

F2833x - Serial Peripheral Interface 10 - 1

Introduction
The TMS320F2833x contains built-in features that allow several methods of communication
and data exchange between the F2833x and other devices. In the previous chapter we
discussed the asynchronous UART interface SCI. Chapter 10 introduces a first synchronous
interface, the Serial Peripheral Interface (SPI). More synchronous interface techniques, such
as McBSP and CAN, will be discussed in later chapters.

The SPI module is a synchronous serial I/O port that shifts a serial bit stream of variable
length and data rate between the ‘F2833x’ and other peripheral devices. Here “synchronous”
means that the data transmission is synchronized to a clock signal.

During data transfers, one SPI device must be configured as the transfer MASTER, and all
other devices configured as SLAVES. The master drives the transfer clock signal for all
SLAVES on the bus. SPI communication can be implemented in any of three different
modes:

• MASTER sends data, SLAVES send dummy data
• MASTER sends data, one SLAVE sends data
• MASTER sends dummy data, one SLAVE sends data

10 - 2

SPI Data Flow

SPI Shift Register SPI Shift Register

SPI Device #1 - Master SPI Device #2 - Slave

 Simultaneous transmits and receive
 SPI Master provides the clock signal

shift shift

clock

 F2833x Serial Peripheral Interface

Module Topics

10 - 2 F2833x - Serial Peripheral Interface

Module Topics
F2833x Serial Peripheral Interface .. 10-1

Introduction ... 10-1

Module Topics ... 10-2

Serial Peripheral Interface (SPI) - Overview .. 10-3

SPI Data Transfer ... 10-4

SPI Register Set ... 10-5
SPI Confguration Control Register - SPICCR .. 10-6
SPI Operation Control Register - SPICTL .. 10-6
SPI Receive Emulation Buffer Register - SPIRXEMU .. 10-6
SPI Baud Rate Register - SPIBRR .. 10-7
SPI Status Register - SPISTS .. 10-7
SPI FIFO Transmit Register ... 10-8

SPI Summary ... 10-9

SPI Lab Exercises ... 10-9

 Serial Peripheral Interface (SPI) - Overview

F2833x - Serial Peripheral Interface 10 - 3

Serial Peripheral Interface (SPI) - Overview
In its simplest form, the SPI can be thought of as a programmable shift register. Data bits are
shifted in and out of the SPI through the SPIDAT register. Two more registers configure the
programming interface. To transmit a data frame, we have to write the 16-bit message into
the SPITXBUF buffer. A received frame will be read by the SPI directly into the SPIRXBUF
buffer. For our lab exercises, this means we write directly to SPITXBUF and we read from
SPIRXBUF.

There are two operating modes for the SPI: “basic mode” and “enhanced FIFO-buffered
mode”. In “basic mode”, a receive operation is double-buffered, that is the CPU need not
read the current received data from SPIRXBUF before a new receive operation can be
started. However, the CPU must read SPIRXBUF before the new operation is complete or a
receiver-overrun error will occur. Double-buffered transmit is not supported in this mode;
the current transmission must be complete before the next data character is written to
SPITXDAT or the current transmission will be corrupted. The Master can initiate a data
transfer at any time because it controls the SPICLK signal.

10 - 3

SPI Block Diagram

SPIRXBUF.15-0

SPIDAT.15-0

SPICLK

SPISOMI

SPISIMO

LSPCLK baud
rate

clock
polarity

clock
phase

C28x - SPI Master Mode Shown

SPITXBUF.15-0

LSBMSB

TX FIFO_0

TX FIFO_15

RX FIFO_0

RX FIFO_15

In “enhanced FIFO - buffered mode” we can build up to 16 levels of transmit and receive
FIFO memory. Again, our program interfaces to the SPI unit are the registers SPITXBUF
and SPIRXBUF. This expands the SPI’s buffer capacity for receive and transmit by up to 16
times. In this mode we are also able to specify an interrupt level that depends on the filled
state of the two FIFOs.

SPI Data Transfer

10 - 4 F2833x - Serial Peripheral Interface

SPI Data Transfer
As you can see from the previous slide, the SPI master is responsible for generating the data
rate of the communication. Beeing derived from the internal low speed clock prescaler
(LSPCLK), we can specify an individual baud rate for the SPI. Because not all SPI devices
are interfaced in the same way, we can adjust the shape of the clock signal by two more bits,
“clock polarity” and “clock phase”. Strictly speaking, the SPI is not a standard; slave
devices such as EEPROMs, DACs, ADCs, Real-time clocks and temperature sensors do
have different requirements for the interface timing. For this reason, TI includes options to
adjust the SPI timing.

Data transmission always starts with the MSB (most significant bit) out of SPIDAT first and
received data will be shifted into the device, also with MSB first. Both transmitter and
receiver perform a left shift with every SPI clock period. For frames of less than 16 bits, data
to be transmitted must be left justified before transmission starts. Received frames of less
than 16 bits must be masked by user software to suppress unused bits.

