz. However, when we use this
maximum frequency we get a rising nonlinearity error for the results. In cases where we do
not need that high conversion rate, it is better to limit FCLK to 12.5 MHz. To setup FCLK
we have to initialise the bit field “ADCCLKPS” accordingly. Bit “CPS” gives the option of
another divide by 2. The “ADCCLK” clock provides the time-base for the internal
processing pipeline of the ADC.

A third limitation is the sampling window controlled by the field “ACQ_PS”. This group of
bits defines the length of the window that is used between the multiplexer switch and the
time when we sample (or “freeze”) the input voltage. This time depends on the line
impedance of the input signal. So it is hardware dependent - we cannot specify an optimal
period for all applications. For our lab exercises in this chapter, it is a ‘don’t care’ because
we sample DC-voltages taken from two variable resistors of the Peripheral Explorer Board.

ADC Register Block

8 - 8 F2833x - Analogue Digital Converter

ADC Register Block
Three control registers “ADCTRL1 to ADCTRL3” are used to set up one of the various
operating conditions of the ADC unit. Register “ADCST” covers the current status of the
ADC.

8 - 7

Analog-to-Digital Converter Registers

ADCTRL1 ADC Control Register 1
ADCTRL2 ADC Control Register 2
ADCTRL3 ADC Control Register 3
ADCMAXCONV ADC Maximum Conversion Channels Register
ADCCHSELSEQ1 ADC Channel Select Sequencing Control Register 1
ADCCHSELSEQ2 ADC Channel Select Sequencing Control Register 2
ADCCHSELSEQ3 ADC Channel Select Sequencing Control Register 3
ADCCHSELSEQ4 ADC Channel Select Sequencing Control Register 4
ADCASEQSR ADC Autosequence Status Register
ADCRESULT0 ADC Conversion Result Buffer Register 0
ADCRESULT1 ADC Conversion Result Buffer Register 1
ADCRESULT2 ADC Conversion Result Buffer Register 2

ADCRESULT14 ADC Conversion Result Buffer Register 14
ADCRESULT15 ADC Conversion Result Buffer Register 15
ADCREFSEL ADC Reference Select Register
ADCOFFTRIM ADC Offset Trim Register
ADCST ADC Status and Flag Register

Register Description

8 - 8

ADC Control Register 1

Emulation Suspend Mode
00 = free run (do not stop)
01 = stop after current sequence
10 = stop after current conversion
11 = stop immediately

ADC Module Reset
0 = no effect
1 = reset (set back to 0

by ADC logic)

Acquisition Time Prescale (S/H)
ACQ Window = (ACQ_PS + 1)*(1/ADCCLK)

SUSMOD ACQ_PS CPS

7

RESET

15

reserved

11 - 813 - 1214

Conversion Prescale
0: ADCCLK = FCLK / 1
1: ADCCLK = FCLK / 2

Upper Register:

Structure Variable in C: AdcRegs.ADCTRL1

 ADC Register Block

F2833x - Analogue Digital Converter 8 - 9

ADC Control Register 1
Bit 14 (“RESET”) can be used to reset the whole ADC unit into its initial state. It is always
good practice to apply a RESET command before you initialise the ADC. Please note that
you cannot initialize the rest of this register in the same instruction, where you reset the ADC
- so use a follow-up instruction to initialize ADCTRL1.

Bits 13 and 12 (“SUSMOD”) define the interaction between the ADC and an emulator
command, similar to the behaviour that we already discussed in chapter 7 (ePWM-module).

Bits 11 to 8 (“ACQ_PS”) define the length of the sample window.

Bit 7 (“CPS”) is used to divide the input frequency by 1 or 2.

8 - 9

ADC Control Register 1

Sequencer Mode
0 = dual mode
1 = cascaded mode

Continuous Run
0 = stops after reaching

end of sequence
1 = continuous (starts all over

again from “initial state”)

Sequencer Override
(functions only if CONT_RUN = 1)
0 = sequencer pointer resets to “initial state” at end of MAX_CONVn
1 = sequencer pointer resets to “initial state” after “end state”

SEQ_OVRD SEQ_CASC

3 - 0

CONT_RUN reserved

456

Lower Register:

Structure Variable in C: AdcRegs.ADCTRL1

Bit 6 (“CONT_RUN”) defines whether the auto sequencer starts at the end of a sequence
(=0) and waits for another trigger or if the sequence should start all over again immediately
(= 1).

Bit 5(“SEQ_OVRD”) defines two different options for continuous mode. We will not use
this mode during our labs, so it is a ‘don’t care’.

