

F2833x - Controller Area Network 11 - 1

Introduction
One of the most successful stories of the developments in automotive electronics in the last
decade of the 20th century has been the introduction of distributed electronic control units in
passenger cars. Customer demands, the dramatic decline in costs of electronic devices and
the amazing increase in the computing power of microcontrollers has led to more and more
electronic applications in a car. Consequently, there is a strong need for all those devices to
communicate with each other, to share information or to co-ordinate their interactions.

The “Controller Area Network” was introduced and patented by Robert Bosch GmbH,
Germany. After short and heavy competition, CAN was accepted by almost all
manufacturers. Nowadays, it is the basic network system in nearly all automotive
manufacturers’ shiny new cars. Latest products use CAN accompanied by other network
systems such as LIN (a low-cost serial net for body electronics), MOST (used for in-car
entertainment) or Flexray (used for safety critical communication) to tailor the different
needs for communication with dedicated net structures.

Because CAN has high and reliable data rates, built-in failure detection and cost-effective
prices for controllers, nowadays it is also widely used outside automotive electronics. It is a
standard for industrial applications such as a “Field Bus” used in process control. A large
number of distributed control systems for mechanical devices use CAN as their “backbone”.

11 - 19

CAN Physical Layers
CAN - High - Speed (ISO 11898):

node 1 node 30

120
Ohm

120

Ohm

CAN_H

CAN_L

 F2833x Controller Area Network

Module Topics

11 - 2 F2833x - Controller Area Network

Module Topics
F2833x Controller Area Network ... 11-1

Introduction ... 11-1

Module Topics ... 11-2

Basic CAN Features .. 11-4

Automotive Network Systems... 11-5

CAN Implementation / Data Format ... 11-7

CAN Data Frame .. 11-8

Standardization ISO and SAE ... 11-10

CAN Application Layer ... 11-11

CAN Bus Arbitration - CSMA/CA ... 11-12

High Speed CAN ... 11-14

CAN Error Frames .. 11-15
Active Error Frame ... 11-16
Passive Error Frame .. 11-17
CAN Error Types .. 11-19
CAN Error Status .. 11-19
CAN - Error Counter .. 11-20

F2833x CAN Module ... 11-21

F2833x Programming Interface .. 11-22
CAN Register Map ... 11-23
Mailbox Enable – CANME Mailbox Direction - CANMD .. 11-23
Transmit Request Set & Reset - CANTRS / CANTRR .. 11-24
Transmit Acknowledge - CANTA .. 11-24
Receive Message Pending - CANRMP... 11-25
Remote Frame Pending - CANRFP .. 11-25
Global Acceptance Mask - CANGAM ... 11-26
Master Control Register - CANMC .. 11-27

CAN Bit - Timing ... 11-28
Bit-Timing Configuration - CANBTC .. 11-29

CAN Error Register ... 11-31
Error and Status - CANES .. 11-31
CAN Error Counter – CANTEC / CANREC .. 11-32

CAN Interrupt Register ... 11-32
Global Interrupt Mask - CANGIM ... 11-32
Global Interrupt 0 Flag - CANGIF0 ... 11-33
Global Interrupt 1 Flag - CANGIF1 ... 11-33
Mailbox Interrupt Mask - CANMIM .. 11-34
Overwrite Protection Control - CANOPC .. 11-34
Transmit I/O Control - CANTIOC.. 11-35
Receive I/O Control - CANRIOC ... 11-35

Alarm / Time Out Register .. 11-36
Local Network Time - CANLNT .. 11-36
Time Out Control - CANTIOC ... 11-36
Local Acceptance Mask - LAMn .. 11-37

 Module Topics

F2833x - Controller Area Network 11 - 3

Message Object Time Stamp - MOTSn ... 11-37
Message Object Time Out - MOTOn ... 11-38

Mailbox Memory ... 11-39
Message Identifier - CANMID ... 11-39
Message Control Field - CANMCF.. 11-39
Message Data Field Low - CANMDL ... 11-40
Message Data Field High - CANMDH .. 11-40

Lab Exercise 11_1 .. 11-41
Preface .. 11-41
Objective .. 11-42
Procedure .. 11-43
Open Files, Create Project File ... 11-43
Project Build Options ... 11-44
Preliminary Test ... 11-44
Add CAN Initialization Code ... 11-45
Initialize CAN Mailbox .. 11-46
Add the Data Byte and Transmit .. 11-47
Build, Load and Run .. 11-48

Lab Exercise 11_2 .. 11-49
Preface .. 11-49
Objective .. 11-50
Procedure .. 11-50
Open Files, Create Project File ... 11-50
Project Build Options ... 11-51
Preliminary Test ... 11-51
Add CAN Initialization Code ... 11-52
Modify Source Code .. 11-53
Prepare Receiver Mailbox #1 ... 11-53
Wait for a message in mailbox 1 .. 11-54
Build, Load and Run .. 11-54

What’s next? ... 11-55

Basic CAN Features

11 - 4 F2833x - Controller Area Network

Basic CAN Features
CAN is a serial communication network, the information is transmitted over 1 (“fault
tolerant low speed”) or 2 (“high speed” differential) physical signal lines. Although there is
no explicit clock information in form of an additional clock line, the receivers are able to re-
synchronize themselves based on a “non return to zero” (NRZ) modulation technique and an
additional “stuff” bit rule, which forces the transmitter to include a stuff bit after 5
consecutive bits of ‘0’ or ‘1’.

CAN does not use physical addresses to address stations. Each message is sent with an
identifier that is recognized by the different nodes. The identifier has two functions - it is
used for message filtering and for message priority. The identifier determines if a transmitted
message will be received by CAN modules and determines the priority of the message when
two or more nodes want to transmit at the same time.

11 - 2

Controller Area Network (CAN)
• developed by Robert Bosch GmbH, Germany in 1987
• Products available from all microcontroller manufacturers
• International Standards: ISO11898 (Europe), SAE J2284 (US) for

“high – speed” CAN; ISO 11519-2 for “fault-tolerant low speed”
CAN

• backbone serial bus system for automotive applications, but also
used in industrial automation & control

• Event triggered Serial Bus System; Self-Synchronisation

More Features :
• multi master bus access
• random access with collision avoidance (CSMA / CA)
• short message length , at max. 8 Bytes per message
• data rates 100KBPS to 1MBPS
• short bus length, physical length depends on data rate
• self-synchronised bit coding technology
• Robust EMC - behaviour
• build in fault tolerance

The bus access procedure is a multi-master principle, all nodes are allowed to use CAN as a
master node. One of the basic differences to Ethernet is the adoption of non-destructive bus
arbitration in case of collisions, called “Carrier Sense Multiple Access with Collision
Avoidance“(CSMA/CA). This procedure ensures that in case of an access conflict, the
message with higher priority will not be delayed by this collision.

The physical length of the CAN is limited, depending on the baud rate. The data frame
consists of a few bytes only (maximum 8), which increases the ability of the net to respond
to new transmit requests. On the other hand, this feature makes CAN unsuitable for very
high data throughputs, for example, for real time video processing.

There are several physical implementations of CAN, such as differential twisted pair
(automotive class: CAN high speed), single line (automotive class: CAN low speed) or fibre
optic CAN, for use in harsh environments.

 Automotive Network Systems

F2833x - Controller Area Network 11 - 5

Automotive Network Systems

11 - 3

Electronic Control Units
Examples for Microcontrollers used in car:

Antilock Break System - ABS (1 + 4)
Keyless Entry System(1)
Active Wheel Drive Control (4)
Engine Control (2)
Airbag Sensor Systems (6+) Seat occupation sensors(4)
Automatic Gearbox(1) Electronic Park Brake(1)

diagnostic computer(1)
driver display unit(1)
air conditioning system(1)
adaptive cruise control(1)
radio / CD-player(2)
collision warning radar(2)
rain/ice/snow sensor systems (1)

each)
dynamic drive control(4)
active damping system (4)
driver information system(1)
GPS navigation system(3)

Today a car is packed with electronic devices, sensors, actuators and control units. To name
a few, Slide 11-3 shows some of the functional blocks and the number of microcontrollers in
brackets. There is a lot of information to be shared by such electronic control units: a
network is required.

11 - 4

Why a car network like CAN?
 Requirements of an in car network:

• low cost solution
• good and high performance with few overhead transmission
• high volume production
• high reliability and electromagnetic compatibility (EMC)
• data security due to a fail-safe data transmission protocol
• short message length, only a few bytes per message

Where in a car is CAN used?
• communication between electronic control units
• separated CAN – sections at different speed for:

• “Auto - Body” electronic control units
(chassis, light, central locking)

• Engine control units and Power train modules
• Comfort modules

Automotive Network Systems

11 - 6 F2833x - Controller Area Network

As you can guess, there are some options to implement a communication network into a car.
Depending on the application field, the bandwidth for data throughput, the safety level and
the budget limitation, we can find different communication standards:

• Controller Area Network (CAN)

o High - speed CAN (1 Mbit/s, 500 kbit/s)

o Low - Speed CAN (100 kbit/s, 83.3 kbit/s)

• Local Interconnect Network (LIN)

o 20 kbit/s

• Media Oriented Systems Transport (MOST)

o 25Mbit/s, 50 Mbit/s, 150 Mbit/s

• FlexRay®

o 10 Mbit/s

11 - 5

Automotive network systems
 Other automotive networks than CAN:

• LIN – “Local Interconnect Network”
• Body Electronic; Door, Mirror, Seat, Dashboard, Roof
• 20 Kbit/s
• Master / Slave time triggered protocol
• Single wire system; 12 V signal level
• www.lin-subbus.org

• MOST – “Media Oriented Systems Transport”
• Optical System for Multi – Media and infotainment
• Audio, Video, Mobile Phone, GPS
• Fibre optical circular system at 25 Mbit/s or 150 Mbit/s or
• Electrical layer at 50 Mbit/s.
• www.mostcooperation.com

• FlexRay
• Time Triggered Protocol for fail safe applications;
• 10 Mbit/s; dual channel redundancy
• www.flexray.com

 CAN Implementation / Data Format

F2833x - Controller Area Network 11 - 7

CAN Implementation / Data Format

11 - 6

Implementation / Classification of CAN
Implementation: amount of functionality in CAN- Silicon

Don’t get confused !

Communication is standardized and identical for all
implementations of CAN. However, there are two types
of hardware implementation and two versions of data
format:

Implementation Data Format

Full - CAN Basic CAN Standard Extended

There are two versions of how the CAN-module is implemented in silicon, called “Basic”
and “Full” - CAN. Almost all new processors with a built-in CAN module offer both modes
of operation. Basic-CAN as the only mode is normally used in cost sensitive applications.

11 - 7

Basic- and Full-CAN communication
• Close coupled MCU-core and CAN
• only one transmit buffer
• only two receive buffer
• only one filter for incoming messages
• Software routines are needed to select

between incoming messages

• provide a message server
• extensive acceptance filtering on incoming

messages
• user configurable mailboxes
• mailbox memory area , size of mailbox

areas depends on manufacturer
• advanced error recognition

Full - CAN

Basic CAN

CAN Data Frame

11 - 8 F2833x - Controller Area Network

CAN Data Frame

11 - 8

The Data Format of CAN

• CAN-Version 2.0A
• messages with 11-bit -

identifiers

• CAN-Version 2.0B
• messages with 29-bit-

identifiers

==> Suitably configured, each implementation (BASIC or FULL)
can handle both standard and extended data formats.