10 - 4

SPI Data Character Justification

 Programmable data
length of 1 to 16 bits

 Transmitted data of less
than 16 bits must be left
justified
MSB transmitted first

 Received data of less
than 16 bits are right
justified

 User software must
mask-off unused MSB’s

11001001XXXXXXXX

XXXXXXXX11001001

SPIDAT – Device #1

SPIDAT - Device #2

 SPI Register Set

F2833x - Serial Peripheral Interface 10 - 5

SPI Register Set
The next slide summarizes all SPI control registers. Some of the devices in the C2000 family
feature more than one SPI channel, numbered A, B, C and so on. Therefore the register
names of the first SPI are expanded with an ‘A’.

10 - 5

SPI-A Registers
Address Register Name

0x007040 SPICCR SPI-A configuration control register

0x007041 SPICTL SPI-A operation control register
0x007042 SPISTS SPI-A status register
0x007044 SPIBRR SPI-A baud rate register
0x007046 SPIRXEMU SPI-A receive emulation buffer register
0x007047 SPIRXBUF SPI-A serial receive buffer register
0x007048 SPITXBUF SPI-A serial transmit buffer register
0x007049 SPIDAT SPI-A serial data register
0x00704A SPIFFTX SPI-A FIFO transmit register
0x00704B SPIFFRX SPI-A FIFO receive register
0x00704C SPIFFCT SPI-A FIFO control register
0x00704F SPIPRI SPI-A priority control register

10 - 6

SPI-A Configuration Control Register
SPICCR @ 0x007040

0127 6 5-4
reserved

SPI CHAR.3-0
character length = number + 1
e.g. 0000b ⇒ length = 1

1111b ⇒ length = 16

SPI SW RESET
0 = SPI flags reset
1 = normal operation

CLOCK POLARITY
0 = rising edge data transfer
1 = falling edge data transfer

reserved
15-8 3

SPI Register Set

10 - 6 F2833x - Serial Peripheral Interface

SPI Confguration Control Register - SPICCR
It is good practice to RESET the SPI unit at the beginning of the initialization procedure.
This is done by clearing bit 7 (SPI SW RESET) to 0 using a first instruction, followed by
setting it back to 1 using a second instruction. Bit 6 selects the active clock edge to declare
the data as valid. This setup depends on the particular SPI - device. Bits 3...0 define the
character length of the SPI-frame.

SPI Operation Control Register - SPICTL

10 - 7

SPI-A Operation Control Register
SPICTL @ 0x007041

01215-5 4 3

reserved

CLOCK PHASE
0 = no CLK delay
1 = CLK delayed 1/2 cycle

OVERRUN INT ENABLE
0 = disabled
1 = enabled

MASTER/SLAVE
0 = slave
1 = master

TALK
0 = transmission disabled,

SPISIMO at high impedance
1 = transmission enabled

SPI INT ENABLE
0 = disabled
1 = enabled

Bit 4 and bit 0 enable or disable the SPI- interrupts; Bit 4 enables the receiver’s overflow
interrupt. Bit 2 defines the operating mode for the F2833x to be master or slave of the SPI-
chain. With the help of bit 3 we can implement another half clock cycle delay between the
active clock edge and the point of time, when data are valid. Again, this bit depends on the
particular SPI-device. Bit 1 controls whether the F2833x listens only (bit 1 = 0) or if it is
initialized as receiver and transmitter (bit 1 = 1).

SPI Receive Emulation Buffer Register - SPIRXEMU

By reading register SPIRXBUF the corresponding interrupt flag SPI INT FLAG (SPISTS.6)
is cleared automatically to allow a next character to be received. However, when we read
SPIRXBUF just for test purposes, e.g. in a watch window, we would not want to have this
bit cleared automatically. Therefore SPIRXEMU contains the same received data as
SPIRXBUF, but reading SPIRXEMU does not clear the SPI INT FLAG bit. So every emula-
tor access to SPIRXBUF actually reads data from SPIRXEMU without clearing the SPI INT
FLAG.

 SPI Register Set

F2833x - Serial Peripheral Interface 10 - 7

SPI Baud Rate Register - SPIBRR

10 - 8

SPI-A Baud Rate Register
SPIBRR @ 0x007044

15-7 6-0
reserved SPI BIT RATE

SPICLK signal =

LSPCLK
(SPIBRR + 1)

LSPCLK
4

, SPIBRR = 3 to 127

, SPIBRR = 0, 1, or 2

Need to set this only when in master mode!

Clock base for the SPI baud rate selection is the Low speed Clock Prescaler (LSPCLK).