Finally, Bit 4 (“SEQ_CASC”) is the sequence/cascade bit. It defines the Sequencer Mode to
be a state machine with 16 states (SEQCASC = 1), or to operate as two independent state
machines, each having 8 states (SEQ_CASC = 0).

ADC Register Block

8 - 10 F2833x - Analogue Digital Converter

ADC Control Register 2

8 - 10

ADC Control Register 2

Interrupt Enable (SEQ1)
0 = interrupt disable
1 = interrupt enable

ePWM SOC B
(cascaded mode only)
0 = no action
1 = start by ePWM

signal

Reset SEQ1
0 = no action
1 = immediate reset

SEQ1 to “initial state”

Start Conversion (SEQ1)
0 = clear pending SOC trigger
1 = software trigger-start SEQ1

ePWM SOC A
SEQ1 Mask Bit
0 = cannot be started

by ePWM trigger
1 = can be started

by ePWM trigger

Interrupt Mode (SEQ1)
0 = interrupt every EOS
1 = interrupt every other EOS

RST_SEQ1

9
ePWM_SOCB

_SEQ

12
reserved

1115

SOC_SEQ1
INT_ENA
_SEQ1

INT_MOD
_SEQ1 reserved

ePWM_SOCA
_SEQ1

814 13 10

Upper Register:

Structure Variable in C: AdcRegs.ADCTRL2

The upper half of the ADCTRL2 register is responsible for controlling the operating mode of
sequencer SEQ1.

Setting Bit 15 (“ePWM_SOCB_SEQ”) allows the cascaded sequencer to be started by an
ePWM SOCB signal. The bit is not working in “Dual Sequencer Mode” (see bit 0).

Using Bit 14 (“RST_SEQ1”), we can reset the state machine of SEQ1 to its initial state. This
means that the next trigger will start a new conversion of the channel defined in CONV00.

When we set Bit 13 (“SOC_SEQ1”) to 1, we perform an immediate start of the conversion
under software control.

Bits 11 (“INT_ENA_SEQ1”) and 10 (“INT_MOD_SEQ1”) define the interrupt mode of
SEQ1. We can specify whether we have an interrupt request every “End of Sequence” (EOS)
or every other (EOS).

Bit 8 (“ePWM_SOCA_SEQ1”) is the mask bit to allow the ePWM-signal “SOCA” to be
used as the trigger for a conversion. In Lab8_1 we will use of this start feature, so please
remember to set this bit in the initialization part for Lab8_1!

 ADC Register Block

F2833x - Analogue Digital Converter 8 - 11

8 - 11

ADC Control Register 2

Interrupt Enable (SEQ2)
0 = interrupt disable
1 = interrupt enable

External SOC (SEQ1)
0 = no action
1 = start by signal from

ADCSOC pin

Start Conversion (SEQ2)
(dual-sequencer mode only)
0 = clear pending SOC trigger
1 = software trigger-start SEQ2

ePWM SOC B
SEQ2 Mask Bit
0 = cannot be started

by ePWM trigger
1 = can be started

by ePWM trigger

Interrupt Mode (SEQ2)
0 = interrupt every EOS
1 = interrupt every other EOS

RST_SEQ2

1
EXT_SOC

_SEQ1

4
reserved

37

SOC_SEQ2
INT_ENA
_SEQ2

INT_MOD
_SEQ2 reserved

ePWM_SOCB
_SEQ2

06 5 2

Lower Register:

Reset SEQ2
0 = no action
1 = immediate reset

SEQ2 to “initial state”

Structure Variable in C: AdcRegs.ADCTRL2

The lower byte of ADCTRL2 is similar to its upper half: it controls sequencer SEQ2.

Setting Bit 7 enables an ADC auto conversion sequence to be started by a signal from a
GPIO Port A pin (GPIO31-0) configured as XINT2 in the GPIOXINT2SEL register.

Bit 6 to Bit 0: The remaining part of ADCTRL2 is similar to Bits 14…8 in the upper half of
the register. However they are used to initialize the operating mode of SEQ2. If we do not
use sequencer 2 because we are in “Cascaded Mode”, these bits are “don’t care’s.