Standard

Extended

The two versions of the data frame format allow the reception and transmission of standard
frames and extended frames in a mixed physical set up; provided the silicon is able to handle
both types simultaneously (CAN version 2.0A and 2.0B respectively).

11 - 9

The CAN Data Frame

Identifier
11 bits

start
1 bit EOF + IFS

10 bits

ACK
2 bits

CRC
15 bits

data
0...8 byte

DLC
4 bits

r0
1 bit

r1
1bit

RTR
1bitSRR

1bit
IDE
1bit

Identifier
18bit

DATA-Frame CAN 2.0A (11-bit-identifier)

DATA-Frame CAN 2.0B (29-bit-identifier)

 CAN Data Frame

F2833x - Controller Area Network 11 - 9

11 - 10

The CAN Data Frame
each data frame consists of four segments :
(1) arbitration-field :

• denote the priority of the message
• logical address of the message (identifier)
• Standard frame, CAN 2.0A: 11 bit-identifier
• Extended frame, CAN 2.0B: 29 bit-identifier

(2) data field :
• up to 8 bytes per message ,
• a 0 byte message is also permitted

(3) CRC field:
• cyclic redundancy check ; contains a checksum

generated by a CRC-polynomial
(4) end of frame field:

• contains acknowledgement, error-messages, end
of message

The arbitration field is used to denote both the priority and the type of the message. CAN
uses a broadcast type of transmission, there are no node addresses. Instead of node addresses,
CAN implements logical groups of message identifiers. The next slide explains all bit fields
of a CAN data frame in detail.

11 - 11

The CAN Data Frame
start bit (1 bit - dominant): beginning of a message; after idle-time falling-edge to

synchronize all transmitters
identifier (11 bit): mark the name of the message and its priority ;the lower the value

the higher the priority
RTR (1 bit): remote transmission request; if RTR=1 (recessive) no valid data inside

the frame - it is a request for receivers to send their messages
IDE (1 bit): Identifier Extension; if IDE=1 then extended CAN-frame
r0 (1 bit): reserved
CDL (4 bit): data length code in byte (0...8)
data (0...8 byte): the data of the message
CRC (15 bit): cyclic redundancy code for error detection, no correction; hamming-

distance 6 (up to 6 single bit errors can be detected)
ACK (2 bit): acknowledge; if a receiving node has received a valid message, it

must transmit an dominant acknowledge – bit
EOF (7 bit = 1, recessive): end of frame; intentional violation of the bit-stuff-rule ;

normally after five recessive bits one stuff-bit follows automatically
IFS (3 bit = 1, recessive): inter frame space; time space to copy a received

message from bus-handler into buffer
Extended Frame only :
SRR (1 bit = recessive): substitute remote request ; substitution of the RTR-bit in

standard frames
r1 (1 bit): reserved

Standardization ISO and SAE

11 - 10 F2833x - Controller Area Network

 Standardization ISO and SAE

11 - 12

The Standardisation of CAN
• CAN is an open system and has been standardized by

ISO
• CAN follows the ISO - OSI seven layer model for open

system interconnections
• CAN implements layer 1, 2 and 7 only
• However, Layer 7 is not standardised

Physical Layer Type Europe
www.iso.org

North America
www.sae.org

Single – Wire CAN n/a SAE J2411
Single Wire CAN for Vehicle
Applications

Low-Speed Fault Tolerant
CAN

ISO 11519 - 2
ISO 11898 - 3

n/a.

High-Speed CAN ISO 11898 SAEJ2284

As an open system, CAN today is standardized both by the European Standardization
Organization (ISO) and the Society of Automotive Engineers (SAE). All CAN standards
define layer 1 and 2 of the OSI - layer model only. For layer 7 some higher layer solutions
exist.

11 - 13

ISO Reference Model
Open Systems Interconnection (OSI):

Layer 1: transmission line(s)
• differential two-wire-line, twisted

pair with/without shield
• Transceiver Integrated Circuit
• Optional: fibre optical lines (passive

coupled star, carbon)
• Optional: Coding as PWM, NRZ,

Manchester Code
• ISO 11898

Layer 2: Data Link Layer
• message format and transmission

protocol
• ISO 11898
• CSMA/CA access protocol

Layer 7: Application Layer
• different standards in industry, not

standardized in automotive

 CAN Application Layer

F2833x - Controller Area Network 11 - 11

CAN Application Layer

11 - 14

CAN Layer 7
1. CAN Application Layer (CAL):

• European CAN user group ”CAN in Automation (CiA)”
• originated by Philips Medical Systems 1993
• CiA DS-201 to DS-207
• standardised communication objects, -services and -protocols (CAN-

based Message Specification)
• Services and protocols for dynamic attachment of identifiers (DBT)
• Services and protocols for initialise, configure and obtain the net (NMT)
• Services and protocols for parametric set-up of layer 2 &1 (LMT)
• Automation, medicine, traffic-industry

2. OSEK/VDX
• “Offene Systeme für Elektronik im Kraftfahrzeug”
• Standard of European automotive electronics industry
• include services of a standardised real-time-operating system
• Network Management Services
• Communication Services

For OSI - layer 7, some user groups have defined specific layers, such as CAL, CANOpen or
DeviceNet, which are tailored to certain application areas. These layers are not compatible
with each other. In automotive applications, layer 7 is usually a proprietary (and
confidential) in - house solution.

11 - 15

CAN Layer 7
3. CANopen

• European Community funded project “ESPRIT”
• 1995 : CANopen profile :CiA DS-301
• 1996 : CANopen device profile for I/O : CiA DS-401
• 1997 : CANopen drive profile
• industrial control , numeric control in Europe

4. DeviceNet
• Allen-Bradley, now ODVA-group (www. odva.org)
• device profiles for drives, sensors and actuators
• master-slave communication as well as peer to peer
• industrial control , mostly USA

5. Smart Distributed Systems (SDS)
• Honeywell , device profiles
• only 4 communication functions , less hardware resources
• industrial control and PC-based control

CAN Bus Arbitration - CSMA/CA

11 - 12 F2833x - Controller Area Network

CAN Bus Arbitration - CSMA/CA

11 - 16

Bus Access Procedure
The “Ethernet”: CSMA / CD

Send Message

End

listen to bus

bus
empty ?

transmit &
receive

Collision abort transmit

time delay

no

yes

yes

no

CSMA /CD:
Carrier
Sense
Multiple
Access with
Collision
Detection

Note: This flowchart does NOT apply to
CAN! See following page

CAN feature a modified CSMA/CD access control principle, where a message with the
highest priority will continue its transmission regardless of the collision with other messages.
Therefore the modification is called “collision avoidance” (/CA), sometimes “collision
resolution” (/CR).

11 - 17

CAN Access Procedure: CSMA/CA

node A

node B

bus line

Tx

Rx

Tx

Rx

start id10
id9

id8 id7 id6

CSMA/ CA: “Carrier Sense Multiple Access with Collision
Avoidance”

• access-control with non
destructive bit-wide
arbitration

• if there is a collision , the
“winner” continues

• the message with higher
priority is not delayed!

• real-time capability for high
prioritised messages

• the lower the identifier, the
higher the priority

 CAN Bus Arbitration - CSMA/CA

F2833x - Controller Area Network 11 - 13

11 - 18

CSMA/CA (cont.)
CSMA / CA =
"bit - wide arbitration during transmission with simultaneous
receiving and comparing of the transmitted message"
means :

• if there is a collision within the arbitration-field, only the
nodes with lower priorities cancel transmission.

• The node with the highest priority continues with the
transmission of the message.

node 1 node 2 node 3

high : reccessive

low : dominant

 node 1 node 2 node 3 bus
high high high high
high low high low
low low high low

Vcc

R

As you can see from the previous slide the arbitration procedure at a physical level is quite
simple: it is a “wired-AND” principle. Only if all 3 node voltages (node 1, node2 or node3)
are equal to 1 (recessive), the bus voltage stays at Vcc (recessive). If only one node voltage is
switched to 0 (dominant), the bus voltage is forced to the dominant state (0).

The beauty of CAN is that the message with highest priority is not delayed at all in case of a
collision. For the message with highest priority, we can determine the worst-case response
time for a data transmission. For messages with lower priorities, to calculate the worst-case
response time is a little bit more complex task. It could be done by applying a so-called “time
dilatation formula for non-interruptible systems”:

HARTER, P.K: “Response Times in level structured systems” Techn.
Report, Univ. of Colorado, 1991

In detail, the hardware structure of a CAN-transceiver is more complex. Due to the principle
of CAN-transmissions as a “broadcast” type of data communication, all CAN-modules are
forced to “listen” to the bus all the time. This also includes the arbitration phase of a data
frame. It is very likely that a CAN-module might lose the arbitration procedure. In this case,
it is necessary for this particular module to switch into receive mode immediately. This re-
quires every transceiver to provide the current bus voltage status permanently to the CAN-
module.

j
ihpj j

i
n
i

ii
n
i C

T
CR

BCR ∗










 −
++= ∑

∈

+

)(
max

1

High Speed CAN

11 - 14 F2833x - Controller Area Network

High Speed CAN

11 - 19

CAN Physical Layers
CAN - High - Speed (ISO 11898):

node 1 node 30

120
Ohm

120

Ohm

CAN_H

CAN_L

To generate the voltage levels for the differential voltage transmission according to CAN
High Speed, we need an additional transceiver device, e.g. the SN65HVD23x.

11 - 20

CAN High speed Node

F2833x with on-chip
CAN module

CAN Transceiver

CAN - bus

TxdRxd

CAN_L

CAN_H

SN65HVD23X

 CAN Error Frames

F2833x - Controller Area Network 11 - 15

CAN Error Frames
Layer 2 of CAN also includes an enhanced strategy to detect transmission errors, which is
based on error -levels and the exchange of error messages. Please note that the exchange of
error messages is managed by the CAN communication controller in OSI layer 2; it is
therefore totally independent of application layer 7.

11 - 21

CAN Error – Frame
• any node that detects a bus error generates an error - frame
• an error frame is transmitted as soon as an error has been

detected, e.g. inside a data frame
• consists of two fields: Error Flag Field; Error Delimiter Field

• Error Delimiter Field:
• 8 recessive bits
• allow bus nodes to restart bus communication after an error

• Error Flag Field:
Type depends on the error-state of the node:

• error active: 6 consecutive dominant error bits; all other
nodes will respond to this violation with their own error
frames  Error Flag Field = 6…12 dominant bits

• error passive: 6 consecutive recessive bits plus 8 error
delimiter bits = 14 recessive bits

• receiver: does not corrupt the message
• transmitter: other nodes may respond with active

error frames

The error management of a node is based on one of 3 states, in which a node operates:

• Error Active State

• Error Passive State

• Bus OFF state

Depending on the state a node is able to transmit “Active Error” - frames, “Passive Error” -
frames or no error frames at all.

The objective behind these 3 levels is to have the ability to identify a potential fault node, to
isolate this node and to keep the remaining part of the bus running. This principle will be
explained shortly. For now, let us concentrate on the characteristics of the different error
frames.