SPI Status Register - SPISTS

10 - 9

SPI-A Status Register
SPISTS @ 0x007042

7 6 4-0

SPI INT FLAG (read only)
• Set to 1 when transfer completed
• Interrupt requested if SPI INT ENA

bit set (SPICTL.0)
• Cleared by reading SPIBRXUF

RECEIVER OVERRUN (read/clear only)
• Set to 1 if next reception completes before SPIRXBUF read
• Interrupt requested if OVERRUN INT ENA bit set (SPICTL.4)
• Cleared by writing a 1

reservedreserved

15-8

TX BUF FULL (read only)
• Set to 1 when char written
to SPITXBUF

• Cleared when char in SPIDAT

5

SPI Register Set

10 - 8 F2833x - Serial Peripheral Interface

SPI FIFO Transmit Register

10 - 10

SPI-A FIFO Transmit Register
SPIFFTX @ 0x00704A

0

TXFFIL2

SPIFFEN TXFFST0TXFFST3

TXFFIEN

1234567

89101112131415

TXFFIL0TXFFIL1TXFFIL4 TXFFIL3

TXFFST1

TXFFINT
CLR

TXFFST2

TXFFINT

TXFFST4TXFIFO
RESETreserved

TX FIFO Status (read-only)
00000 TX FIFO empty
00001 TX FIFO has 1 word
00010 TX FIFO has 2 words
00011 TX FIFO has 3 words

10000 TX FIFO has 16 words
...

TX FIFO Interrupt Level
Interrupt when TXFFST4-0
and TXFFIL4-0 match

SPI FIFO
Enhancements

0 = disable
1 = enable

TX FIFO Reset
0 = reset (pointer to 0)
1 = enable operation

TX FIFO
Interrupt

(on match)
Enable

0 = disable
1 = enable

TX FIFO
Interrupt

Flag (read-only)
0 = not occurred
1 = occurred

TX FIFO
Interrupt
Flag Clear
0 = no effect
1 = clear

10 - 11

SPI-A FIFO Receive Register
SPIFFRX @ 0x00704B

0

RXFFIL2

RXFF-
OVF CLR RXFFST0RXFFST3

RXFFIEN

1234567

89101112131415

RXFFIL0RXFFIL1RXFFIL4 RXFFIL3

RXFFST1

RXFFINT
CLR

RXFFST2

RXFFINT

RXFFST4RXFIFO
RESET

RXFF-
OVF

RX FIFO Status (read-only)
00000 RX FIFO empty
00001 RX FIFO has 1 word
00010 RX FIFO has 2 words
00011 RX FIFO has 3 words

10000 RX FIFO has 16 words
...

RX FIFO Interrupt Level
Interrupt when RXFFST4-0
and RXFFIL4-0 match

RX FIFO Reset
0 = reset (pointer to 0)
1 = enable operation

RX FIFO
Interrupt

(on match)
Enable

0 = disable
1 = enable

RX FIFO
Interrupt

Flag (read-only)
0 = not occurred
1 = occurred

RX FIFO
Interrupt
Flag Clear
0 = no effect
1 = clear

RX FIFO
Overflow

Flag (read-only)
0 = no overflow
1 = overflow

RX FIFO
Overflow
Flag Clear
0 = no effect
1 = clear

The FIFO operation of the SPI is controlled by bit 14 as master switch. The SPI-Transmit
FIFO interrupt service call depends on the match between TX FIFO Status and TX FIFO
Interrupt Level. The TX FIFO Reset can be used to reset the FIFO state machine (bit13= 0)
and to re-enable it (bit 13=1).

 SPI Summary

F2833x - Serial Peripheral Interface 10 - 9

SPI Summary

10 - 12

SPI Summary
 Provides synchronous serial

communications
 Two wire transmit or receive (half duplex)
 Three wire transmit and receive (full duplex)

 Software configurable as master or slave
 C28x provides clock signal in master mode

 Data length programmable from 1-16 bits
 125 different programmable baud rates

SPI Lab Exercises
At the Peripheral Explorer board the SPI-A channel is hard wired to the control lines of an
audio codec device TLV320AIC23 (U7), which will be discussed at the end of the McBSP-
chapter. In this context we will also discuss the setup of channel SPI-A.

Because of the hard wired SPI-A lines it is not possible to connect other SPI devices, such as
EEPROMs, FRAMs, DACs or real-time clocks to the Peripheral Explorer Board.
Unfortunately, we cannot perform an exercise with SPI-EEPROMs or DACs. However, if
you use the previous Version 2.0 of this teaching CD-ROM based on the F2812, you will be
able to perform an exercise with a SPI-EEPROM and a SPI-DAC.

Note: The Peripheral Explorer Board has an onboard SPI-EEPROM AT25256 (U6).
However, this device has been wired to McBSP channel B. The Interface McBSP is able to
operate in a “SPI-Emulation” operating mode, which will be also used at the end of the
McBSP chapter to access the SPI-EEPROM.

SPI Lab Exercises

10 - 10 F2833x - Serial Peripheral Interface

 This page is blank.

	F2833x Serial Peripheral Interface
	Introduction
	Module Topics
	Serial Peripheral Interface (SPI) - Overview
	SPI Data Transfer
	SPI Register Set
	SPI Confguration Control Register - SPICCR
	SPI Operation Control Register - SPICTL
	SPI Receive Emulation Buffer Register - SPIRXEMU
	SPI Baud Rate Register - SPIBRR
	SPI Status Register - SPISTS
	SPI FIFO Transmit Register

	SPI Summary
	SPI Lab Exercises