ADC Register Block

8 - 12 F2833x - Analogue Digital Converter

ADC Control Register 3

8 - 12

ADC Control Register 3

Sampling Mode Select
0 = sequential sampling mode
1 = simultaneous sampling mode

ADC Clock Prescale
0 : FCLK = HSPCLK

1 to F : FCLK = HSPCLK / (2*ADCCLKPS)

ADC Bandgap and
Reference Power Down
00 = powered down
11 = powered up

ADC Power Down
(except Bandgap & Ref.)
0 = powered down
1 = powered up

ADCBGRFDN ADCCLKPS SMODE_SEL

015 - 8

reserved

4 - 17 - 6

ADCPWDN

5

Structure Variable in C: AdcRegs.ADCTRL3

Bit 0 selects the sampling mode to be sequential or simultaneous. Recall that in simultaneous
mode two analogue input signals are converted in parallel.

• Example: Let us assume that you would like to convert signals ADCINA4 and
ADCINB4 in parallel. All you have to do is to initialize:

o SMODE_SEL = 1 // simultaneous sampling
o MAXCONV = 0 // 1 conversion; actually 2, because of

SMODE_SEL = 1
o CONV00 = 4 // channel number for ADCINA4

After the conversion is complete, register RESULT0 will contain the value for
ADCINA4 and register RESULT1 the value for ADCINB4

Bits 4-1 will initialize the FCLK as basic clock of the ADC module (see also Slide 8-6).
Bit 5 is the main power switch for the analog circuitry inside the device. By setting this bit
we power up the ADC except the band gap and reference circuitry.

Bits 7-6 control the ADC band gap and reference voltage power down sequence of the inter-
nal reference voltage system.

• Bits 7-6 = 00: The band gap and reference circuitry is powered down.
• Bits 7-6 = 11: The band gap and reference circuitry is powered up.

Note: If we use the internal reference circuitry, we first have to set bits 7-6 to 11 followed by
the set of bit 5.

 ADC Register Block

F2833x - Analogue Digital Converter 8 - 13

ADC MAXCONV Register
”MAXCONV” defines the number of conversion stages of the Auto sequencer. After a valid
trigger signal, the Auto sequencer will convert the predefined number of channels
automatically.

Please note that the number in the register bit fields corresponds to the number of
conversions minus 1.

• MAXCONV = 4 // means 5 conversions, with input channel numbers coded
 // in bit fields CONV00 to CONV04 of register
 // ADCCHSELSEQ1 and ADCCHSELSEQ2

8 - 13

Maximum Conversion Channels Register
♦ Bit fields define the number of conversions per trigger (binary+1)

♦ Each sequencer starts at the “initial state” and advances sequentially
♦ Each will wrap at the “end state” unless software resets it sooner

MAX_
CONV 2_2

MAX_
CONV 2_1

MAX_
CONV 2_0

MAX_
CONV 1_3

MAX_
CONV 1_2

MAX_
CONV 1_1

MAX_
CONV 1_0reserved

Cascaded Mode

Dual ModeSEQ2 SEQ1

SEQ1 SEQ2 Cascaded
Initial state CONV00 CONV08 CONV00
End state CONV07 CONV15 CONV15

012345615-7

Structure Variable in C: AdcRegs.ADCMAXCONV

If we would use “Dual Sequencer Mode” the interpretation of register MAXCONV changes
slightly. In this mode bits 0 to 2 are used to specify the number of conversions in sequencer
SEQ1 and bits 4 to 6 are used for SEQ2. Recall that in this mode each sequencer has a
maximum number of 8 conversions, hence the limitation to 3 bits in MAXCONV.

The Auto sequencer operates as a state machine that starts with an initial state and progresses
after each conversion to the next one. This principle continues until the end state or until we
reset the state machine pointer back to init state (Bit 14 and Bit 6 of ADCTRL2). If we do
not reset and the state machine has reached the end state, it will wrap back to state zero
automatically.

ADC Register Block

8 - 14 F2833x - Analogue Digital Converter

ADC Input Channel Select Registers

8 - 14

ADC Input Channel Select Sequencing Control Register

ADCCHSELSEQ1

15 - 12 11 - 8 7 - 4 3 - 0

CONV03 CONV02 CONV01 CONV00

ADCCHSELSEQ2 CONV07 CONV06 CONV05 CONV04

ADCCHSELSEQ3 CONV11 CONV10 CONV09 CONV08

ADCCHSELSEQ4 CONV15 CONV14 CONV13 CONV12

Structure Variable in C: AdcRegs.ADCCHSELSEQ1 … AdcRegs.ADCCHSELSEQ4

ADC input channels are binary counted:
ADCINA0 = 0000 ADCINB0 = 1000
ADCINA1 = 0001 ….
… ADCINB7 = 1111

The group of four registers ADCCHSELSEQ1…4 is used to specify the binary number of
the input channel ADCINA0…ADCINB7 by means of sixteen 4-bit -groups
CONV00…CONV15.