CAN Error Frames

11 - 16 F2833x - Controller Area Network

Active Error Frame

11 - 22

CAN Error – Frame

data error frame Inter frame space

6 bit error flag
6..12 bit error overlay 8 bit error delimiter

Active error frame

Example1: Active error frame

The first example in Slide 11-22 shows the timing diagram of an active error frame. As soon
as a node detects faulty data, it will send such a frame to the bus. Since the error flag field
contains 6 zero bits, which is (an intended) violation of the stuff bit rule, other nodes will
respond with their own active error frames. Depending on how many bits of the last data
group have been 0, the other nodes will start sooner or later with the transmission of their
follow-up active error frames, leading to a 6...12 bit error overlay as shown in Slide 11-22.

If a receiving node receives an active error frame, it will mark the data contents of this
message as faulty and cancel it. The message will not be forwarded to the mailbox server and
to the application. Instead, the receiver mailbox will be cleared to be able to await a re-
transmission of the message.

If a transmitting node receives an active error frame, it will immediately stop the current
transmission. As soon as the bus is empty, it will try to re-transmit the message. As long as
no successful transmission has happened, the application will not get the “Transmission
Acknowledged” (TA) status flag.

 CAN Error Frames

F2833x - Controller Area Network 11 - 17

Passive Error Frame
If a node has reached “error passive” level, is no longer able to generate active error frames.
Instead, it will issue passive error frames in case of a detected data corruption.

11 - 23

CAN Error – Frame
data error frame Inter frame space

6 bit error flag 8 bit error delimiter

passive error frame from a receiver

data error frame Inter frame space

6 bit passive error flag

6 bit active error overlay
from another active node

8 bit error delimiter

passive error frame from a transmitter

Slide 11-23 shows what happen, if a node is in error passive mode.

If a receiver spots faulty data, it will issue a passive error frame. The 6 recessive error bits
can now be overwritten by dominant bits of the original transmitter data, which is still in
active mode.

If a transmitter is in passive error mode and generates a passive error frame, this (intended)
violation will be answered by receivers in error active mode with a 6 bit active error overlay,
shown in the bottom half of Slide 11-23. Since the original transmitting node is the only
transmitter at that time, the active error overlay ensures that all nodes will cancel the
corrupted message, which has already been detected by the transmitter.

Using these two principles, it ensures that nodes in error active mode will always be able to
overrule nodes in error passive state. Only if all nodes of a CAN subnet are in error passive
mode, the recessive level of error passive frames from receivers will be treated as error
messages.

The next slides will illustrate what happens in case of an error in a more realistic scenario.

CAN Error Frames

11 - 18 F2833x - Controller Area Network

11 - 24

CAN Error – Frame
data

Transmitter X
CAN - Tx

Example: active error frame

Receiver Y
CAN - Tx

Receiver Z
CAN - Tx

CAN
Bus - level

1

2

3

4

4

5

6 6 8 3

6

The bullets 1 to 6 indicate events on the time line. At position 5, node X tries to generate 6
recessive bits for the error delimiter but the actual bus level is dominated by node Y and Z
and their delayed active error frames. The time delay between bus and the Tx - line of node
X is used to define the node, which has first spotted the error.

11 - 25

CAN Error – Frame
1 Node X detects a bit error
2 Node X generates an active error flag field
3 Nodes Y, Z realize a stuff bit error after bit 6 of the active error flag field

(note: if the corrupted data frame had dominant bits, the stuff bit error is
detected earlier)

4 Nodes Y,Z transmit their own active error flag field of 6 dominant bits

5 All nodes transmit the recessive error delimiter field. Node Y and Z see
no difference @ bus level, but node X detects a delay of 6 bits
between bus level and its own output  First node to message error

6 After the last 8 recessive error delimiter bits @ CAN-bus and 3 bit of
inter frame space a new arbitration is entered by node X, e.g. it has to
compete again with other nodes

 CAN Error Frames

F2833x - Controller Area Network 11 - 19

CAN Error Types

11 - 26

CAN Error Recognition

1. Bit-Error
the transmitted bit doesn’t read back with the same digital
level (except arbitration and acknowledge- slot)

2. Bit-Stuff-Error
more than 5 continuous bits read back with the same digital
level (except ‘end of frame’-part of the message)

3. CRC-Error
the received CRC-sum doesn’t match with the calculated sum

4. Format-Error
Violation of the data-format of the message , e.g.: CRC-
delimiter is not recessive or violation of the ‘end -of-frame’-
field

5. Acknowledgement-Error
transmitter receives no dominant bit during the
acknowledgement slot, i.e. the message was not received by
another node.

CAN Error Status
Here is a summary for the node’s error states:

11 - 27

CAN Error Status
error

handling

error
detection

error
managing

error
limitation

error
active

error
passive

bus
off

Purpose: avoid persistent
disturbances of the CAN by switching
off defective nodes

three Error States :

Error Active: normal mode, messages will be received and
transmitted. In case of error an active error frame will be transmitted.

Error Passive: after detection of a certain number of errors, the node
reaches this state. Messages will be received and transmitted but in
case of an error the node sends a passive error frame.

Bus Off: the node is separated from CAN, neither transmission nor
receive of messages is allowed and the node is no longer able to
transmit error frames.

CAN Error Frames

11 - 20 F2833x - Controller Area Network

CAN - Error Counter
The transitions between error states of a node is based on the current value in two error
counters, called Receive Error Counter (REC) and Transmit Error Counter (TEC).

11 - 28

CAN Error Counter

error passive

error active

bus off

REC <127
and
TEC <=127

REC >127 or
127<TEC<255

TEC > 255

'reset' or 'init
node'

• transitions will be carried out automatically by
the CAN-chip

• states are managed by 2 Error Counters :
Receive Error Counter (REC)
Transmit Error Counter (TEC)

• Possible situations :
a) a transmitter recognises an error:

TEC:=TEC + 8
b) a receiver sees an error : REC:=REC + 1
c) a receiver sees an error, after transmitting an

error frame: REC:=REC + 8
d) if an ‘error active’-node find’s a bit-stuff-error

during transmission of an error frame:
TEC:=TEC+ 1

e) successful transmission:
TEC:=TEC - 1

f) successful receive:
REC:=REC - 1

State - Diagram:

The current values both of REC and TEC are permanently available in two registers of the
F2833x CAN Controller. For maintenance purposes it is a good idea to read the values from
time to time to monitor the quality of the data transmission. Rising numbers in TEC and/or
REC give an indication that something is going wrong with the communication and that this
may be an appropriate time to take preventative action, e.g. switch into a local operating
mode of the device.

The state diagram above shows the transitions between error active, error passive and bus off
states. Successful communication is always represented by the number -1. Depending on the
seriousness of a failure, the penalty is either +8 or +1 of the corresponding error counter.

After a RESET, the node is in error active mode. If REC or TEC is increased beyond 127,
the node goes into error passive state. From this state the node can (a) go back to error active,
if both REC and TEC are decreased below 127; or (b) will be forced into bus OFF state, if
TEC is greater than 255.

The original CAN specification did not allow a recovery from bus OFF. The only option was
to reset and re-initialize the device. This was really bad news as it meant that your car would
lose full CAN communication and could grind to a halt.

However, newer microcontrollers, such as the F2833x, allow an automatic recovery, if a
certain amount of idle time was applied to the bus. This additional feature can be enabled or
disabled during the initialization of the CAN communication controller.

 F2833x CAN Module

F2833x - Controller Area Network 11 - 21

F2833x CAN Module

11 - 29

F2833x CAN Features
 Fully CAN protocol compliant, version 2.0B
 Supports data rates up to 1 Mbps
 Thirty-two mailboxes

 Configurable as receive or transmit
 Configurable with standard or extended identifier
 Programmable receive mask
 Supports data and remote frame
 Composed of 0 to 8 bytes of data
 Uses 32-bit time stamp on messages
 Programmable interrupt scheme (two levels)
 Programmable alarm time-out

 Programmable wake-up on bus activity
 Self-test mode

The F2833x CAN unit is a full CAN Controller. It contains a message handler for transmis-
sion, reception management and frame storage. The specification is CAN 2.0B Active - that
is, the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

11 - 30

F2833x CAN Block Diagram

Memory Management
Unit

CPU Interface,
Receive Control Unit

Timer Management Unit

eCAN Memory
(512 Bytes)

Register and Message
Object Control

Mailbox RAM
(512 Bytes)

32-Message Mailbox
of 4 x 32-Bit Words 32 32

Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

. . CAN Bus

32

32

DataAddress
eCAN0INT eCAN1INT

F2833x Programming Interface

11 - 22 F2833x - Controller Area Network

F2833x Programming Interface

11 - 31

F2833x CAN Memory

Data Space

CAN
0x00 6000

0x00 0000

0x 3F FFFF

0x00 61FF

6080

6040

61FF

Control and
Status Register

Message
Object

Time Stamps

Mailbox 0
Mailbox 1

Mailbox 31

Local
Acceptance

Masks

Message
Object

Time Out

60C0

6108
6100

The CAN controller module contains 32 mailboxes for objects of 0- to 8-byte data lengths:

• configurable transmit/receive mailboxes
• configurable with standard or extended identifier

The CAN module mailboxes comprise of the following components:

• MID - contains the identifier of the mailbox
• MCF (Message Control Field) - contains the length of the message (to

transmit or receive) and the RTR bit (Remote Transmission Request - used
to send remote frames)

• MDL and MDH - contain the data

The CAN module contains registers, which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

• Control and Status Registers
• Local Acceptance Masks
• Message Object Time Stamps
• Message Object Timeout
• Mailboxes

It is the responsibility of the programmer to go through all those registers and set every sin-
gle bit according to the designated operating mode of the CAN module. It is also a challenge
for the student to exercise the skills required to debug. So let us start!

First, we will discuss the different CAN registers. If this chapter becomes too tedious, ask
your teacher for some practical examples how to use the various options. Be patient!

 F2833x Programming Interface

F2833x - Controller Area Network 11 - 23

CAN Register Map

11 - 32

CAN Control & Status Register

6000 CANME
CANMD6002

6004 CANTRS
CANTRR6006

6008 CANTA
CANAA600A

600C CANRMP
CANRML600E

6010 CANRFP
CANGAM6012

6014 CANMC
CANBTC6016

6018 CANES
CANTEC601A

601C CANREC

6020 CANGIM
CANGIF16022

6024 CANMIM
CANMIL6026

6028 CANOPC
CANTIOC602A

602C CANRIOC
602E CANLNT

CANTOC6030
6032 CANTOS

CANGIF0601E

31 0 31 0

6034 reserved
reserved6036

6038 reserved
reserved603A

603C reserved
reserved603E

Mailbox Enable – CANME Mailbox Direction - CANMD

11 - 33

CAN Mailbox Enable Register (CANME) – 0x006000

15

1631

CANME[15:0]

CANME[31:16]

0

Mailbox Enable Bits
0 = corresponding mailbox is disabled
1 = The corresponding mailbox is enabled. A mailbox must be disabled before

writing to the contents of any mailbox identifier field.

CAN Mailbox Direction Register (CANMD) – 0x006002

15

1631

CANMD[15:0]

CANMD[31:16]

0

Mailbox Direction Bits
0 = corresponding mailbox is defined as a transmit mailbox.
1 = corresponding mailbox is defined as a receive mailbox.