Recall that we can use up to 16 stages in the Auto sequencer. These stages correspond to
CONV00 to CONV15. All we have to do is to fill in the correct numbers for the analogue
input channels (see Slide 8-14).

Example:

• Conversion of 5 channels in a sequence:

• ADCINA6, ADCINB1, ADCINA2, ADCINA0 and ADCINB6
o CONV00 = 6
o CONV01 = 9
o CONV02 = 2
o CONV03 = 0
o CONV04 = 14

 ADC Register Block

F2833x - Analogue Digital Converter 8 - 15

Example: 3 phase control system & measurement

8 - 15

Example - Sequencer “Start/Stop” Operation

Configuration Requirements:
 ePWM triggers the ADC

 Three auto conversions (V1, V2, V3) off trigger 1 (CTR = 0)
 Three auto conversions (I1, I2, I3) off trigger 2 (CTR = PRD)

 ADC in cascaded sequencer and sequential sampling modes

V1, V2, V3 I1, I2, I3 V1, V2, V3 I1, I2, I3

ePWM
Time Base
Counter

ePWM
Output

The two slides give a typical example of a 3-phase control system for digital motor control.

8 - 16

Example - Sequencer “Start/Stop” Operation
 MAX_CONV1 is set to 2 and Channel Select Sequencing Control Registers are set to:

 Once reset and initialized, SEQ1 waits for a trigger
 First trigger, three conversions performed: CONV00 (V1), CONV01 (V2), CONV02 (V3)
 SEQ1 waits for second trigger
 Second trigger, three conversions performed: CONV03 (I1), CONV04 (I2), CONV05 (I3)
 End of second sequence, ADC Results registers have the following values:

 SEQ1 waits at current state for another trigger
 ISR to read results and reset SEQ1

Bits → 15-12 11-8 7-4 3-0
I1 V3 V2 V1 ADCCHSELSEQ1
x x I3 I2 ADCCHSELSEQ2

RESULT0 V1

RESULT1 V2

RESULT2 V3

RESULT3 I1
RESULT4 I2
RESULT5 I3

ADC Register Block

8 - 16 F2833x - Analogue Digital Converter

ADC Result Register Set

8 - 17

ADC Conversion Result Registers

Input Digital AdcRegs. ADCRESULTx AdcMirror. ADCRESULTx
Voltage Result

3.0 0xFFF 1111|1111|1111|0000 0000|1111|1111|1111

1.5 0x7FF 0111|1111|1111|0000 0000|0111|1111|1111
0.00073 1 0000|0000|0001|0000 0000|0000|0000|0001
0 0 0000|0000|0000|0000 0000|0000|0000|0000

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AdcRegs.ADCRESULTx, x = 0 - 15 (2 wait-state read)

AdcMirror.ADCRESULTx, x = 0 - 15 (0 wait-state read)

The 12-bit digital results are available in two different memory sections.

The ADCRESULTn registers are left justified when read from Peripheral Frame 2 (0x7108-
0x7117; global C- variable “AdcRegs”) with two wait states and right justified when read
from Peripheral Frame 0 (0x0B00-0x0B0F; global C-variable “AdcMirror”) with zero wait
states.

Left justified results are advantageous when a control system operates on “fractional”
numbers. We will see how this makes scaling easier in a later chapter of this course.

 ADC Register Block

F2833x - Analogue Digital Converter 8 - 17

8 - 18

How Can We Handle Signed Input Voltages?
Example: -1.5 V ≤ Vin ≤ +1.5 V

1) Add 1.5 volts to the
analog input

Vin

1.5V ADCINx

GND

ADCLO

-
+

R

R

R
-
+

R

R
C28x

#include “DSP2833x_Device.h”
#define offset 0x07FF
void main(void)
{

int16 value; // signed

value = AdcMirror.ADCRESULT0 – offset;
}

2) Subtract “1.5” from the digital result

ADCREFSEL Register
To switch between internal or external ADC reference voltages, we could use register
ADCREFSEL. For our next lab experiments using the Peripheral Explorer Board we will
stay with the internal voltage source, which is selected by default.

8 - 19

ADC Reference Selection
 The F28335 ADC has an internal reference with

temperature stability of ~50 PPM/°C *
 As an option one can use an external reference device

 External reference choices: 2.048 V, 1.5 V, 1.024 V
 The reference value DOES NOT change the 0 - 3 V full-scale

range of the ADC
 The ADCREFSEL register controls the reference choice

13 - 0

reserved
15 - 14

REF_SEL

ADC Reference Selection
00 = internal (default)
01 = external 2.048 V
10 = external 1.5 V
11 = external 1.024 V

Structure Variable in C: AdcRegs.ADCREFSEL

Lab 8_1: Two Potentiometer Voltages

8 - 18 F2833x - Analogue Digital Converter

Lab 8_1: Two Potentiometer Voltages

8 - 20

Lab 8_1: Dual AD - Conversion
Objective:
 AD-Conversion of ADCIN_A0 and ADCIN_A1
 Sampling frequency generated by ePWM2: 50kHz
 ADCIN_A0 and ADCIN_A1 are connected to two

variable resistors VR1, VR2 at Peripheral Explorer
Board.

 VR1 and VR2 voltage range: 0 Volt to 3.3 Volt
 Automatic start of ADC by ePWM2 period event
 ADC-Interrupt Service Routine to read out the ADC

results
 main loop to alternately show the results of ADCINA0

or ADCINA1 at 4 LEDs (LD1, LD2, LD3 and LD4) of the
Peripheral Explorer Board as a “light-beam”.

8 - 21

Additional Registers used in Lab8_1:
ePWM2 Time Base Control : TBCTL
ePWM2 Time Base Period : TBPRD
ePWM2 Time Base Counter : TBCNT
ePWM2 Event Trigger Prescale : ETPS
ePWM2 Event Trigger Select : ETSEL
ADC – Control 1 : ADCTRL1
ADC – Control 2 : ADCTRL2
ADC – Control 3 : ADCTRL3
Channel Select Sequencer 1 : ADCCHSELSEQ1
Max. number of conversions : ADCMAXCONV
ADC - Result 0 : ADCRESULT0
ADC - Result 1 : ADCRESULT1

 Lab 8_1: Two Potentiometer Voltages

F2833x - Analogue Digital Converter 8 - 19

Objective
The objective of this lab is to practice using the integrated Analogue-Digital
Converter of the F2833x. The Peripheral Explorer Board is equipped with 2 variable
resistors VR1 and VR2, which are connected to the analogue input lines ADCIN_A0
and ADCIN_A1. The two input voltages can be adjusted between 0 and 3.0 volts. In
this lab we will read the current status of the potentiometers and display the
converted voltages on LEDs (LD1 to LD4) of the Peripheral Explorer Board
(GPIO9, GPIO11, GPIO34 and GPIO49) in form of a “light-beam”.

The ePWM2 unit will generate the sampling frequency of 50 kHz (or sampling
period of 20µs). The conversion is triggered automatically by signal “SOCA” at the
period event of ePWM2. The ADC interrupt service routine will be used to copy the
12-bit results into two global variables “Voltage_VR1” and “Voltage_VR2”.

CPU Timer 0 will be used to generate a time base for the monitoring part of this lab
exercise. It will be initialized to run at a period of 100 milliseconds. The interrupt
service routine will increment a global variable “CpuTimer0.InterruptCount”. Based
on the value in this variable we can establish an alternation in the display between
VR1 and VR2 every 0.5 seconds.

Procedure

Open Files, Create Project File
1. Create a new project, called Lab8.pjt in C:\DSP2833x_V4\Labs.

2. Open file Lab6.c from C:\DSP2833x_V4\Labs\Lab6 and save it as Lab8_1.c in
C:\DSP2833x_V4\Labs \Lab8.

3. Define the size of the C system stack. In the project window, right click at project
“Lab8” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4. In the C/C++ perspective, right click at project “Lab8” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

5. Repeat the “Link Files to Project” step. From C:\tidcs\c28\dsp2833x\v131\
DSP2833x_common\source add:

• DSP2833x_CodeStartBranch.asm
• DSP2833x_SysCtrl.c
• DSP2833x_ADC_cal.asm
• DSP2833x_Adc.c
• DSP2833x_usDelay.asm

Lab 8_1: Two Potentiometer Voltages

8 - 20 F2833x - Analogue Digital Converter

• DSP2833x_CpuTimers.c
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c

6. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link to project “Lab8”:

• DSP2833x_Headers_nonBIOS.cmd

7. Copy the provided source code file

• “Display_ADC.c”

into your project folder “C:\DSP2833x_V4\Labs\Lab8”. This file, enclosed in the file
“labs_08.zip”, defines a function “display_ADC()”, which converts a 12 bit unsigned
integer number into a “light-beam” at the four LEDs. The term “light-beam” means
that the bigger the input value is the more LEDs are switched on.

Project Build Options
8. Again we have to extent the search path of the C-Compiler for include files. Right

click at project “Lab8” and select “Properties”. Select “C/C++ Build”, “C2000
Compiler”, “Include Options”. In the box: “Add dir to #include search path”, add the
following lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Modify Source Code
9. Open Lab8_1.c to edit: double click on “Lab8_1.c” inside the project window. First

delete the local variable “counter” from function “main()”, including the definition at
the beginning of “main()” and the access to “counter” in the endless-loop at the end of
“main()”.

10. Add two new global unsigned integer variables “Voltage_VR1” and “Voltage_VR2”.

11. In the endless loop of “main()”, change the wait construction based on the variable
“CpuTimer0.InterruptCount” to wait until it is equal to value 5. Recall that this

 Lab 8_1: Two Potentiometer Voltages

F2833x - Analogue Digital Converter 8 - 21

variable is incremented every 100 milliseconds by CPU Timer 0 ISR. This way we can
include a time delay of 500 milliseconds. Also recall, that the maximum overflow
period for the watchdog unit is less than 500 milliseconds. While the second clear
instruction for the watchdog unit is part of CPU Timer 0 ISR, we have to embed the
0x55 - instruction into our while-wait loop.

12. After this wait-loop, add a call or function “display_ADC()”:

display_ADC(Voltage_VR1);

13. Next, add a similar wait-loop like in procedure step 11 and wait until variable
“CpuTimer0.InterruptCount” has a value of 10. This will give us another interval of
500 milliseconds.

14. Now call function “display_ADC()” for variable “Voltage_VR2”.

15. Right after step 14 clear variable “CpuTimer0.InterruptCount” back to zero.

16. The provided function “display_ADC()” has been defined in an external file. To be
able to use this function, we have to add an external prototype at the beginning of the
file “Lab8_1.c”:

extern void display_ADC(unsigned int);

Build, Load and Test
17. Although we haven’t initialized the ADC so far, it might make sense to perform a

preliminary test. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

18. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

19. Verify that in the debug perspective the window of the source code “Lab8_1.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

20. Perform a real time run.

Target  Run

Result: All 4 LEDs should blink at a rate of 0.5 seconds on and off period.

Lab 8_1: Two Potentiometer Voltages

8 - 22 F2833x - Analogue Digital Converter

Add ADC Initialization
21. Change back to the “C/C++” perspective. Inside “main()”, after the function call

“InitPieVectTable();” add the following line to call the basic ADC calibration and
internal reference enabling function:

InitAdc();

Also add an external function prototype at the beginning of “Lab8_1.c”:

extern void InitAdc(void);

22. In “main()”, straight after the function call of “InitAdc()”, add code to initialize the
ADC register. Refer to the reference section or to the slides shown earlier with this
presentation to complete the following register settings:

For register ADCTRL1:

• AdcRegs.ADCTRL1.bit.SEQ_CASC = ?; // Dual Sequencer Mode
• AdcRegs.ADCTRL1.bit.CONT_RUN = ?; // Single Run Mode
• AdcRegs.ADCTRL1.bit.ACQ_PS = ?; // 8 x ADC-Clock
• AdcRegs.ADCTRL1.bit.CPS = ?; // divide by 1

For register ADCTRL2:

• AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = ?; // ePWM_SOCA
trigger

• AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = ?; // enable ADC int for seq1
• AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = ?; // interrupt after every EOS

For register ADCTRL3:

• AdcRegs.ADCTRL3.bit.ADCCLKPS = ?; // set FCLK to 12.5 MHz

Note: do NOT modify other bit fields of ADCTRL3 than “ADCCLKPS”. All other
bits have been initialized by the function call “InitAdc()”. Use slide 8-6 to calculate
the value for ADCCLKPS. If your F28335ControlCard is equipped with a 30MHz
external clock, it runs at a SYSCLKOUT-Frequency of 150 MHz.

For register MAXCONV:

• AdcRegs.ADCMAXCONV.all = ?; // 2 conversions

For register ADCCHSELSEQ1:

• AdcRegs.ADCCHSELSEQ1.bit.CONV00 = ?; // 1st channel ADCINA0

• AdcRegs.ADCCHSELSEQ1.bit.CONV01 = ?; // 2nd channel ADCINA1

 Lab 8_1: Two Potentiometer Voltages

F2833x - Analogue Digital Converter 8 - 23

Add ePWM2 Initialization
23. Unit ePWM2 will be the internal clock base for the sampling frequency. We will setup

this unit to run at 50 kHz and trigger a SOCA start of the ADC automatically at the
end of a period. Right after the ADC-register initialization add code:

For register EPwm2Regs.TBCTL, add code to:
• Ignore emulation suspend
• CLKDIV = HSPCLK/1
• HSPCLK = SYSCLKOUT/1
• no SWFSYNC
• SYNC-Out disabled
• no PHSEN
• Reload TBPRD on TBCTR = 0
• CTRMODE = count up mode

For register TBPRD:

• TPPRD +1 = TPWM / (HSPCLKDIV * CLKDIV * TSYSCLK)
 = 20 µs / 6.667 ns

For register ETPS:

• SOCAPRD : generate SOCA-signal on first event
• Clear all remaining bits of ETPS

For register ETSEL:

• SOCAEN: enable SOCA-signal
• SOCASEL: generate SOCA-signal on PRD event

Add ADC-Interrupt system
24. In “main()”, search for the re-map instruction of the PIE-table entry for

“PieVectTable.TINT0 = &cpu_timer0_isr;”, which is embedded between “EALLOW”
and “EDIS”. Also between these two instructions add:

PieVectTable.ADCINT = &adc_isr;

25. Also add a line to enable the PIE-Interrupt for the ADC:

PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

26. At the end of “Lab8_1.c” add a new interrupt service routine “adc_isr()” to your code.
Inside this function, add the following:

• Read the two ADC result register and load the value into variables
“Voltage_A0” and “Voltage_B0”:

 Voltage_A0 = AdcMirror.ADCRESULT0;

 Voltage_B0 = AdcMirror.ADCRESULT1;

• Reset ADC Sequencer1 (Register ADCCTRL2):

Lab 8_1: Two Potentiometer Voltages

8 - 24 F2833x - Analogue Digital Converter

AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;

• Clear Interrupt Flag ADC Sequencer 1 (Register ADCST)

AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;

• Acknowledge PIE Interrupt:

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

27. At the beginning of “Lab8_1” add a function prototype for the ADC interrupt service
routine:

interrupt void adc_isr(void);

Build, Load and Test
28. Now rebuild, and load the new project to the target. Switch into “Debugger”

perspective.

29. Set a breakpoint in the interrupt service routine “adc_isr()” at the last line of code.

Run
30. When you have modified your code correctly and you execute running in real-time,

this breakpoint should be hit periodically. If not, you missed one or more steps in your
procedure for this lab exercise. In this case try to review your modifications. If you do
not spot a mistake immediately try to test systematically:

• A good start is to temporarily disable the watchdog timer

• Verify that ePWM2 is counting (TBCTR)

• Verify that the clock system is enabled (PCLKCR) for EPWM2 and ADC

• Inspect the Interrupt Registers (IER, PIEIER, INTM)

• Inspect the ADC Register Set (ADCTRL1-3)

If nothing helps, ask your instructor for advice. Please do not ask questions like
“It is not working” or “I do not know what’s wrong...” Instead, summarize your
test strategy and show intermediate results for inspection.

31. After you have verified that the interrupt service routine “adc_isr()” is called
periodically, check the ADC results. Inspect the variables “Voltage_VR1” and
“Voltage_VR2” in your watch window. With the breakpoint still set, modify the
analogue input voltages with the two potentiometers “VR1” and “VR2” of the
Peripheral Explorer Board. You should obtain values between 0 and 4095 for the
leftmost and rightmost positions of VR1 and VR2 respectively.

32. Now remove all breakpoints and run the code. LEDs LD1 to LD4 should display the
values for “Voltage_VR1” and “Voltage_VR2” every 0.5 seconds.

End of Lab 8_1

 Lab 8_2: Analogue Speed Control of “LED- counter”

F2833x - Analogue Digital Converter 8 - 25

Lab 8_2: Analogue Speed Control of “LED- counter”

Objective
Now that we have performed an exercise both with the ADC (Lab 8_1) and the CPU
Timer 0 based binary counter in Lab6, we can combine the two exercises. The
objective is to control the speed step of the binary LED-counter from Lab6 by a
voltage taken from ADC-Input ADCIN_A0. The control law should be: The higher
the voltage ADCIN_A0, the higher the speed of the LED-counter.

Use your code from Lab8_1 and Lab6 as the starting point.

8 - 22

Optional Lab8_2
Modify Lab 6 (“4-bit Counter”):

• use the Analogue Input ADCIN0 to change
the counter speed

• use a LED-frequency range between 50Hz
and 1 Hz

• use (1) a linear or (2) a logarithm scale
between Fmin and Fmax.

Procedure

Open Project
1. If not still open from Lab8_1, re-open project Lab8.pjt in the “C/C++” –

perspective.

2. Open the file “Lab8_1.c” and save it as “Lab8_2.c”

3. Exclude file “Lab8_1.c” from build. Use a right mouse click at file “Lab8_1.c”, and
enable “Exclude File(s) from Build”.

Lab 8_2: Analogue Speed Control of “LED- counter”

8 - 26 F2833x - Analogue Digital Converter

Modify Source Code
4. Edit “Lab8_2.c”. In function “main()”, remove the whole contents of the endless

while(1) -loop and replace it with the contents of the while(1)-loop of file “Lab6.c”

5. At the beginning of “Lab8_2.c”, remove the global variable “Voltage_VR2” and add
an integer variable “counter”; initialize this counter to zero.

6. Change the ADC initialization to convert channel ADCINA0 only. Since we do not
need VR2 in this exercise, also remove the read instruction for ADCRESULT1 from
function “adc_isr()”.

Build, Load and Test
7. Time for a preliminary test. Rebuild the project (Project  Rebuild All), debug the

project (Target  Debug Active Project) and switch to the “Debug” – perspective.

Run the code. The LEDs should show the binary counter on LEDs LD1 to LD4. The
counter period is still fixed to 100 milliseconds.

In the watch window, the variable “Voltage_VR1” should have a value between 0 and
4095. Modify the position of potentiometer VR1, then right click into Watch Window,
select “Refresh” and verify that the value of “Voltage_VR1” changes accordingly.

So far we have reached the same result as in Lab6, a 100 millisecond period between
the steps of the counter. However, now we have additionally an active ADC running
in the background!

Modify the main loop
8. All we have to do now is to use variable “Voltage_VR1” to control the period of CPU-

Timer 0. Since we can exceed the Watchdog overflow period by the CPU Timer 0
period, it makes sense to include both watchdog clear instructions into the wait loop:

while(CpuTimer0.InterruptCount == 0)
{
 EALLOW;
 SysCtrlRegs.WDKEY = 0x55;
 SysCtrlRegs.WDKEY = 0xAA;
 EDIS;
}

Now we have to modify the period of CPU Timer0. Recall that the task is to generate
a period between 20,000µs (50Hz) and 1,000,000µs (1Hz). And that CPU Timer 0 can
be initialized by a function call as follows:

 ConfigCpuTimer(&CpuTimer0,100,x);

Add such a function call directly after the wait-loop! Also, after this function call, re-
enable CPU-Timer 0:

ConfigCpuTimer(&CpuTimer0,100,x); // calculate x before calling
CpuTimer0Regs.TCR.bit.TSS = 0; // restart timer0

 Lab 8_2: Analogue Speed Control of “LED- counter”

F2833x - Analogue Digital Converter 8 - 27

Parameter x in this function call is a floating-point variable and gives the period in
microseconds. What you have to do is to call this function with a value for x, which is
calculated based on “Voltage_VR1” (0…4095). Recall that x should be in the limits of
20,000 µs (50Hz) and 1,000,000 µs (1Hz).

Rebuild, Load and Test
9. Rebuild the project (Project  Rebuild All), debug the project (Target  Debug

Active Project) and switch to the “Debug” – perspective.

Run the code. The LEDs should show the binary counter at LEDs LD1 to LD4. If you
turn the potentiometer VR1 the speed of the binary counter at the four LEDs should
change.

End of Lab 8_2

Lab 8_2: Analogue Speed Control of “LED- counter”

8 - 28 F2833x - Analogue Digital Converter

This page has been left blank.

	F2833x Analogue Digital Converter
	Introduction
	Module Topics
	ADC Module Overview
	ADC operating modes
	ADC in Cascaded Mode
	ADC in Dual Sequencer Mode
	ADC Conversion Time
	ADC Register Block
	ADC Control Register 1
	ADC Control Register 2
	ADC Control Register 3
	ADC MAXCONV Register
	ADC Input Channel Select Registers
	Example: 3 phase control system & measurement
	ADC Result Register Set
	ADCREFSEL Register

	Lab 8_1: Two Potentiometer Voltages
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Modify Source Code
	Build, Load and Test
	Add ADC Initialization
	Add ePWM2 Initialization
	Add ADC-Interrupt system
	Build, Load and Test
	Run

	Lab 8_2: Analogue Speed Control of “LED- counter”
	Objective
	Procedure
	Open Project
	Modify Source Code
	Build, Load and Test
	Modify the main loop
	Rebuild, Load and Test