F2833x Programming Interface

11 - 24 F2833x - Controller Area Network

Transmit Request Set & Reset - CANTRS / CANTRR

11 - 34

CAN Transmission Request Set Register (CANTRS) – 0x006004

15

1631

CANTRS[15:0]

CANTRS[31:16]

0

Mailbox Transmission Request Set Bits (TRS)
0 = no operation. NOTE: Bit will be cleared by CAN-Module logic after successful transmission.
1 = Start of transmission of corresponding mailbox. Set to 1 by user software;

OR by CAN –logic in case of a Remote Transmit Request.

CAN Transmission Request Reset Register (CANTRR) – 0x006006

15

1631

CANTRR[15:0]

CANTRR[31:16]

0

Mailbox Transmission Reset Request Bits (TRR)
0 = no operation.
1 = setting TRRn cancels a transmission request, if not already in progress.

Transmit Acknowledge - CANTA

11 - 35

CAN Transmission Acknowledge Register (CANTA) – 0x006008

15

1631

CANTA[15:0]

CANTA[31:16]

0

Mailbox Transmission Acknowledge Bits (TA)
0 = the message is not sent.
1 = if the message of mailbox n is sent successfully, the bit n of this register is set.
Note: To reset a TA bit by software: write a ‘1’ into it.

CAN Abort Acknowledge Request Register (CANAA) – 0x00600A

15

1631

CANAA[15:0]

CANAA[31:16]

0

Mailbox Abort Acknowledge Bits (AA)
0 = The transmission is not aborted.
1 = The transmission of mailbox n is aborted.
Note: To reset a AA bit by software: write a ‘1’ into it.

 F2833x Programming Interface

F2833x - Controller Area Network 11 - 25

Receive Message Pending - CANRMP

11 - 36

CAN Receive Message Pending Register (CANRMP) – 0x00600C

15

1631

CANRMP[15:0]

CANRMP[31:16]

0

Mailbox Receive Message Pending Bits (RMP)
0 = the mailbox does not contain a message.
1 = the mailbox contains a valid message.
Note: To reset a RMP bit by software: write a ‘1’ into it.

CAN Receive Message Lost Register (CANRML) – 0x00600E

15

1631

CANRML[15:0]

CANRML[31:16]

0

Mailbox Receive Message Lost Bits (RML)
0 = no message was lost.
1 = an old unread message has been overwritten by a new one in that mailbox.
Note: To reset a RML bit by software: write a ‘1’ into it.

Remote Frame Pending - CANRFP

11 - 37

CAN Remote Frame Pending Register (CANRFP) – 0x006010

15

1631

CANRFP[15:0]

CANRFP[31:16]

0

Mailbox Remote Frame Pending Bits (RFP)
0 = no remote frame request was received.
1 = a remote frame request was received by the CAN module.
Note: To reset a RFP bit by software: write a ‘1’ into the corresponding TRR bit.

F2833x Programming Interface

11 - 26 F2833x - Controller Area Network

Global Acceptance Mask - CANGAM

11 - 38

CAN Global Acceptance Mask Register (CANGAM) – 0x006012

15

1631

CANGAM[15:0]

CANGAM[28:16]

0

Acceptance Mask Identifier Bit (AMI)
0 = the identifier extension bit in the mailbox determines which messages shall be received.

Filtering is not applicable.
1 = standard and extended frames can be received. In case of an extended frame all 29 bits of the identifier

and all 29 bits of the GAM are used for the filter. In case of a standard frame only bits 28-18 of the identifier
and the GAM are used for the filter.

AMI reserved

30-29 28

Note : This Register is used in Standard Can Controller (SCC) mode only. It is hers a single
input filter for mailboxes 6…15, if the AME bit (MID.30) of the corresponding mailbox is set.

CANGAM is not used in extended eCAN – Mode!

Global Acceptance Mask (GAM)
0 = bit position must match the corresponding bit in register CANMIDn.
1 = bit position of the incoming identifier is a “don’t’ care”.

The F2833x CAN module is able to operate in one of two operating modes:

• Standard CAN Controller Mode (SCC)

• Extended CAN Controller Mode, or “High End CAN Controller Mode (HECC)”.

The SCC is a legacy mode to keep the CAN communication controller software compatible
to the 16-bit family TMS320F240x. In this mode there are 16 mailboxes only and the
receiver system can use 3 common filters for incoming messages, LAM0, LAM1 and
CANGAM. Register LAM0 is the mask register for mailboxes 0, 1 and 2; LAM1 for
mailboxes 3, 4 and 5 and CANGAM for mailboxes 6...15. If you start a new design there is
no advantage in using SCC mode.

In HECC mode, each of the 32 mailboxes can be programmed to use an individual
acceptance filter. Filter here means that we declare certain bits of the identifier combination
of the incoming message to be “don’t cares”. This is done by setting the corresponding bits
in register LAMx to ‘1’.

For example, if we operate in HECC mode and set LAM0 = 0x0000 0007, mailbox 0 will
ignore bits 0, 1 and 2 of the incoming identifier and will store the message, if the rest of the
identifier bits match the combination in register MSGID of mailbox 0.

SCC or HECC - mode is selected by bit “SCB” in register CANMC - see following slide.

Note that after reset SCC is the default mode!

 F2833x Programming Interface

F2833x - Controller Area Network 11 - 27

Master Control Register - CANMC

11 - 39

CAN Master Control Register (CANMC) – 0x006014

15

1631

reserved

0

MBCC MBNR

Mailbox Timestamp counter clear (MBCC)
0 = no operation
1 = timestamp counter is reset to 0 after a successful transmission or reception of mailbox 16.

ABOCDRWUBADBOPDRCCRSCBTCC SRESSTM

414 13 12 11 10 9 8 7 6 5

Timestamp counter MSB clear (TCC)
0 = no operation
1 = timestamp counter MSB is reset to 0

SCC Compatibility bit (SCB)
0 = standard CAN mode (SCC)
1 = high end CAN (HECC) mode

Change Configuration Request (CCR)
0 = software requests normal operation
1 = software requests write access to CANBTC, CANGAM, LAM[0] and LAM[3].

A request is granted by the CAN module with flag CCE (CANES) = 1.

Standard CAN Mode SCC:
Reduced functionality;
Mailboxes 0...15 only
3 acceptance masks only
No timestamp features

High end CAN Mode HECC:
Full functionality;
Mailboxes 0...31
32 acceptance masks

11 - 40

CAN Master Control Register (CANMC) – 0x006014

15 0

MBCC MBNRABOCDRWUBADBOPDRCCRSCBTCC SRESSTM

414 13 12 11 10 9 8 7 6 5

Data Byte Order (DBO) in Mailbox Registers
MDH[31:0] and MDL[31:0]
0 = MDH[31:0] : Byte 4,5,6,7 ; MDL[31:0] : Byte 0,1,2,3
1 = MDH[31:0] : Byte 7,6,5,4 ; MDL[31:0] : Byte 3,2,1,0

Wake up on bus activity (WUBA)
0 = Module leaves power down only

after writing a 0 to PDR
1 = Module leaves power down on

any bus activity

Change data field request (CDR)
0 = normal operation
1 = software requests access to the data field in 2MBNR”.
NOTE: software must clear this bit after access is done.

Auto bus on (ABO)
0 = “bus off’ state is permanent.
1 = “bus off” state is left into “bus on”

after 128*11 recessive bits have been received.

Self Test Mode (STM)
0 = normal mode
1 = Module generates its own ACK

Software Reset(SRES)
0 = no effect
1 = CAN Module reset

Mailbox Number(MBNR)
Number , used for CDR

Power Down Mode Request (PDR)
0 = normal operation
1 = power down mode is requested.
NOTE: bit is automatically cleared
upon wakeup from power down!

CAN Bit - Timing

11 - 28 F2833x - Controller Area Network

CAN Bit - Timing

11 - 41

CAN Bit-Timing Configuration
 CAN protocol specification splits the nominal

bit time into four different time segments:
 SYNC_SEG

 Used to synchronize nodes
 Length : always 1 Time Quantum (TQ)

 PROP_SEG
 Compensation time for the physical delay times within the net
 Twice the sum of the signal’s propagation time on the bus line, the

input comparator delay and the output driver delay.
 Programmable from 1 to 8 TQ

 PHASE_SEG1
 Compensation for positive edge phase shift
 Programmable from 1 to 8 TQ

 PHASE_SEG2
 Compensation time for negative edge phase shift
 Programmable from 2 to 8 TQ

11 - 42

TCAN = TQ + tseg1 + tseg2

CAN Bit-Timing Configuration

 tseg1: PROP_SEG + PHASE_SEG1
 tseg2: PHASE_SEG2
 TQ: SYNCSEG

CAN Nominal Bit Time
SYNCSEG

sjw
sjw

tseg2tseg1

TQ

Sample PointTransmit Point

 CAN Bit - Timing

F2833x - Controller Area Network 11 - 29

11 - 43

CAN Bit-Timing Configuration

 According to the CAN – Standard the following bit
timing rules apply:
 tseg1 ≥ tseg2
 3/BRP ≤ tseg1 ≤ 16 TQ
 3/BRP ≤ tseg2 ≤ 8 TQ
 1 TQ ≤ sjw ≤ MIN[4*TQ , tseg2]
 BRP ≥ 5, if three sample mode is used

Bit-Timing Configuration - CANBTC

11 - 44

CAN Bit-Timing Configuration Register (CANBTC) – 0x006016

Baud Rate Prescaler (BRP):
defines the Time Quantum (TQ):

31

reserved BRP.2BRP.3BRP.4BRP.5 BRP.0BRP.1

16

BRP.7 BRP.6

2324

BaseCLK
1BRPTQ +=

Note:
BaseCLK = SYSCLK / 2 for 283xx, 2803x devices
BaseCLK = SYSCLK for 281x, 280x and 2801x devices

CAN Bit - Timing

11 - 30 F2833x - Controller Area Network

11 - 45

Synchronisation Jump Width (SJW)






 +∗= 1)SJWTQsjw

CAN Bit-Timing Configuration Register (CANBTC) – 0x006016

Time Segment 1(tseg1)






 +∗= 1)TSEG1TQtseg1

15

reserved TSEG1SJW TSEG2

0

SAMSBG

78 23691011

Time Segment 2(tseg2)






 +∗= 1)TSEG2TQtseg2

Sample Points (SAM)
0 = one sample at sample point
1 = 3 samples at sample point – majority vote

Synchronisation Edge Select (SBG)
0 = re synchronisation with falling edge only
1 = re-sync. with rising & falling edge

11 - 46

CAN Bit-Timing Examples
 Bit Configuration for BaseCLK = 75 MHz

 Sample Point at 80% of Bit Time :

 Example 100 kbit/s
TQ = (49+1)/ 75 MHz = 0.667 µs
tseg1 = 0.667 µs (10 + 1) = 7.337 µs  tCAN = 10 µs;
tseg2 = 0.667 µs (2 + 1) = 2 µs

CAN -
data rate

BRP TSEG1 TSEG2

1 Mbit/s 4 10 2

500 kbit/s 9 10 2

250 kbit/s 19 10 2

125 kbit/s 39 10 2

100 kbit/s 49 10 2

50 kbit/s 99 10 2

 CAN Error Register

F2833x - Controller Area Network 11 - 31

CAN Error Register

Error and Status - CANES

11 - 47

CAN Error and Status Register (CANES) – 0x006018

Warning Status (EW)
0 = values of both error counters are less than 96
1 = one error counter has reached 96

Error Passive State (EP)
0 = CAN is in Error Active Mode
1 = CAN is in Error Passive Mode

31

reserved BOACKESECRCE EWEP

16

BE SA1

2324 171819202122

FE

Bus Off State (BO)
0 = normal operation
1 = CANTEC has reached the limit of 256. Module

has been switched of the bus.

Stuff Bit Error (SE)
0 = normal operation
1 = a stuff bit error has occurred.

Acknowledgement Error (ACKE)
0 = normal operation
1 = CAN module has not received an ACK.

Cyclic Redundancy Check Error (CRCE)
0 = normal operation
1 = a wrong CRC was received.

Stuck at dominant Error (SA1)
0 = The CAN module detected a recessive bit
1 = The CAN module never detected a recessive bit.

Bit Error (BE)
0 = no bit error detected
1 = a received bit does not match a transmitted bit

(outside of the arbitration field).

Form Error (FE)
0 = normal operation
1 = one of the fixed form bit fields of a message was wrong.

11 - 48

CAN Error and Status Register (CANES) – 0x006018

Transmit Mode (TM)
0 = CAN controller is not transmitting a message.
1 = CAN controller is transmitting a message.

Receive Mode (RM)
0 = CAN controller is not receiving a message.
1 = CAN controller is receiving a message.

15

reserved Res.PDACCESMA TMRM

0123456

Power Down Mode Acknowledge (PDA)
0 = normal operation
1 = CAN module has entered power down mode.

Change Configuration Enable (CCE)
0 = CPU cannot write into

configuration registers.
1 = CPU has write access into

configuration registers.

Suspend Mode Acknowledge (SMA)
0 = normal operation
1 = CAN module has entered suspend mode.
Note: Suspend mode is activated by the debugger
when the DSP is not in run mode.

CAN Interrupt Register

11 - 32 F2833x - Controller Area Network

CAN Error Counter – CANTEC / CANREC

11 - 49

CAN Transmit Error Counter Register (CANTEC) – 0x00601A

CAN Receive Error Counter Register (CANREC) – 0x00601C

15

1631

reserved

0

Transmit Error Counter (TEC)
Value TEC is incremented or decremented according to the CAN protocol specification

reserved TEC

15

1631

reserved

0

Receive Error Counter (REC)
Value REC is incremented or decremented according to the CAN protocol specification

reserved REC

CAN Interrupt Register

Global Interrupt Mask - CANGIM

11 - 50

CAN Global Interrupt Mask Register (CANGIM) – 0x006020

Global Interrupt Level (GIL)
For Interrupts TCOF,WDIF,WUIF,BOIF and WLIF
0 = mapped into HECC_INT_REQ[0] line – GIF0
1 = mapped into HECC_INT_REQ[1] line – GIF1

Interrupt Mask Bits:

MTOM = Mailbox Timeout Mask
TCOM = Timestamp Counter Overflow Mask
AAM = Abort Acknowledge Interrupt Mask
WDIM = Write Denied Interrupt Mask
WUIM = Wake-up Interrupt Mask
RMLIM = Receive message lost Interrupt Mask
BOIM = Bus Off Interrupt Mask
EPIM = Error Passive Interrupt Mask
WLIM = Warning level Interrupt Mask

Interrupt Mask Bits
0 = Interrupt disabled
1 = Interrupt enabled

15

1631

reserved

0

Res. reserved GILWLIMEPIMBOIMRMLIMWUIMWDIMAAM I0ENI1EN

114 13 12 11 10 9 8 7 3 2

TCOMMTOM

1718

Interrupt 1 Enable (I1EN)
0 = HECC_INT_REQ[1] line is disabled
1 = HECC_INT_REQ[1] line is enabled

Interrupt 0 Enable (I0EN)
0 = HECC_INT_REQ[0] line is disabled
1 = HECC_INT_REQ[0] line is enabled

 CAN Interrupt Register

F2833x - Controller Area Network 11 - 33

Global Interrupt 0 Flag - CANGIF0

11 - 51

CAN Global Interrupt Flag 0 Register (CANGIF0) – 0x00601E

Mailbox Interrupt Vector (MIV0)
Indicates the number of the message object that set the
global mailbox interrupt flag (GMIF0)

Interrupt Flag Bits:

MTOF0 = Mailbox Timeout Flag
TCOF0 = Timestamp Counter Overflow Flag
GMIF0 = Global Mailbox Interrupt Flag
AAIF0 = Abort Acknowledge Interrupt Flag
WDIF0 = Write Denied Interrupt Flag
WUIF0 = Wake-up Interrupt Flag
RMLIF0 = Receive message lost Interrupt Flag
BOIF0 = Bus Off Interrupt Flag
EPIF0 = Error Passive Interrupt Flag
WLIF0 = Warning level Interrupt Flag

Interrupt Flag Bits
0 = Interrupt has not occurred
1 = Interrupt has occurred

15

1631

reserved

0

GMIF0 Res. MIV0.2WLIF0EPIF0BOIF0RMLIF0WUIF0WDIF0AAIF0 MIV0.0MIV0.1

114 13 12 11 10 9 8 7-5 3 2

TCOF0MTOF0

1718

MIV0.4 MIV0.3

4

Global Interrupt 1 Flag - CANGIF1

11 - 52

CAN Global Interrupt Flag 1 Register (CANGIF1) – 0x006022

Mailbox Interrupt Vector (MIV1)
Indicates the number of the message object that set the
global mailbox interrupt flag (GMIF1)

Interrupt Flag Bits:

MTOF1 = Mailbox Timeout Flag
TCOF1 = Timestamp Counter Overflow Flag
GMIF1 = Global Mailbox Interrupt Flag
AAIF1 = Abort Acknowledge Interrupt Flag
WDIF1 = Write Denied Interrupt Flag
WUIF1 = Wake-up Interrupt Flag
RMLIF1 = Receive message lost Interrupt Flag
BOIF1 = Bus Off Interrupt Flag
EPIF1 = Error Passive Interrupt Flag
WLIF1 = Warning level Interrupt Flag

Interrupt Flag Bits
0 = Interrupt has not occurred
1 = Interrupt has occurred

15

1631

reserved

0

GMIF1 Res. MIV1.2WLIF1EPIF1BOIF1RMLIF1WUIF1WDIF1AAIF1 MIV1.0MIV1.1

114 13 12 11 10 9 8 7-5 3 2

TCOF1MTOF1

1718

MIV1.4 MIV1.3

4

CAN Interrupt Register

11 - 34 F2833x - Controller Area Network

Mailbox Interrupt Mask - CANMIM

11 - 53

CAN Mailbox Interrupt Mask Register (CANMIM) – 0x006024

15

1631

CANMIM[15:0]

CANMIM[31:16]

0

Mailbox Interrupt Mask Bits (MIM)
0 = mailbox interrupt is disabled.
1 = mailbox interrupt is enabled. An Interrupt is generated if a
message has been transmitted successfully or if a message has
been received without an error.

CAN Mailbox Interrupt Level Register (CANMIL) – 0x006026

15

1631

CANMIL[15:0]

CANMIL[31:16]

0

Mailbox Interrupt Level Bits (MIL)
0 = mailbox interrupt is generated on HECC_INT_REQ[0] line.
1 = mailbox interrupt is generated on HECC_INT_REQ[1] line.

Overwrite Protection Control - CANOPC

11 - 54

CAN Overwrite Protection Control Register (CANOPC) – 0x006028

15

1631

CANOPC[15:0]

CANOPC[31:16]

0

Overwrite Protection Control Bits (OPC)
0 = the old message in mailbox N may be overwritten by a new one.

This will be notified by the receive message lost bit RML[n].
1 = an old message in mailbox N is protected against being overwritten

by a new one.
Thus, the next mailboxes are checked for a matching ID.
If no other mailbox is found, the new message is lost.

 CAN Interrupt Register

F2833x - Controller Area Network 11 - 35

Transmit I/O Control - CANTIOC

11 - 55

CAN I/O Control Register (CANTIOC) – 0x00602A

TXFUNC
0 = CANTX pin is a normal I/O pin.
1 = CANTX is used for CAN transmit functions.

15

1631

reserved

reserved

0

TXINTXFUNC TXDIR TXOUT

2 13

TXDIR
0 = CANTX pin is an input pin if configured as a normal I/O pin.
1 = CANTX pin is an output pin if configured as a normal I/O pin.

TXOUT
Output value for CANTX pin, if configured as normal output pin

TXIN
0 = Logic 0 present on pin CANTX.
1 = Logic 1 present on pin CANTX.

Receive I/O Control - CANRIOC

11 - 56

CAN I/O Control Register (CANRIOC) – 0x00602C

RXFUNC
0 = CANRX pin is a normal I/O pin.
1 = CANRX is used for CAN receive functions.

15

1631

reserved

reserved

0

RXINRXFUNC RXDIR RXOUT

2 13

RXDIR
0 = CANRX pin is an input pin if configured as a normal I/O pin.
1 = CANRX pin is an output pin if configured as a normal I/O pin.

RXOUT
Output value for CANRX pin, if configured as normal output pin

RXIN
0 = Logic 0 present on pin CANRX.
1 = Logic 1 present on pin CANRX.

Alarm / Time Out Register

11 - 36 F2833x - Controller Area Network

Alarm / Time Out Register

Local Network Time - CANLNT

11 - 57

CAN Local Network Time Register (CANLNT) – 0x00602E

15

1631

LNT[15:0]

LNT[31:16]

0

 LNT is a Free Running Counter, Clocked from the bit
clock of the CAN module.

 LNT is written into the time stamp register (MOTS) of
the corresponding mailbox when a received message
has been stored or a message has been transmitted.

 LNT is cleared when mailbox #16 is transmitted or
received. Thus mailbox #16 can be used for a global
network time synchronization.

Time Out Control - CANTIOC

11 - 58

CAN Time Out Control Register (CANTOC) – 0x006030

31

031

TOS[31:0]

TOC[31:0]

0

Time Out Control Bits (TOC)
0 = Time Out function is disabled for mailbox n.
1 = Time Out function is enabled for mailbox n.

If LNT is greater than the corresponding MOTO register, a time out event will be generated

CAN Time Out Status Register (CANTOS) – 0x006032

Time Out Status Flags (TOS)
0 = No Time Out occurred for mailbox n.
1 = The value in LNT is greater or equal to the value in the corresponding MOTO register

 Alarm / Time Out Register

F2833x - Controller Area Network 11 - 37

Local Acceptance Mask - LAMn

11 - 59

CAN Local Acceptance Mask Register
0x00 6040 - 0x00 607F

reserved

15

162830-2931

LAMn[15:0]

LAMn[28:16]LAMI

0

0 = IDE bit of mailbox determines which message shall be received
1 = extended or standard frames can be received.

extended: all 29 bit of LAM are used for filter against all 29 bit of mailbox .
standard: only first eleven bits of mailbox and LAM [28-18] are used.

LAMn[28-0]: Masking of identifier bits of incoming messages
1 = don’t care (accept 1 or 0 for this bit position) of incoming identifier.
0 = received identifier bit must match the corresponding message identifier bit (MID).

Note: There are two operating modes of the CAN module : “HECC” and “SCC”.
In “SCC” (default after reset) LAM0 is used for mailboxes 0 to 2, LAM3 is used for mailboxes 3 to 5
and the global acceptance mask (CANGAM) is used for mailboxes 6 to 15.

In “HECC” (CANMC:13 = 1) each mailbox has its own mask register LAM0 to LAM31.

Message Object Time Stamp - MOTSn

11 - 60

CAN Message Object Time Stamp
0x00 6080 - 0x00 60BF

15

1631

MOTSn[15:0]

MOTSn[31:16]

0

A free running counter (register CANLNT) is used to get a stamp
of the time of reception or transmission of a message.

CANLNT is a 32 bit timer that is clocked by the CAN – bit – time unit.

The current content of CANLNT is written into MOTSn when a
received message has been stored or a message has been
transmitted successfully.

Alarm / Time Out Register

11 - 38 F2833x - Controller Area Network

Message Object Time Out - MOTOn

11 - 61

CAN Message Object Time-Out
0x00 60C0 - 0x00 60FF

15

1631

MOTOn[15:0]

MOTOn[31:16]

0

If the value in CANLNT is equal or greater than the value in
MOTOn, the appropriate bit in register CANTOS will be set ,
assuming this feature was allowed in CANTOC.

Also, an Interrupt Service can be triggered from such an event.

 Mailbox Memory

F2833x - Controller Area Network 11 - 39

Mailbox Memory
Message Identifier - CANMID

11 - 62

CAN Mailbox Memory
0x00 6100 - 0x00 61FF

AME

1516293031

IDn[15:0]IDn[28:16]IDE

0

AAM

28
Message Identifier Register (MID) Mailbox n

Identifier Extension Bit
0 = Standard Identifier (11 Bits)
1 = Extended Identifier (29 Bits)

Acceptance Mask Enable Bit (receiver only)
0 = no Acceptance Mask used. All identifier bits must match to receive the message
1 = the corresponding Mailbox Acceptance Mask is used

Auto Answer Mode Bit (transmitter only)
0 = mailbox does not reply to remote requests.
1 = if a matching Remote Request is received, the contents of this mailbox will be sent.

Message Identifier
Standard Frames : IDn[28:18] are used
Extended Frames : IDn[28:0] are used

Address Content

0x6100 MSGID Mailbox 0

0x6102 MSGCTRL Mailbox 0

0x6104 CANMDL Mailbox 0; 4 lower data bytes

0x6106 CANMDH Mailbox 0; 4 upper data bytes

Message Control Field - CANMCF

11 - 63

CAN Mailbox Memory
0x00 6100 - 0x00 61FF

RTR

1516 41331

reserved reserved

0

DLC

3
Message Control Field Register (MCF) Mailbox n

Transmit Priority Level
Priority compared to the other 31 mailboxes.
Highest number has highest priority.

Data Length Code
Valid numbers are 0 to 8.

Remote Transmission Request
0 = no RTR requested.
1 = for receiver mailboxes:

if TRS bit is set, a remote frame is transmitted and the corresponding
data frame will be received in the same mailbox.

1 = for transmit mailboxes:
if TRS bit is set, a remote frame is transmitted but the corresponding
data frame has to be received in another mailbox.

TPL reserved

12 8 7 5

Mailbox Memory

11 - 40 F2833x - Controller Area Network

Message Data Field Low - CANMDL

11 - 64

CAN Mailbox Memory
0x00 6100 - 0x00 61FF

2324 1531

Data Byte 0

0

Message Data Low (MDL) Register with DBO = 0 Mailbox n

16 8 7

Data Byte 1 Data Byte 3Data Byte 2

2324 1531

Data Byte 3

0

Message Data Low (MDL) Register with DBO = 1 Mailbox n

16 8 7

Data Byte 2 Data Byte 0Data Byte 1

Message Data Field High - CANMDH

11 - 65

CAN Mailbox Memory
0x00 6100 - 0x00 61FF

2324 1531

Data Byte 4

0

Message Data High (MDH) Register with DBO = 0 Mailbox n

16 8 7

Data Byte 5 Data Byte 7Data Byte 6

2324 1531

Data Byte 7

0

Message Data High (MDH) Register with DBO = 1 Mailbox n

16 8 7

Data Byte 6 Data Byte 4Data Byte 5

 Lab Exercise 11_1

F2833x - Controller Area Network 11 - 41

Lab Exercise 11_1

11 - 66

CAN Example: transmit a frame
 Lab 11_1: Transmit a CAN message

 CAN baud rate: 100 kBit/s
 Transmit a one byte message every second
 Message Identifier 0x 1000 0000 (extended frame)
 Use Mailbox #5 as transmit mailbox
 Message content: current value of a binary

counter
 Transceiver SN65HVD230 in use
 Connect CAN at header J4 of Peripheral Explorer

 J4-1: CAN_H
 J4-2: CAN_L

Preface

After this lengthy (and boring) discussion of all CAN registers in an F2833x, it is time for an
exercise. Again, it is a good idea to start with some simple experiments to get our hardware
to work. Later, we can try to refine the projects by setting up enhanced operation modes such
as “Remote Transmission Request”, “Auto Answer Mode”, “Pipelined Mailboxes” or
“Wakeup Mode”. We will also refrain from using the powerful error recognition and error
management, which of course would be an essential part of a real - world project. To keep it
simple, we will first use a polling method instead of an interrupt driven communication be-
tween the core of the DSP and the CAN mailbox server. Once you have a working example,
it is much simpler to improve the code in this project by adding more enhanced operating
modes to it.

The CAN physical layer requires a transceiver circuit between the digital signals of the
F2833x and the bus lines to adjust the physical voltages. The Peripheral Explorer Board is
equipped with a Texas Instruments SN65HVD230 for high speed ISO 11898 applications.
This transceiver is connected to GPIO30 (CAN - RX) and GPIO31 (CAN - TX).

The physical CAN lines for ISO 11898 require a correct line termination at the ends of the
transmission lines by 120 Ohm terminator resistors. The Peripheral Explorer Board has a
terminator of 120 Ohm (R8) connected between CANH and CANL. This resistor can be ac-
tivated by closing header J24 of the Peripheral Explorer Board. However, if your laboratory
layout consists of a group of devices, only the two outmost devices should be equipped with
that terminator resistor. In such circumstances all inner boards should keep jumper J24 open.

Lab Exercise 11_1

11 - 42 F2833x - Controller Area Network

Recall that the overall line resistance should match 60 Ohms. If you are in doubt, ask your
teacher which set up is the correct one.

To test your code, you will need a partner team with a second F2833x doing Lab 11_2. This
lab is an experiment to receive a CAN message and display its data at GPIO9, GPIO11,
GPIO34 and GPIO49 (LEDs LD1 to LD4) on the Peripheral Explorer Board.

The lines CANH and CANL are available at header J4 of the Peripheral Explorer Board. A
common technique according to CiA DS 102 (www.can-cia.org) for physical CAN cables is
based on DB9 connectors:

Pin Nr. Signal Description

1 - Reserved
2 CAN_L CAN Bus Signal (dominant low)
3 CAN_GND CAN ground
4 - Reserved
5 CAN_SHLD Optional shield
6 GND Optional CAN ground
7 CAN_H CAN Bus Signal (dominant high)
8 - Reserved
9 CAN_V+ Optional external voltage supply Vcc

At minimum we need CANL (pin 2), CANH (pin 7) and preferably CAN_GND (pin3).

Before you start the hard wiring, ask your teacher or a laboratory
technician what exactly you are supposed to do to connect the
boards!

Objective

• The objective of Lab 11_1 is to transmit a one byte data frame every second via

CAN.

• The transmitted data byte is the current value of a binary counter, which is in-
cremented after each transmission.

• The baud rate for this CAN exercise should be set to 100 kbit/s.

• The exercise will use extended identifier 0x1000 0000 for the transmit message.

You can also use any other number as identifier, but please make sure that your
partner team (Lab 11_2) knows about your intentions. If several Peripheral Ex-
plorer Boards in your classroom are in use simultaneously, there is the option to
set-up pairs of teams sharing the CAN by using different identifiers. It is also

http://www.can-cia.org/�

 Lab Exercise 11_1

F2833x - Controller Area Network 11 - 43

possible that due to the structure of the laboratory set-up at your university, not
all identifier combinations might be available to you. You surely don’t want in-
advertently to start the ignition of a combustion engine control unit that is also
connected to the CAN for some other experiments. Before you select other iden-
tifiers, ask your teacher!

• Use Mailbox #5 as your transmit mailbox.

• Once you have started a CAN transmission, wait for completion by polling the

status bit. Doing so we can avoid using CAN interrupts for this first CAN exer-
cise.

• Use CPU core timer 0 to generate the one second interval.

Procedure

Open Files, Create Project File
1. Using Code Composer Studio, create a new project, called Lab11.pjt in

C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. A good point to start with is the source code of Lab6.c, which produces a hardware
based time period using CPU core timer 0. Open the file Lab6.c from
C:\DSP2833x_V4\Labs\Lab6 and save it as Lab11_1.c in folder
C:\DSP2833x_V4\Labs\Lab11.

3. Define the size of the C system stack. In the project window, right click at project
“Lab11” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4. In the C/C++ perspective, right click at project “Lab8” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c
• DSP2833x_CpuTimers.c
• DSP2833x_SysCtrl.c
• DSP2833x_CodeStartBranch.asm
• DSP2833x_ADC_cal.asm
• DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

Lab Exercise 11_1

11 - 44 F2833x - Controller Area Network

• DSP2833x_Headers_nonBIOS.cmd

Project Build Options
5. We have to extent the search path of the C-Compiler for include files. Right click at

project “Lab11” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Preliminary Test
6. So far we have just created a new project “Lab11.pjt” with the same functionality as in

Lab6. A good step would be to rebuild Lab11, load the code into the controller and
verify the binary counter at LEDs LD1 to LD4 of the Peripheral Explorer Board. The
LEDs should display the counter at 100 milliseconds time steps.

7. Now change time step size in “Lab11_1.c” from 100 ms to 1 second. All you need to
do is to change the initialization call for CPU Timer 0:

 ConfigCpuTimer(&CpuTimer0,150,1000000);

8. Rebuild the code and test again; the counter frequency should be 1 second.

Is your result as expected? NO, the LEDs are not blinking anymore!

Do you have the answer?

Well, we forgot to take care of the watchdog unit! When you inspect the while(1)-loop
in main, you see that we wait until variable “CpuTimer0.InterruptCount” gets set to 1.
Because of our change in the Timer 0 setup we now wait exactly 1000 milliseconds,
which is too long for the watchdog unit.

What can be done? We have to include the watchdog service instructions (0x55 and
0xAA) into the wait - construction.

Change the code accordingly, rebuild and test again.

The LEDs should now change once every second.

 Lab Exercise 11_1

F2833x - Controller Area Network 11 - 45

Note: To place both watchdog service instructions into the same place in the program
is not the best solution. A better initialization would be to keep the first service
instruction inside the CPU Timer 0 Interrupt service function and to add the second
service instruction only into the wait - construction. However, we have to reduce the
period of CPU - Timer 0 back to 100 milliseconds to keep it inside the watchdog
range. In this case we have to wait until variable “CpuTimer0.InterruptCount” gets set
to 10 to get the 1 second interval. If your laboratory time permits, you should try to
improve your code in such a way.

Add CAN Initialization Code
9. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link to your project:

• DSP2833x_ECan.c

Before we can start editing our own code we have to inspect two files, which have
been provided by Texas Instruments.

10. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\include open
“DSP2833x_Examples.h”.

Verify that the following macros are defined as below:

#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT
#define DSP28_PLLCR 10 // multiply by 10/2
#define CPU_RATE 6.667L // for 150MHz (SYSCLKOUT)
#define CPU_FRQ_150MHZ 1 // 150 MHz CPU Freq (30 MHz Osc.)

The source code in “DSP2833x_ECan.c” uses the macro “CPU_FRQ_150MHZ” to
initialize the CAN data rate; therefore we have to make sure that this macro is set to 1.

11. Open and edit file “DSP2833x_ECan.c”.

We have to set the CAN data rate to 100 kbit/s. If the F2833x runs at SYSCLKOUT =
150MHz, the CAN input clock is 75 MHz. According to the numbers given in Slide 11
- 46, we have to initialize register CANBTC with:

• BRP = 49
• TSEG1 = 10
• TSEG2 = 2

Lab Exercise 11_1

11 - 46 F2833x - Controller Area Network

11 - 46

CAN Bit-Timing Examples
 Bit Configuration for BaseCLK = 75 MHz

 Sample Point at 80% of Bit Time :

 Example 100 kbit/s
TQ = (49+1)/ 75 MHz = 0.667 µs
tseg1 = 0.667 µs (10 + 1) = 7.337 µs  tCAN = 10 µs;
tseg2 = 0.667 µs (2 + 1) = 2 µs

CAN -
data rate

BRP TSEG1 TSEG2

1 Mbit/s 4 10 2

500 kbit/s 9 10 2

250 kbit/s 19 10 2

125 kbit/s 39 10 2

100 kbit/s 49 10 2

50 kbit/s 99 10 2

In function “InitECana(void)” search for the line

#if (CPU_FRQ_150MHZ)

and change the initialization values for BRPREG, TSEG1REG and TSEG2REG.

 Initialize CAN Mailbox
12. Now open Lab11_1.c to edit.

First, add a new structure “ECanaShadow” as a local variable in main:

struct ECAN_REGS ECanaShadow;

This structure will be used as a local copy of the original CAN registers. A
manipulation of individual bits is done inside the copy. At the end of the access, the
whole copy is reloaded into the original CAN structures. This operation is necessary
because of the inner structure of the CAN unit; some registers are only accessible by
32 - bit accesses and by copying the whole structure, we make sure to generate 32 - bit
accesses only.

13. In “main()”, after the function call “Gpio_select()”, add a function call of
“InitECan()”. Also, add an external prototype for that function at the beginning of
“main()”.

14. Next, inside function “Gpio_select()”, enable the peripheral function of CANA_TX
and CANA_RX connected to lines GPIO30 and GPIO31.

 Lab Exercise 11_1

F2833x - Controller Area Network 11 - 47

15. In “main()”, after the function call to “InitECan()”, add code to prepare the transmit
mailbox. In this exercise, we will use mailbox #5, an extended identifier of
0x10000000 and a data length code of 1. Add the following steps:
• Write the identifier 0x10000000 into register “EcanaMboxes.MBOX5.MSGID”.
• To transmit with extended identifiers set bit “IDE” of register

“EcanaMboxes.MBOX5.MSGID” to 1.
• Configure Mailbox #5 as a transmit mailbox. This is done by setting bit MD5 of

register “ECanaRegs.CANMD” to 0. Caution! Due to the internal structure of the
CAN-unit, we cannot execute single bit accesses to the original CAN registers. A
good practice is to copy the whole register into a shadow register, manipulate the
shadow register and copy the modified 32 - bit shadow value back into the original
register :
 ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;
 ECanaShadow.CANMD.bit.MD5 = 0;
 ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;

• Enable Mailbox #5:
 ECanaShadow.CANME.all = ECanaRegs.CANME.all;

 ECanaShadow.CANME.bit.ME5 = 1;
 ECanaRegs.CANME.all = ECanaShadow.CANME.all;

• Set up the Data Length Code Field (DLC) in Message Control Register
“ECanaMboxes.MBOX5.MSGCTRL” to 1 and clear all remaining bits of this
register.

Add the Data Byte and Transmit
16. Now we are almost done. The last part of code modification is the periodical loading

of the data byte into the mailbox and the transmit request command. This must be
done inside the while(1)-loop of “main()”. Locate the code where we waited for the
next period of 1 second. Here add:

• Load the current value of variable counter into register
“ECanaMboxes.MBOX5.MDL.byte.BYTE0”. Recall that we would like to send a
one - byte message; therefore we have to load only the lower 8 bits of “counter”!

• Request a transmission of mailbox #5. Init register “ECanaShadow.CANTRS”.
Set bit TRS5=1 and all other 31 bits to 0. Next, load the whole register into
“ECanaRegs.CANTRS”

• Wait until the CAN unit has acknowledged the transmit request. The flag
“ECanaRegs.CANTA.bit.TA5” will be set to 1 if your request has been
acknowledged.

• Clear bit “ECanaRegs.CANTA.bit.TA5”. Again the access must be made as a 32
- bit access:

ECanaShadow.CANTA.all = 0;

ECanaShadow.CANTA.bit.TA5 = 1;

Lab Exercise 11_1

11 - 48 F2833x - Controller Area Network

ECanaRegs.CANTA.all = ECanaShadow.CANTA.all;

17. Remove the old code that was used to display the binary counter at LEDs LD1 to LD4.
Just keep the increment instruction for “counter”.

Build, Load and Run
18. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)
and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

19. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

20. Verify that in the debug perspective the window of the source code “Lab11_1.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

21. Perform a real time run.

Target  Run

Providing you have found a partner team with another F2833x connected to your
laboratory CAN system that has prepared the receiver task (Lab11_2) you can do a
real network test. The current value from variable “counter” should be transmitted
every second via CAN.

If your teacher can provide a CAN analyser you should be able to trace your data
frames at CAN.

If you end up in a fight between the two teams about whose code might be wrong, ask
your teacher to provide a working receiver node. Recommendation for teachers: Store
a working receiver code version in the internal Flash of one node and start this node
out of flash memory.

End of Lab 11_1

 Lab Exercise 11_2

F2833x - Controller Area Network 11 - 49

Lab Exercise 11_2

11 - 67

CAN Example : receive a frame
 Lab 11_2: Receive a CAN message

 CAN baud rate : 100 kBit/s
 Message Identifier 0x 1000 0000 (extended frame)
 Use Mailbox #1 as receive mailbox
 Display the binary counter at LEDs LD1 to LD4

(GPIO9, GPIO11, GPIO34 and GPIO49)

Pin Nr. Signal Description

1 - Reserved

2 CAN_L CAN Bus Signal (dominant low)

3 CAN_GND CAN ground

4 - Reserved

5 CAN_SHLD Optional shield

6 GND Optional CAN ground

7 CAN_H CAN Bus Signal (dominant high)

8 - Reserved

9 CAN_V+ Optional external voltage supply Vcc

Preface

This laboratory experiment is the second part of a CAN-Lab. Again we have to set up
the physical CAN-layer according to the layout of your laboratory.

The CAN physical layer requires a transceiver circuit between the digital CAN signal
levels of the F2833x and the bus lines to adjust the physical voltages. The Peripheral
Explorer Board is equipped with a Texas Instruments SN65HVD230 for high speed
ISO 11898 applications. This transceiver is connected to GPIO30 (CAN - RX) and
GPIO31 (CAN - TX).

The physical CAN lines for ISO 11898 require a correct line termination at the ends
of the transmission lines by 120 Ohm terminator resistors. The Peripheral Explorer
Board has a terminator of 120 Ohm (R8) connected between CANH and CANL. This
resistor can be enabled by closing header J24 of the Peripheral Explorer Board.
However, if your laboratory layout consists of a group of devices, only the two out-
most devices should be equipped with that terminator resistor. In such circumstances
all inner boards should keep jumper J24 open. Recall that the overall line resistance
should match 60 Ohms. If you are in doubt, ask your teacher which set up is the cor-
rect one.

To test your code you will need a partner team with a second F2833x doing Lab
11_1, e.g. sending a one byte message with identifier 0x10 000 000 every second.
Before you start the hard wiring, ask your teacher or a laboratory techni-
cian what exactly you are supposed to do to connect the boards!

Lab Exercise 11_2

11 - 50 F2833x - Controller Area Network

Objective

• The objective of Lab 11_2 is to receive a one byte data message from CAN and

display the four least significant bits of that byte at LEDs LD1 to LD4 (GPIO9,
GPIO11, GPIO34 and GPIO49) of the Peripheral Explorer Board.

• The CAN data rate must be set to 100 kbit/s to match with Lab11_1.

• Also, to be compatible with Lab11_1, this exercise should use extended identi-

fier 0x1000 0000 for the receive filter of mailbox 1. You can also use any other
number as identifier, but please make sure that your partner team (Lab 11_1)
knows about your change. If several Peripheral Explorer Boards in your class-
room are in use simultaneously, it could be an option to set up pairs of teams
sharing the CAN by using different identifiers.

• Use Mailbox #1 as your receiver mailbox

• Once you have initialized the CAN module, wait for a reception of mailbox #1

by polling the status bit. Again, we do not need to use CAN interrupts for this
CAN exercise.

Procedure

Open Files, Create Project File
1. If you have already completed Lab11_1, you can use project Lab11.pjt as a starting

point. In this case, open project Lab11 and continue with procedure step #13.

 If this Lab is your first CAN exercise, you will have to setup a new project. Using
Code Composer Studio, create a new project, called Lab11.pjt in
C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. A good point to start with is the source code of Lab6.c, which produces a hardware
based time period using CPU core timer 0. Open the file Lab6.c from
C:\DSP2833x_V4\Labs\Lab6 and save it as Lab11_2.c in
C:\DSP2833x_V4\Labs\Lab11.

3. Define the size of the C system stack. In the project window, right click at project
“Lab11” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4. In the C/C++ perspective, right click at project “Lab11” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

 Lab Exercise 11_2

F2833x - Controller Area Network 11 - 51

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c
• DSP2833x_CpuTimers.c
• DSP2833x_SysCtrl.c
• DSP2833x_CodeStartBranch.asm
• DSP2833x_ADC_cal.asm
• DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

• DSP2833x_Headers_nonBIOS.cmd

Project Build Options
5. We have to extent the search path of the C-Compiler for include files. Right click at

project “Lab11” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Preliminary Test
6. So far we have just created a new project “Lab11.pjt” with the same functionality as in

Lab6. A good step would be to rebuild Lab11, load the code into the controller and
verify the binary counter at LEDs LD1 to LD4 of the Peripheral Explorer Board. The
LEDs should display the counter at 100 milliseconds time steps.

Lab Exercise 11_2

11 - 52 F2833x - Controller Area Network

Add CAN Initialization Code
7. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:

• DSP2833x_ECan.c

Before we can start editing our own code, we have to modify two files, which have
been provided by Texas Instruments:

8. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\include open
“DSP2833x_Examples.h”.

Verify that the following macros are defined as:
#define DSP28_DIVSEL 2 // Enable /2 for SYSCLKOUT
#define DSP28_PLLCR 10 // multiply by 10/2
#define CPU_RATE 6.667L // for 150MHz CPU SYSCLKOUT
#define CPU_FRQ_150MHZ 1 // 150 MHz CPU Freq (30 MHz Osc.)

The source code in “DSP2833x_ECan.c” uses the macro “CPU_FRQ_150MHZ” to
initialize the CAN data rate; therefore we have to make sure that this macro is set to 1.

9. Open and edit file “DSP2833x_ECan.c”.

We have to set the CAN data rate to 100 Kbit/s. If the F2833x runs at SYSCLKOUT
= 150MHz, the CAN input clock is 75 MHz. According to the numbers given in Slide
11 - 46, we have to initialize register CANBTC with:

• BRP = 49
• TSEG1 = 10
• TSEG2 = 2

11 - 46

CAN Bit-Timing Examples
 Bit Configuration for BaseCLK = 75 MHz

 Sample Point at 80% of Bit Time :

 Example 100 kbit/s
TQ = (49+1)/ 75 MHz = 0.667 µs
tseg1 = 0.667 µs (10 + 1) = 7.337 µs  tCAN = 10 µs;
tseg2 = 0.667 µs (2 + 1) = 2 µs

CAN -
data rate

BRP TSEG1 TSEG2

1 Mbit/s 4 10 2

500 kbit/s 9 10 2

250 kbit/s 19 10 2

125 kbit/s 39 10 2

100 kbit/s 49 10 2

50 kbit/s 99 10 2

 Lab Exercise 11_2

F2833x - Controller Area Network 11 - 53

In function “InitECana(void)” search for the line

 #if (CPU_FRQ_150MHZ)

and change the initialization values for BRPREG, TSEG1REG and TSEG2REG.

Save and close file “DSP2833x_ECAN.c”.

Modify Source Code
10. Open Lab11_2.c to edit.

In “main()”, remove local variable “counter” and all instructions that use “counter” to
display bits 0, 1, 2 and 3 of “counter” at GPIO9, GPIO11, GPIO34 and GPIO49.

Add a new structure “ECanaShadow” as a local variable in main:

struct ECAN_REGS ECanaShadow;

This structure will be used as a local copy of the original CAN registers. A
manipulation of individual bits is done inside the copy. At the end of the access the
whole copy is reloaded into the original CAN structures. This principle of operation is
necessary because of the inner structure of the CAN unit; some registers are only
accessible by 32-bit accesses and by copying the whole structure, we make sure to
generate 32-bit accesses only.

11. In “main()”, after the function call “Gpio_select()”, add a function call to
“InitECan()”. Also, add an external prototype for this function at the beginning of
“main()”.

12. In function “Gpio_select()”, enable the peripheral function of CANA_TX and
CANA_RX connected to lines GPIO30 and GPIO31.

 Continue with procedure step #16!

13. If you have already completed Lab11_1, open the file Lab11_1.c from
C:\DSP2833x_V4\Labs\Lab11 and save it as Lab11_2.c in
C:\DSP2833x_V4\Labs\Lab11.

14. Exclude file “Lab11_1.c” from build. Use a right mouse click at file “Lab11_1.c”, and
enable “Exclude File(s) from Build”.

15. In function “main()” of the file “lab11_2”, remove all the code, which we used to
initialize the transmit mailbox #5 and the code to transmit messages with mailbox #5.

Prepare Receiver Mailbox #1

16. In “main()”, after the function call of “InitECan()”, add code to prepare the receiver
mailbox. In this exercise, we will use mailbox #1, an extended identifier of
0x10000000 and a data length code of 1. Add the following steps:

• Write the identifier into register “EcanaMboxes.MBOX1.MSGID”.

Lab Exercise 11_2

11 - 54 F2833x - Controller Area Network

• To transmit with extended identifiers set bit “IDE” of register
“EcanaMboxes.MBOX1.MSGID” to 1.

• Configure Mailbox #1 as a receive mailbox. This is done by setting bit MD1
of register “ECanaRegs.CANMD” to 1. Caution! Due to the internal
structure of the CAN-unit, we cannot execute single bit accesses to the
original CAN registers. A good practice is to copy the whole register into a
shadow register, manipulate the shadow register and copy the modified 32 -
bit shadow value back into the original register :
 ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;
 ECanaShadow.CANMD.bit.MD1 = 1;
 ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;

• Enable Mailbox #1:
 ECanaShadow.CANME.all = ECanaRegs.CANME.all;

 ECanaShadow.CANME.bit.ME1 = 1;
 ECanaRegs.CANME.all = ECanaShadow.CANME.all;

Wait for a message in mailbox 1
17. Now we are almost done. The last missing piece is a poll a status flag “RMP1” to see,

if we have received data in mailbox 1. The best position to do this is after the 100
millisecond “while(…)” - wait construct in “main()”. Register
“ECanaRegs.CANRMP” - bit field “RMP1” will be set to 1 if a valid message has
been received. If this bit has been set, we can proceed and process the new message.

18. If bit “RMP1” was set to 1 by the CAN - Mailbox logic we can read the data byte 0
from the mailbox and load it into a local Uint16 variable “temp”:

temp = ECanaMboxes.MBOX1.MDL.byte.BYTE0;

Of course, we have to define “temp” at the beginning of “main()”.

Next, we have to reset bit RMP1. This is done by writing a ‘1’ to it:

ECanaRegs.CANRMP.bit.RMP1 = 1;

19. Finally we need some code to decode bits 0, 1, 2 and 3 of “temp” and update the LEDs
at GPIO9, GPIO11, GPIO34 and GPIO49.

Build, Load and Run
20. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

21. Load the output file in the debugger session:

F2833x - Controller Area Network 11 - 55

 Target  Debug Active Project

and switch into the “Debug” perspective.

22. Verify that in the debug perspective the window of the source code “Lab11_2.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

23. Perform a real time run.

Target  Run

24. Assuming you have paired with another team which transmits a one-byte data frame
with identifier 0x10000000 you can do a real network test. Ask your partner team to
start their board and transmit a binary counter every second.

 If your teacher can provide a CAN analyzer you can also generate a transmit message
from this CAN analyzer.

 If you end up in a fight between the two teams about whose code might be wrong, ask
your teacher to provide a working transmitter node.

 Recommendation for teachers: Store a working transmitter code version in the internal
Flash of one node and start this node out of flash memory.

End of Lab 11_2

What’s next?

Congratulations! You’ve successfully finished your first two lab exercises using Controller
Area Network. As mentioned earlier in this chapter these two labs were chosen as a sort of
“getting started” with CAN. To learn more about CAN it is necessary to book additional
classes at your university.

To experiment a little bit more with CAN, choose one or more of the following optional
exercises:

Lab 11_3:
Combine Lab11_1 (CAN - Transmit) and Lab11_2 (CAN-Receive) into a bi-directional
solution. The task for your node is to transmit the status of the 4-bit hex encoder
(GPIO12...15) every second (or optional: every time the status has changed) with a one-byte
frame and identifier 0x10 000 000. Simultaneously, your node must also be able to receive
CAN messages with identifier 0x11 000 000 and display bits 0 to 3 of that message’s byte 0
at the LEDs (GPIO9 , GPIO11, GPIO34 and GPIO49) of the Peripheral Explorer Board.

What’s next?

11 - 56 F2833x - Controller Area Network

Lab 11_4:
Try to improve Lab11_2 and Lab11_3 by using the F2833x Interrupt System for the receiver
part of the exercises. Instead of polling the “CANRMP-bit field” to wait for an incoming
message your task is to use a mailbox interrupt request to read out the mailbox when
necessary.

Lab 11_5:
We did not consider any possible error situations on the CAN side so far. That is not a good
solution for a real - world project. Try to improve your previous CAN experiments by
including the servicing of potential CAN errors. Review the CAN error status register flags
and all possible errors. A good solution would be to allow CAN error interrupts to request
their individual service routines in case of a CAN failure. What should be done in the case of
an error request? Answer: Well, our Peripheral Explorer Board does not feature a lot of
additional hardware that we could use to indicate such an error situation. So let us just switch
LED LD1 to ON in case of a failure.

Another option could be to monitor the status of the two CAN - error counters. If one of the
two counters goes above 50, switch on LED LD2.

If your laboratory is equipped with a CAN failure generator like “CANstress” (Vector
Informatik GmbH, Germany) you can generate reproducible disturbance of the physical
layer, you can destroy certain messages and manipulate certain bit fields with bit resolution.
Ask your laboratory technician whether you have access to this type of equipment to invoke
CAN errors.

Lab 11_6:
An enhanced experiment is to request a remote transmission from another CAN-node. An
operating mode, that is quite often used is the so-called “automatic answer mode”. A
transmit mailbox, that receives a remote transmission request (“RTR”) answers
automatically by transmitting a predefined frame. Try to establish this operating mode for the
transmitter node (Lab11_1 or Lab11_3). Wait for a RTR and send the current status of the 4-
bit hex encoder (GPIO12...15) back to the requesting node. The node that has requested the
remote transmission should be initialized to wait for the requested answer and display the
four LSBs of byte 1 from the received data frame at LEDs LD1 to LD4(GPIO9, GPIO11,
GPIO34 and GPIO49).

There are a lot more options for RTR operations available. Again, look out for additional
CAN classes at your university!

	F2833x Controller Area Network
	Introduction
	Module Topics
	Basic CAN Features
	Automotive Network Systems
	CAN Implementation / Data Format
	CAN Data Frame
	Standardization ISO and SAE
	CAN Application Layer
	CAN Bus Arbitration - CSMA/CA
	High Speed CAN
	CAN Error Frames
	Active Error Frame
	Passive Error Frame
	CAN Error Types
	CAN Error Status
	CAN - Error Counter

	F2833x CAN Module
	F2833x Programming Interface
	CAN Register Map
	Mailbox Enable – CANME Mailbox Direction - CANMD
	Transmit Request Set & Reset - CANTRS / CANTRR
	Transmit Acknowledge - CANTA
	Receive Message Pending - CANRMP
	Remote Frame Pending - CANRFP
	Global Acceptance Mask - CANGAM
	Master Control Register - CANMC

	CAN Bit - Timing
	Bit-Timing Configuration - CANBTC

	CAN Error Register
	Error and Status - CANES
	CAN Error Counter – CANTEC / CANREC

	CAN Interrupt Register
	Global Interrupt Mask - CANGIM
	Global Interrupt 0 Flag - CANGIF0
	Global Interrupt 1 Flag - CANGIF1
	Mailbox Interrupt Mask - CANMIM
	Overwrite Protection Control - CANOPC
	Transmit I/O Control - CANTIOC
	Receive I/O Control - CANRIOC

	Alarm / Time Out Register
	Local Network Time - CANLNT
	Time Out Control - CANTIOC
	Local Acceptance Mask - LAMn
	Message Object Time Stamp - MOTSn
	Message Object Time Out - MOTOn

	Mailbox Memory
	Message Identifier - CANMID
	Message Control Field - CANMCF
	Message Data Field Low - CANMDL
	Message Data Field High - CANMDH

	Lab Exercise 11_1
	Preface
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Preliminary Test
	Add CAN Initialization Code
	Initialize CAN Mailbox
	Add the Data Byte and Transmit
	Build, Load and Run

	Lab Exercise 11_2
	Preface
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Preliminary Test
	Add CAN Initialization Code
	Modify Source Code
	Prepare Receiver Mailbox #1
	Wait for a message in mailbox 1
	Build, Load and Run

	What’s next?
	Lab 11_3:
	Lab 11_4:
	Lab 11_5:
	Lab 11_6:

