F2833x Controller Area Network

Introduction

One of the most successful stories of the developments in automotive electronics in the last
decade of the 20" century has been the introduction of distributed electronic control units in
passenger cars. Customer demands, the dramatic decline in costs of electronic devices and
the amazing increase in the computing power of microcontrollers has led to more and more
electronic applications in a car. Consequently, there is a strong need for all those devices to
communicate with each other, to share information or to co-ordinate their interactions.

The “Controller Area Network” was introduced and patented by Robert Bosch GmbH,
Germany. After short and heavy competition, CAN was accepted by almost all
manufacturers. Nowadays, it is the basic network system in nearly all automotive
manufacturers’ shiny new cars. Latest products use CAN accompanied by other network
systems such as LIN (a low-cost serial net for body electronics), MOST (used for in-car
entertainment) or Flexray (used for safety critical communication) to tailor the different
needs for communication with dedicated net structures.

Because CAN has high and reliable data rates, built-in failure detection and cost-effective
prices for controllers, nowadays it is also widely used outside automotive electronics. It is a
standard for industrial applications such as a “Field Bus” used in process control. A large
number of distributed control systems for mechanical devices use CAN as their “backbone”.

CAN Physical Layers
CAN - High - Speed (ISO 11898):

node 1 - node 30

I CAN_H T

120 120
Ohm o

CAN_L

rezesslv rezessiv

dominant

- CANH i
CANL

IS0 11898-2 11-19

F2833x - Controller Area Network 11-1

Module Topics

Module Topics

F2833x CoNntroller Area NEIWOTK..........coviiiiiiiieiit e 11-1
Tl [FTed 1T] FO OSSOSO PPTRPRP 11-1
T T LU T= o] o2 PR 11-2
BaSIC CAN FRALUIES ...ttt b et et b et b et bbb ne st 11-4
AULOMOLIVE NEIWOTK SYSIEMS......ecviieicie et na e e s renresneeneas 11-5
CAN Implementation / Data FOIMAL.........ccoveierireieiise ettt reens 11-7
CAN DAta FTaMEveeiiie ettt sttt ettt s e et e esba e et e e sba e e tb e e sbee e beeenbeeentes 11-8
Standardization 1SO aNd SAEcoovi it sre e e re s 11-10
CAN APPIICATION LAY ...ttt bttt sttt st bbbt neeneas 11-11
CAN Bus Arbitration - CSMA/CA ...ttt s be e e ene e 11-12
HIQN SPEEA CAN ...ttt bbbt bt bt b et et e b sbesbesbe et e ane e 11-14
(67 N =t g (o] gl o =1 1T S USSR UPRTSRRN 11-15
ACHIVE EITOT FTAIME ...ttt ettt sttt ettt st st 11-16
PASSIVE EITOT FIAME .. .e.iiiiitiieiiite ettt bbb bbbt et an e 11-17

(O ANV (o g I8/ o< USSP 11-19
CAN EFTOE SEALUS ...ttt ettt ettt eb bbb e an bbb e 11-19
CAN - EFTOF COUNLET ...ttt et bbbttt nenn bbb 11-20
F2833X CAN MOUUIE.....c.ceiiiiiieiiit ettt 11-21
F2833% Programming INtEIfaCe.........ooiiieieie e e 11-22
CAN REGISTEI IMIB ..ttt ettt bttt b e sb e bbbt se et e b b et sbeebeene e 11-23
Mailbox Enable — CANME Mailbox Direction - CANMDcccooiiiiiiiiiiicneccece e, 11-23
Transmit Request Set & Reset - CANTRS / CANTRRocoiiiiiiiiiiiee e 11-24
Transmit ACKNOWIEdge - CANTA ... et bbb 11-24
Receive Message Pending - CANRMP.........coi i enes 11-25
Remote Frame Pending - CANRFPcooii st s eneas 11-25
Global Acceptance Mask - CANGAMcouoiiieiiierie st sae e sre e e, 11-26
Master Control RegiSter - CANMCccviieiie st enes 11-27
CAN Bt - TIMING ..ttt ettt bbbt b et st nb et bt bbb 11-28
Bit-Timing Configuration - CANBTCccccoiiiiiriie et 11-29
CAN EFTOF REQISTET ...ttt ettt bbbttt b e bbbt et et e e e b e nbesbesbesneeneas 11-31
Error and Status - CANESoo ittt sbe e be b e e e e ne e 11-31
CAN Error Counter — CANTEC / CANREC ...ttt eve s ste e 11-32
CAN INTEITUPE REGISLEN ...ttt ettt bbbttt et sbe st sbesbesneeneas 11-32
Global Interrupt Mask - CANGIM ..ot 11-32
Global Interrupt 0 FIag - CANGIFOcccoiiiiiiie e 11-33
Global Interrupt 1 FIag - CANGIFLoccviiiieice e 11-33
Mailbox Interrupt Mask - CANIMIIMc.ooiiiiieieiise et enees 11-34
Overwrite Protection Control - CANOPC ..ot 11-34
Transmit 1/O Control - CANTIOC ...ttt e 11-35
Receive 1/0 Control - CANRIOC ..ottt 11-35
Alarm / TIMe OUL REGISTET ...ttt sb bbb 11-36
Local Network Time - CANLNTcviii ettt 11-36
Time Out Control - CANTIOC ...t re e sre e 11-36
Local Acceptance Mask = LAMNcc.oiiiiiee ettt s 11-37

11-2 F2833x - Controller Area Network

Module Topics

Message Object Time Stamp - MOTSN ...c.cooiiiiiieseeee et 11-37
Message Object TIME OUL - MOTONc..ciiieierise ettt sre e reeneens 11-38
=TT {00) 1Y/ 1T 24T 2SR 11-39
Message Identifier - CANMID ... bbb 11-39
Message Control Field - CANMUCE ... 11-39
Message Data Field LOW - CANMDLooiiiiiiiiiiieee e 11-40
Message Data Field High - CANMDH ... 11-40
[Lo T o 1L 0 A R PS 11-41
PIETACE ..ttt bttt ettt bbb eneas 11-41
L@ o =T €)Y PSP 11-42
PIOCEUUIE.....ee ettt ettt b bbb bbbtk e bttt sttt eb et ebesb et et e sbe e ebennes 11-43
Open Files, Create ProjECt FIle........cciiviiiiieieie e 11-43
o T=To 2107 [0 @] o) T] PSSR 11-44
PrEliMINAIY TStviiieiieieecie ettt et e te st e besreeteeseenaesnenresbeseenreaneeneas 11-44
Add CAN INtIAliZation COOEcviiriiiiiriecie et 11-45
INitialize CAN MaIlDOXcouiiiiiiie e 11-46
Add the Data Byte and TranSMIL..........cccoiieiiiiiieieiise e 11-47
BUild, LOAA AN RUN ...ttt 11-48
(I Lo T o L 0 SRS 11-49
PIETACE ..ttt bttt ettt bbb eneas 11-49
OBJECTIVE ..ttt bbbt b bt b et et bbb ae s 11-50
PIOCEUUIE ...ttt ettt b e et b e et eb etk b etk b et et enb et ebeabe e ebesbe e ete e 11-50
Open Files, Create ProjECt Fle........cciiiiiiieeieie et 11-50
o T=To 2107 [0 @] o) T] PSSR 11-51
PrEliMINAIY TSt ...viiieiieieecie et e sttt e te st e tesreeteeseenaesnenresbesrenreaneaneas 11-51
Add CAN INtIAliZation COOEc.eiiriiiiiiecre et 11-52
MOITY SOUICE COUE ...ttt bbbttt see b bbb e s e 11-53
Prepare ReceiVer MailDOX #1 ..ot 11-53
Wait for a message in MAIlDOX Lcoooiiiiiiii e 11-54
BUild, LOAA AN RUN ...ttt 11-54
WINEETS NMEXE? .ttt bbb et e b ek eb e eb e bt bt et et e besbenbeebeereenes 11-55

F2833x - Controller Area Network 11-3

Basic CAN Features

Basic CAN Features

CAN is a serial communication network, the information is transmitted over 1 (“fault
tolerant low speed”) or 2 (“high speed” differential) physical signal lines. Although there is
no explicit clock information in form of an additional clock line, the receivers are able to re-
synchronize themselves based on a “non return to zero” (NRZ) modulation technique and an
additional “stuff” bit rule, which forces the transmitter to include a stuff bit after 5
consecutive bits of ‘0 or “1’.

CAN does not use physical addresses to address stations. Each message is sent with an
identifier that is recognized by the different nodes. The identifier has two functions - it is
used for message filtering and for message priority. The identifier determines if a transmitted
message will be received by CAN modules and determines the priority of the message when
two or more nodes want to transmit at the same time.

Controller Area Network (CAN)

« developed by Robert Bosch GmbH, Germany in 1987

* Products available from all microcontroller manufacturers

e International Standards: 1S011898 (Europe), SAE J2284 (US) for
“high —speed” CAN; ISO 11519-2 for “fault-tolerant low speed”
CAN

« backbone serial bus system for automotive applications, but also
used in industrial automation & control

« Eventtriggered Serial Bus System; Self-Synchronisation

More Features :

e multi master bus access
random access with collision avoidance (CSMA/CA)
short message length , at max. 8 Bytes per message
data rates 100KBPS to 1IMBPS
short bus length, physical length depends on data rate
self-synchronised bit coding technology
Robust EMC - behaviour
build in fault tolerance

11-2

The bus access procedure is a multi-master principle, all nodes are allowed to use CAN as a
master node. One of the basic differences to Ethernet is the adoption of non-destructive bus
arbitration in case of collisions, called “Carrier Sense Multiple Access with Collision
Avoidance“(CSMAJ/CA). This procedure ensures that in case of an access conflict, the
message with higher priority will not be delayed by this collision.

The physical length of the CAN is limited, depending on the baud rate. The data frame
consists of a few bytes only (maximum 8), which increases the ability of the net to respond
to new transmit requests. On the other hand, this feature makes CAN unsuitable for very
high data throughputs, for example, for real time video processing.

There are several physical implementations of CAN, such as differential twisted pair
(automotive class: CAN high speed), single line (automotive class: CAN low speed) or fibre
optic CAN, for use in harsh environments.

11-4 F2833x - Controller Area Network

Automotive Network Systems

Automotive Network Systems

Electronic Control Units
Examples for Microcontrollers used in car:

Antilock Break System - ABS (1 + 4)
Keyless Entry System(1)
Active Wheel Drive Control (4)

Engine Control (2)

Airbag Sensor Systems (6+) Seat occupation sensors(4)
Automatic Gearbox(1) Electronic Park Brake(1)

diagnostic computer(1)

driver display unit(1)

air conditioning system(1)
adaptive cruise control(1)

radio / CD-player(2)

collision warning radar(2)
rain/ice/snow sensor systems (1)

dynamic drive control(4)
active damping system (4)
driver information system(1)
GPS navigation system(3)

1

-3

Today a car is packed with electronic devices, sensors, actuators and control units. To name
a few, Slide 11-3 shows some of the functional blocks and the number of microcontrollers in
brackets. There is a lot of information to be shared by such electronic control units: a
network is required.

Why a car network like CAN?

=» Requirements of an in car network:

low cost solution

good and high performance with few overhead transmission
high volume production

high reliability and electromagnetic compatibility (EMC)
data security due to a fail-safe data transmission protocol
short message length, only a few bytes per message

=>\Where in a car is CAN used?

e communication between electronic control units
o separated CAN — sections at different speed for:
e “Auto - Body” electronic control units
(chassis, light, central locking)
e Engine control units and Power train modules
e Comfort modules

11-

F2833x - Controller Area Network

11-5

Automotive Network Systems

As you can guess, there are some options to implement a communication network into a car.
Depending on the application field, the bandwidth for data throughput, the safety level and
the budget limitation, we can find different communication standards:

o Controller Area Network (CAN)
0 High - speed CAN (1 Mbit/s, 500 kbit/s)
0 Low - Speed CAN (100 kbit/s, 83.3 kbit/s)
o Local Interconnect Network (LIN)
0 20 kbit/s
o Media Oriented Systems Transport (MOST)
o 25Mbit/s, 50 Mbit/s, 150 Mbit/s
o FlexRay®
o 10 Mbit/s

Automotive network systems

=» Other automotive networks than CAN:

* LIN - “Local Interconnect Network”

* Body Electronic; Door, Mirror, Seat, Dashboard, Roof
20 Kbit/s
Master / Slave time triggered protocol
Single wire system; 12 V signal level
www.lin-subbus.org

e o o o

* MOST - “Media Oriented Systems Transport”
¢ Optical System for Multi — Media and infotainment

Audio, Video, Mobile Phone, GPS

Fibre optical circular system at 25 Mbit/s or 150 Mbit/s or

Electrical layer at 50 Mbit/s.

WWW.mostcooperation.com

* FlexRay
« Time Triggered Protocol for fail safe applications;
¢ 10 Mbit/s; dual channel redundancy
* www.flexray.com

11-5

11-6 F2833x - Controller Area Network

CAN Implementation / Data Format

CAN Implementation / Data Format

format:

Implementation

Implementation / Classification of CAN

Implementation: amount of functionality in CAN- Silicon

» Don’t get confused !

Communication is standardized and identical for all
implementations of CAN. However, there are two types
of hardware implementation and two versions of data

Data Format

Full - CAN Basic CAN Standard Extended

11-

6

There are two versions of how the CAN-module is implemented in silicon, called “Basic”
and “Full” - CAN. Almost all new processors with a built-in CAN module offer both modes
of operation. Basic-CAN as the only mode is normally used in cost sensitive applications.

Basic CAN

Full - CAN

Basic- and Full-CAN communication

Close coupled MCU-core and CAN
only one transmit buffer

only two receive buffer

only one filter for incoming messages
Software routines are needed to select
between incoming messages

provide a message server

extensive acceptance filtering on incoming
messages

user configurable mailboxes

mailbox memory area , size of mailbox
areas depends on manufacturer

advanced error recognition

1 -

F2833x - Controller Area Network

11-7

CAN Data Frame

CAN Data Frame

The Data Format of CAN

° CAN-Version 2.0A
Standard ° messages with 11-bit -
identifiers

o CAN-Version 2.0B
Extended . messages with 29-bit-
identifiers

==> Suitably configured, each implementation (BASIC or FULL)
can handle both standard and extended data formats.

11-8

The two versions of the data frame format allow the reception and transmission of standard
frames and extended frames in a mixed physical set up; provided the silicon is able to handle
both types simultaneously (CAN version 2.0A and 2.0B respectively).

The CAN Data Frame

; RTR | o crC
1 bit 0..8 byte
1bit | 1 bit v 15 bits EOF + IFS
D= 10 bits
_ U e DLC ACHK
Identifier A bits 2 bits

11 bits

DATA-Frame CAN 2.0A (11-bit-identifier)

data

0...8 byte CRC

SIRR 1 bit 15 bits

1bit

EOF + IFS
10 bits

IDE

Identifier 1bit "
11 bits Identifier

18bit

DLC ACK
4 bits 2 bits

DATA-Frame CAN 2.0B (29-bit-identifier)

1-9

11-8 F2833x - Controller Area Network

CAN Data Frame

The CAN Data Frame

each data frame consists of four segments :
(1) arbitration-field :
e denote the priority of the message
e |ogical address of the message (identifier)
e Standard frame, CAN 2.0A: 11 bit-identifier
e Extended frame, CAN 2.0B: 29 bit-identifier
(2) data field :
e up to 8 bytes per message ,
e a0 byte message is also permitted
(3) CRC field:
e cyclic redundancy check ; contains a checksum
generated by a CRC-polynomial
(4) end of frame field:
e contains acknowledgement, error-messages, end
of message

11-10

The arbitration field is used to denote both the priority and the type of the message. CAN
uses a broadcast type of transmission, there are no node addresses. Instead of node addresses,
CAN implements logical groups of message identifiers. The next slide explains all bit fields
of a CAN data frame in detail.

The CAN Data Frame

start bit (1 bit - dominant): beginning of a message; after idle-time falling-edge to
synchronize all transmitters

identifier (11 bit): mark the name of the message and its priority ;the lower the value
the higher the priority

RTR (1 bit): remote transmission request; if RTR=1 (recessive) no valid data inside
the frame - it is a request for receivers to send their messages

IDE (1 bit): Identifier Extension; if IDE=1 then extended CAN-frame

ro (1 bit): reserved

CDL (4 bit): data length code in byte (0...8)

data (0...8 byte): the data of the message

CRC (15 bit): cyclic redundancy code for error detection, no correction; hamming-
distance 6 (up to 6 single bit errors can be detected)

ACK (2 bit): acknowledge; if areceiving node has received a valid message, it
must transmit an dominant acknowledge — bit

EOF (7 bit =1, recessive): end of frame; intentional violation of the bit-stuff-rule ;
normally after five recessive bits one stuff-bit follows automatically

IFS (3 bit =1, recessive): inter frame space; time space to copy a received

message from bus-handler into buffer
Extended Frame only :

SRR (1 bit = recessive): substitute remote request ; substitution of the RTR-bit in
standard frames
rl (1 bit): reserved
1-11

F2833x - Controller Area Network 11-9

Standardization ISO and SAE

Standardization ISO and SAE

The Standardisation of CAN

« CAN is an open system and has been standardized by
ISO

e CAN follows the ISO - OSI seven layer model for open
system interconnections

e CAN implements layer 1, 2 and 7 only

e However, Layer 7 is not standardised

Physical Layer Type Europe North America
WWW.iS0.0rg www.sae.org

Single — Wire CAN n/a SAE J2411
Single Wire CAN for Vehicle
Applications

Low-Speed Fault Tolerant 1ISO 11519 - 2 n/a.

CAN 1SO 11898 - 3

High-Speed CAN ISO 11898 SAEJ2284

11-12

As an open system, CAN today is standardized both by the European Standardization
Organization (ISO) and the Society of Automotive Engineers (SAE). All CAN standards
define layer 1 and 2 of the OSI - layer model only. For layer 7 some higher layer solutions
exist.

ISO Reference Model

Open Systems Interconnection (OSI):

Layer 1: transmission line(s)

Layer 7 o differential two-wire-line, twisted
Application Layer pair with/without shield
Layer 6 e Transceiver Integrated Circuit
Prasentation Layer Vol . Optiolngl: fibre opt))tica; lines (passive
coupled star, carbon
Layer 5 void e Optional: Coding as PWM, NRZ,
Session Layer
Manchester Code
Layer 4 void « 1SO 11898
Transport Layer
Layer 3 void Layer 2: Data Link Layer
Network Layer « message format and transmission
Layer 2 protocol
Data LInk Layer e |SO 11898
Layer 1 e CSMAJ/CA access protocol

Physical Layer

Layer 7: Application Layer
o different standards in industry, not
standardized in automotive

11-13

11-10 F2833x - Controller Area Network

CAN Application

Layer

CAN Application Layer

1.

CAN Layer 7

CAN Application Layer (CAL):
European CAN user group "CAN in Automation (CiA)”
originated by Philips Medical Systems 1993
CiA DS-201 to DS-207
standardised communication objects, -services and -protocols (CAN-
based Message Specification)
Services and protocols for dynamic attachment of identifiers (DBT)
Services and protocols for initialise, configure and obtain the net (NMT)
Services and protocols for parametric set-up of layer 2 &1 (LMT)
Automation, medicine, traffic-industry

OSEK/VDX

“ Offene Systeme fur Elektronik im Kraftfahrzeug”

Standard of European automotive electronics industry
include services of a standardised real-time-operating system
Network Management Services

Communication Services

11-14

For OSI - layer 7, some user groups have defined specific layers, such as CAL, CANOpen or
DeviceNet, which are tailored to certain application areas. These layers are not compatible
with each other. In automotive applications, layer 7 is usually a proprietary (and

confidential) in

- house solution.

3.

4.

5.

CAN Layer 7

CANopen

« European Community funded project “ ESPRIT”
* 1995: CANopen profile :CiA DS-301

e 1996 : CANopen device profile for I1/0 : CiA DS-401
e 1997 : CANopen drive profile

* industrial control , numeric control in Europe

DeviceNet
Allen-Bradley, now ODVA-group (www. odva.org)
device profiles for drives, sensors and actuators
master-slave communication as well as peer to peer
industrial control , mostly USA

Smart Distributed Systems (SDS)
Honeywell , device profiles
only 4 communication functions , less hardware resources
industrial control and PC-based control

11-15

F2833x - Controller Area Network

11-11

CAN Bus Arbitration - CSMA/CA

CAN Bus Arbhitration - CSMA/CA

Bus Access Procedure
The “Ethernet”: CSMA / CD
) | CSMA /CD:
listen to bus time delay H
Carrier
Sense
bus no Multiple
e”‘"‘yy:s Access with
Collision
transmit & Detection
tabort transmit
Note: This flowchart does NOT apply to
@ CAN! See following page
11-16

CAN feature a modified CSMA/CD access control principle, where a message with the
highest priority will continue its transmission regardless of the collision with other messages.
Therefore the modification is called “collision avoidance” (/CA), sometimes “collision
resolution” (/CR).

CAN Access Procedure: CSMA/CA

CSMA/ CA: “Carrier Sense Multiple Access with Collision

Avoidance”
« access-control with non
start ileidg id8 | id7 | 46 destructive bit-wide
node a | ™ | [[arbitration
Rx | I I I o if there is a co_IIision , the
“winner” continues
T" L L1 . the message with higher
RX | | | | priority is not delayed!
« real-time capability for high
bus line LI 1T 1 prioritised messages
« the lower the identifier, the

higher the priority

11-17

11-12 F2833x - Controller Area Network

CAN Bus Arbitration - CSMA/CA

CSMA/CA (cont.)

CSMA/CA =
"bit - wide arbitration during transmission with simultaneous
receiving and comparing of the transmitted message"
means :
« if there is a collision within the arbitration-field, only the
nodes with lower priorities cancel transmission.
* The node with the highest priority continues with the
transmission of the message.

node 1 node 2 node 3
high : reccessive node 1 node 2 node 3 bus
high high high high
low : dominant high low high low
low low high low

11-18

As you can see from the previous slide the arbitration procedure at a physical level is quite
simple: it is a “wired-AND” principle. Only if all 3 node voltages (node 1, node2 or node3)
are equal to 1 (recessive), the bus voltage stays at V. (recessive). If only one node voltage is
switched to 0 (dominant), the bus voltage is forced to the dominant state (0).

The beauty of CAN is that the message with highest priority is not delayed at all in case of a
collision. For the message with highest priority, we can determine the worst-case response
time for a data transmission. For messages with lower priorities, to calculate the worst-case
response time is a little bit more complex task. It could be done by applying a so-called “time
dilatation formula for non-interruptible systems™:

n+ R" —C,
RM™ =Ci +Bpaa + 2, lr——}*cj

Jjehp(i)

HARTER, P.K: “Response Times in level structured systems” Techn.
Report, Univ. of Colorado, 1991

In detail, the hardware structure of a CAN-transceiver is more complex. Due to the principle
of CAN-transmissions as a “broadcast” type of data communication, all CAN-modules are
forced to “listen” to the bus all the time. This also includes the arbitration phase of a data
frame. It is very likely that a CAN-module might lose the arbitration procedure. In this case,
it is necessary for this particular module to switch into receive mode immediately. This re-
quires every transceiver to provide the current bus voltage status permanently to the CAN-
module.

F2833x - Controller Area Network 11-13

High Speed CAN

High Speed CAN

CAN Physical Layers
CAN - High - Speed (ISO 11898):

node 1 - node 30

T CAN_H T
120 120
Ohm o

CAN_L

rezessiv rezessiv

CANH j
CANL

IS0 11898-2 11-19

logl

log 0

3,5V

2,5V

1,5V

To generate the voltage levels for the differential voltage transmission according to CAN
High Speed, we need an additional transceiver device, e.g. the SN65HVD23x.

CAN High speed Node

F2833x with on-chip
CAN module

CAN Transceiver
SN65HVD23X

! et m

CAN - bus

11-20

11-14 F2833x - Controller Area Network

CAN Error Frames

CAN Error Frames

Layer 2 of CAN also includes an enhanced strategy to detect transmission errors, which is
based on error -levels and the exchange of error messages. Please note that the exchange of
error messages is managed by the CAN communication controller in OSI layer 2; it is
therefore totally independent of application layer 7.

CAN Error — Frame

e any node that detects a bus error generates an error - frame

 an error frame is transmitted as soon as an error has been
detected, e.g. inside a data frame

 consists of two fields: Error Flag Field; Error Delimiter Field

 Error Delimiter Field:

» 8recessive bits

» allow bus nodes to restart bus communication after an error
* Error Flag Field:

Type depends on the error-state of the node:

* error active: 6 consecutive dominant error bits; all other
nodes will respond to this violation with their own error
frames =» Error Flag Field = 6...12 dominant bits

* error passive: 6 consecutive recessive bits plus 8 error

delimiter bits = 14 recessive bits
e receiver: does not corrupt the message
e transmitter: other nodes may respond with active
error frames

11-21

The error management of a node is based on one of 3 states, in which a node operates:
o Error Active State
e Error Passive State
e Bus OFF state

Depending on the state a node is able to transmit “Active Error” - frames, “Passive Error” -
frames or no error frames at all.

The objective behind these 3 levels is to have the ability to identify a potential fault node, to
isolate this node and to keep the remaining part of the bus running. This principle will be
explained shortly. For now, let us concentrate on the characteristics of the different error
frames.

F2833x - Controller Area Network 11-15

CAN Error Frames

Active Error Frame

CAN Error — Frame

Examplel: Active error frame

data error frame Inter frame space

»i
L

A 4
A

| |
[
Iq

- 6 bit error flag

»

A
A 4

6..12 bit error overlay T 8 bit error delimiter

Active error frame

11-22

The first example in Slide 11-22 shows the timing diagram of an active error frame. As soon
as a node detects faulty data, it will send such a frame to the bus. Since the error flag field
contains 6 zero bits, which is (an intended) violation of the stuff bit rule, other nodes will
respond with their own active error frames. Depending on how many bits of the last data
group have been 0, the other nodes will start sooner or later with the transmission of their
follow-up active error frames, leading to a 6...12 bit error overlay as shown in Slide 11-22.

If a receiving node receives an active error frame, it will mark the data contents of this
message as faulty and cancel it. The message will not be forwarded to the mailbox server and
to the application. Instead, the receiver mailbox will be cleared to be able to await a re-
transmission of the message.

If a transmitting node receives an active error frame, it will immediately stop the current
transmission. As soon as the bus is empty, it will try to re-transmit the message. As long as
no successful transmission has happened, the application will not get the “Transmission
Acknowledged” (TA) status flag.

11-16 F2833x - Controller Area Network

CAN Error Frames

Passive Error Frame

If a node has reached “error passive” level, is no longer able to generate active error frames.
Instead, it will issue passive error frames in case of a detected data corruption.

CAN Error — Frame

data error frame Inter frame space

<
P <€

A 4
A

A
A

A
4

6 bit error flag b 8 bit error delimiter

passive error frame from areceiver

data error frame Inter frame space

>
<€

A 4
A

<

‘6 bit passive error f[qg R

|‘ L »

8 bit error delimiter

6 bit active error overlay
from another active node

passive error frame from a transmitter

11-23

Slide 11-23 shows what happen, if a node is in error passive mode.

If a receiver spots faulty data, it will issue a passive error frame. The 6 recessive error bits
can now be overwritten by dominant bits of the original transmitter data, which is still in
active mode.

If a transmitter is in passive error mode and generates a passive error frame, this (intended)
violation will be answered by receivers in error active mode with a 6 bit active error overlay,
shown in the bottom half of Slide 11-23. Since the original transmitting node is the only
transmitter at that time, the active error overlay ensures that all nodes will cancel the
corrupted message, which has already been detected by the transmitter.

Using these two principles, it ensures that nodes in error active mode will always be able to
overrule nodes in error passive state. Only if all nodes of a CAN subnet are in error passive
mode, the recessive level of error passive frames from receivers will be treated as error
messages.

The next slides will illustrate what happens in case of an error in a more realistic scenario.

F2833x - Controller Area Network 11-17

CAN Error Frames

CAN Error — Frame

data
>

Transmitter X @ @

CAN - Tx

Receiver Y 4
CAN - Tx

Receiver Z 4
CAN - Tx

o @ ®
Bus - level @

6 6 8 3

Example: active error frame

11-24

The bullets 1 to 6 indicate events on the time line. At position 5, node X tries to generate 6
recessive bits for the error delimiter but the actual bus level is dominated by node Y and Z
and their delayed active error frames. The time delay between bus and the Tx - line of node
X is used to define the node, which has first spotted the error.

CAN Error — Frame

Node X detects a bit error
Node X generates an active error flag field

Nodes Y, Z realize a stuff bit error after bit 6 of the active error flag field
(note: if the corrupted data frame had dominant bits, the stuff bit error is
detected earlier)

Nodes Y,Z transmit their own active error flag field of 6 dominant bits

@ ® OO

All nodes transmit the recessive error delimiter field. Node Y and Z see
no difference @ bus level, but node X detects a delay of 6 bits
between bus level and its own output =» First node to message error

@

After the last 8 recessive error delimiter bits @ CAN-bus and 3 bit of
inter frame space a new arbitration is entered by node X, e.g. it has to
compete again with other nodes

11-25

11-18 F2833x - Controller Area Network

CAN Error Frames

CAN Error Types

CAN Error Recognition

1. Bit-Error
the transmitted bit doesn’t read back with the same digital
level (except arbitration and acknowledge- slot)

2. Bit-Stuff-Error
more than 5 continuous bits read back with the same digital
level (except ‘end of frame’-part of the message)

3. CRC-Error
the received CRC-sum doesn’t match with the calculated sum

4. Format-Error
Violation of the data-format of the message , e.g.: CRC-
delimiter is not recessive or violation of the ‘end -of-frame’-
field

5. Acknowledgement-Error
transmitter receives no dominant bit during the
acknowledgement slot, i.e. the message was not received by
another node.

11-26

CAN Error Status

Here is a summary for the node’s error states:

CAN Error Status

Purpose: avoid persistent
s disturbances of the CAN by switching
off defective nodes

—————1—g ~———+——~g ~~——+————

error error error three Error States :

detection managing limitation
error error bus
active passive off

Error Active: normal mode, messages will be received and
transmitted. In case of error an will be transmitted.

Error Passive: after detection of a certain number of errors, the node
reaches this state. Messages will be received and transmitted but in
case of an error the node sends a

Bus Off: the node is separated from CAN, neither transmission nor
receive of messages is allowed and the node is no longer able to
transmit error frames.

11-27

F2833x - Controller Area Network

11-19

CAN Error Frames

CAN - Error Counter

The transitions between error states of a node is based on the current value in two error
counters, called Receive Error Counter (REC) and Transmit Error Counter (TEC).

CAN Error Counter

State - Diagram~ « transitions will be carried out automatically by
i the CAN-chip

» states are managed by 2 Error Counters :
Receive Error Counter (REC)
Transmit Error Counter (TEC)

REC <127

N iy cuioracty * Possible situations :
‘reset or ‘init a) a transmitter recognises an error:
REC >127 or o TEC:=TEC + 8
(127<TEC<255 b) areceiver sees an error : REC:=REC+1
c) areceiver sees an error, after transmitting an

error frame: REC:=REC + 8
d) if an ‘error active’-node find’s a bit-stuff-error
during transmission of an error frame:

TEC:=TEC+1
e) successful transmission:

TEC:=TEC-1
f) successful receive:
REC:=REC - 1

11-28

The current values both of REC and TEC are permanently available in two registers of the
F2833x CAN Controller. For maintenance purposes it is a good idea to read the values from
time to time to monitor the quality of the data transmission. Rising numbers in TEC and/or
REC give an indication that something is going wrong with the communication and that this
may be an appropriate time to take preventative action, e.g. switch into a local operating
mode of the device.

The state diagram above shows the transitions between error active, error passive and bus off
states. Successful communication is always represented by the number -1. Depending on the
seriousness of a failure, the penalty is either +8 or +1 of the corresponding error counter.

After a RESET, the node is in error active mode. If REC or TEC is increased beyond 127,
the node goes into error passive state. From this state the node can (a) go back to error active,
if both REC and TEC are decreased below 127; or (b) will be forced into bus OFF state, if
TEC is greater than 255.

The original CAN specification did not allow a recovery from bus OFF. The only option was
to reset and re-initialize the device. This was really bad news as it meant that your car would
lose full CAN communication and could grind to a halt.

However, newer microcontrollers, such as the F2833x, allow an automatic recovery, if a
certain amount of idle time was applied to the bus. This additional feature can be enabled or
disabled during the initialization of the CAN communication controller.

11-20 F2833x - Controller Area Network

F2833x CAN Module

F2833x CAN Module

F2833x CAN Features
¢ Fully CAN protocol compliant, version 2.0B

¢ Supports data rates up to 1 Mbps

¢ Thirty-two mailboxes
« Configurable as receive or transmit
+ Configurable with standard or extended identifier
+ Programmable receive mask
+ Supports data and remote frame
+ Composed of 0 to 8 bytes of data
+ Uses 32-bit time stamp on messages
+ Programmable interrupt scheme (two levels)
+ Programmable alarm time-out

¢ Programmable wake-up on bus activity
¢ Self-test mode

11-29

The F2833x CAN unit is a full CAN Controller. It contains a message handler for transmis-
sion, reception management and frame storage. The specification is CAN 2.0B Active - that
is, the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

F2833x CAN Block Diagram

Address I_I Data

- @

Memory Management

T eCANOINT TeCANlINT

Mailbox RAM

(512 Bytes) eCAN Memory

(512 Bytes)
Register and Message
Obiject Control

CPU Interface,
Receive Control Unit
Timer Management Unit

i)

Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer

32-Message Mailbox
of 4 x 32-Bit Words

LT
I@iL

SN65HVD23x
3.3-V CAN Transceiver

_l__ CAN Bus

—————————— 11-30

F2833x - Controller Area Network 11-21

F2833x Programming Interface

F2833x Programming Interface

F2833x CAN Memory
Data Space
0x00 0000 .
Control and
L "’ Status Register
6040 Local
Acceptance
..... Masks
..... 6080 Message
0x00 6000 Object
Time Stamps
0x00 61FF G 60CO Mes_sage
Object
T Time Out
e 6100| Mailbox O
..... 6108 | Mailbox 1
Mailbox 31
0x 3F FFFF 61FF
11-31

The CAN controller module contains 32 mailboxes for objects of 0- to 8-byte data lengths:

configurable transmit/receive mailboxes
configurable with standard or extended identifier

The CAN module mailboxes comprise of the following components:

MID - contains the identifier of the mailbox

MCF (Message Control Field) - contains the length of the message (to
transmit or receive) and the RTR bit (Remote Transmission Request - used
to send remote frames)

MDL and MDH - contain the data

The CAN module contains registers, which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

Control and Status Registers
Local Acceptance Masks
Message Object Time Stamps
Message Object Timeout
Mailboxes

It is the responsibility of the programmer to go through all those registers and set every sin-
gle bit according to the designated operating mode of the CAN module. It is also a challenge
for the student to exercise the skills required to debug. So let us start!

First, we will discuss the different CAN registers. If this chapter becomes too tedious, ask
your teacher for some practical examples how to use the various options. Be patient!

11-22

F2833x - Controller Area Network

F2833x Programming Interface

CAN Register Map

CAN Control & Status Register

31 0 31 0
6000 CANME 6020 CANGIM
6002 CANMD 6022 CANGIF1
6004 CANTRS 6024 CANMIM
6006 CANTRR 6026 CANMIL
6008 CANTA 6028 CANOPC
600A CANAA 602A CANTIOC
600C CANRMP 602C CANRIOC
600E CANRML 602E CANLNT
6010 CANRFP 6030 CANTOC
6012 CANGAM 6032 CANTOS
6014 CANMC 6034 reserved
6016 CANBTC 6036 reserved
6018 CANES 6038 reserved
601A CANTEC 603A reserved
601C CANREC 603C reserved
601E CANGIFO 603E reserved

11-32

Mailbox Enable — CANME Mailbox Direction - CANMD

CAN Mailbox Enable Register (CANME) — 0x006000

31 16

CANME[31:16]

15 0

CANME[15:0]

Mailbox Enable Bits

0 = corresponding mailbox is disabled

1 =The corresponding mailbox is enabled. A mailbox must be disabled before
writing to the contents of any mailbox identifier field.

CAN Mailbox Direction Register (CANMD) — 0x006002

31 16

CANMDI[31:16]

15 0

CANMDI15:0]

Mailbox Direction Bits
0 = corresponding mailbox is defined as a transmit mailbox.
1 = corresponding mailbox is defined as a receive mailbox.

11-33

F2833x - Controller Area Network 11-23

F2833x Programming Interface

Transmit Request Set & Reset - CANTRS / CANTRR

CAN Transmission Request Set Register (CANTRS) — 0x006004
31 16

CANTRS[31:16]

15 0

CANTRS[15:0]

Mailbox Transmission Request Set Bits (TRS)
0 = no operation. NOTE: Bit will be cleared by CAN-Module logic after successful transmission.
1= Start of transmission of corresponding mailbox. Set to 1 by user software;

OR by CAN -logic in case of a Remote Transmit Request.

CAN Transmission Request Reset Register (CANTRR) — 0x006006
31 16

CANTRR[31:16]

15 0

CANTRR[15:0]

Mailbox Transmission Reset Request Bits (TRR)
0 = no operation.
1 = setting TRRn cancels a transmission request, if not already in progress.

11-34
Transmit Acknowledge - CANTA
CAN Transmission Acknowledge Register (CANTA) — 0x006008
31 16
CANTA[31:16]
15 0
CANTA[15:0]
Mailbox Transmission Acknowledge Bits (TA)
0 = the message is not sent.
1 = if the message of mailbox n is sent successfully, the bit n of this register is set.
Note: To reset a TAbit by software: write a ‘1’ into it.
CAN Abort Acknowledge Request Register (CANAA) — 0x00600A
31 16
CANAA[31:16]
15 0
CANAA[15:0]
Mailbox Abort Acknowledge Bits (AA)
0 = The transmission is not aborted.
1 = The transmission of mailbox n is aborted.
Note: To reset a AA bit by software: write a ‘1’ into it.
11-35

11-24 F2833x - Controller Area Network

F2833x Programming Interface

Receive Message Pending - CANRMP

CAN Receive Message Pending Register (CANRMP) — 0x00600C
31 16

CANRMP[31:16]

15 0
CANRMP[15:0]

Mailbox Receive Message Pending Bits (RMP)

0 = the mailbox does not contain a message.

1 = the mailbox contains a valid message.

Note: To reset a RMP bit by software: write a ‘1’ into it.

CAN Receive Message Lost Register (CANRML) — 0x00600E
31 16

CANRML[31:16]

15 0
CANRMLI[15:0]

Mailbox Receive Message Lost Bits (RML)

0 = no message was lost.

1 =an old unread message has been overwritten by a new one in that mailbox.
Note: To reset a RML bit by software: write a ‘1’ into it.

11-36

Remote Frame Pending - CANRFP

CAN Remote Frame Pending Register (CANRFP) — 0x006010

31 16

CANRFP[31:16]

CANRFP[15:0]

Mailbox Remote Frame Pending Bits (RFP)

0 = no remote frame request was received.

1 = a remote frame request was received by the CAN module.

Note: To reset a RFP bit by software: write a ‘1" into the corresponding TRR bit.

1-37

F2833x - Controller Area Network 11-25

F2833x Programming Interface

Global Acceptance Mask - CANGAM

CAN Global Acceptance Mask Register (CANGAM) — 0x006012
31 30-29 28 16
AMI reserved CANGAM[28:16]

15 0

CANGAM[15:0]

Note : This Register is used in Standard Can Controller (SCC) mode only. It is hers a single
input filter for mailboxes 6...15, if the AME bit (MID.30) of the corresponding mailbox is set.
CANGAM is not used in extended eCAN — Mode!

Acceptance Mask Identifier Bit (AMI)

0 = the identifier extension bit in the mailbox determines which messages shall be received.
Filtering is not applicable.

1 = standard and extended frames can be received. In case of an extended frame all 29 bits of the identifier
and all 29 bits of the GAM are used for the filter. In case of a standard frame only bits 28-18 of the identifier
and the GAM are used for the filter.

Global Acceptance Mask (GAM)
0 = bit position must match the corresponding bit in register CANMIDnN.
1 = bit position of the incoming identifier is a “don’t’ care”.

11-38

The F2833x CAN module is able to operate in one of two operating modes:
e Standard CAN Controller Mode (SCC)
e Extended CAN Controller Mode, or “High End CAN Controller Mode (HECC)”.

The SCC is a legacy mode to keep the CAN communication controller software compatible
to the 16-bit family TMS320F240x. In this mode there are 16 mailboxes only and the
receiver system can use 3 common filters for incoming messages, LAMO, LAM1 and
CANGAM. Register LAMO is the mask register for mailboxes 0, 1 and 2; LAM1 for
mailboxes 3, 4 and 5 and CANGAM for mailboxes 6...15. If you start a new design there is
no advantage in using SCC mode.

In HECC mode, each of the 32 mailboxes can be programmed to use an individual
acceptance filter. Filter here means that we declare certain bits of the identifier combination
of the incoming message to be “don’t cares”. This is done by setting the corresponding bits
in register LAMXx to ‘1°.

For example, if we operate in HECC mode and set LAMO = 0x0000 0007, mailbox 0 will
ignore bits 0, 1 and 2 of the incoming identifier and will store the message, if the rest of the
identifier bits match the combination in register MSGID of mailbox 0.

SCC or HECC - mode is selected by bit “SCB” in register CANMC - see following slide.
Note that after reset SCC is the default mode!

11-26 F2833x - Controller Area Network

F2833x Programming Interface

Master Control Register - CANMC

CAN Master Control Register (CANMC) — 0x006014
31 16
reserved
15 14 13 12 11 10 9 8 7 6 5 4 0
MBCC| TCC | SCB | CCR | PDR | DBO (WUBA| CDR [ABO | STM | SRES MBNR
I
Change Configuration Request (CCR)
0 = software requests normal operation
1 = software requests write access to CANBTC, CANGAM, LAM[0] and LAM[3].
A request is granted by the CAN module with flag CCE (CANES) = 1.
TP High end CAN Mode HECC:
SCC Compatibility bit (SCB) Fu?l fonctionality:
0 = standard CAN mode (SCC) Mailboxes 0...31 !
1 = high end CAN (HECC) mode 2 acceptanéé masks
Timestamp counter MSB clear (TCC) th:;L?;Ldfﬁr/:g:i O“:;?fy.scc
0= no operation . Mailboxes 0...15 only
1 = timestamp counter MSB is reset to 0 3 acceptance masks only
No timestamp features
Mailbox Timestamp counter clear (MBCC)
0 = no operation
1 = timestamp counter is reset to 0 after a successful transmission or reception of mailbox 16.
11-39

CAN Master Control Register (CANMC) — 0x006014

Power

NOTE

0 = normal operation

1 = power down mode is requested.
: bitis automatically cleared
upon wakeup from power down!

Down Mode Request (PDR)

15

Auto bus on (ABO)
0 = “bus off’ state is permanent.
1 =“bus off” state is left into “bus on”
after 128*11 recessive bits have been received.

Wake up on bus activity (WUBA)

0 = Module leaves power down only
after writing a 0 to PDR

1= Module leaves power down on
any bus activity

Software Reset(SRES)
0 = no effect
1=CAN Module reset

14 13 12 11 10

Ve

MBCC| TCC | SCB | CCR | PDR | DBO

WUBA

CDR | ABO | STM [SRES MBNR

Data Byte Order (DBO) in Mailbox Registers
MDH[31:0] and MDL[31:0]

0= MDH[31:0] : Byte 4,5,6,7 ; MDL[31:0] : Byte 0,1,2,3
1=MDHI[31:0] : Byte 7,6,5,4 ; MDL[31:0] : Byte 3,2,1,0

Mailbox Number(MBNR)
Number , used for CDR

Change data field request (CDR)
0 = normal operation

1 = software requests access to the data field in 2MBNR”. 1 = Module generates its own ACK
NOTE: software must clear this bit after access is done.

Self Test Mode (STM)
0 = normal mode

11-40

F2833x - Controller Area Network

11-27

CAN Bit - Timing

CAN Bit - Timing

CAN Bit-Timing Configuration

¢ CAN protocol specification splits the nominal
bit time into four different time segments:

¢ SYNC_SEG

¢ Used to synchronize nodes
¢ Length : always 1 Time Quantum (TQ)

* PROP_SEG

¢ Compensation time for the physical delay times within the net

¢ Twice the sum of the signal’s propagation time on the bus line, the
input comparator delay and the output driver delay.

¢ Programmable from 1to 8 TQ

¢ PHASE_SEG1

¢ Compensation for positive edge phase shift
¢ Programmable from 1to 8 TQ

PHASE_SEG2

¢ Compensation time for negative edge phase shift

¢ Programmable from 2 to 8 TQ 11-41

CAN Bit-Timing Configuration

v

<
<

CAN Nominal Bit Time

SYNCSEG siw
sjw |‘—'
tseg1 tseg2
TQ
t t
Transmit Point Sample Point

¢ tsegl: PROP_SEG + PHASE_SEG1
¢ tseg2: PHASE_SEG2
¢ TQ: SYNCSEG

Tean = TQ +tsegl + tseg2

11-42

11-28 F2833x - Controller Area Network

CAN Bit - Timing

CAN Bit-Timing Configuration

¢ According to the CAN — Standard the following bit
timing rules apply:

¢ tsegl >tseg?2

¢ 3/BRP stsegls 16 TQ

¢ 3/BRP<tseg2< 8TQ

¢ 1TQSsjw < MIN[4*TQ, tseg?]

¢ BRP >5, if three sample mode is used

11-43

Bit-Timing Configuration - CANBTC

CAN Bit-Timing Configuration Register (CANBTC) — 0x006016

31 24 23 16

reserved BRP.7 | BRP.6 [(BRP.5 | BRP.4 | BRP.3 | BRP.2 | BRP.1 | BRP.O

Baud Rate Prescaler (BRP):
defines the Time Quantum (TQ):

_ BRP+1
k= BaseCLK

Note:
BaseCLK = SYSCLK / 2 for 283xx, 2803x devices
BaseCLK = SYSCLK for 281x, 280x and 2801x devices

11-44

F2833x - Controller Area Network 11-29

CAN Bit - Timing

CAN Bit-Timing Configuration Register (CANBTC) — 0x006016
15 11 10 9 8 7 6 3 2 0

reserved SBG SIw SAM TSEG1 TSEG2

Time Segment 1(tsegl)

Synchronisation Jump Width (SJW)

stzTQ*(SJW+1)j tsegl=TQ*(TSEGl+1))

Time Segment 2(tseg2)

Synchronisation Edge Select (SBG)

0 = re synchronisation with falling edge only
1 = re-sync. with rising & falling edge tSEgZ = TQ * (TSEG 2 + 1))

Sample Points (SAM)
0 = one sample at sample point
1 = 3 samples at sample point — majority vote

11-45
CAN Bit-Timing Examples
¢ Bit Configuration for BaseCLK =75 MHz
¢ Sample Point at 80% of Bit Time :
CAN - BRP TSEG1 TSEG2
data rate
1 Mbit/s 4 10 2
500 kbit/s 9 10 2
250 kbit/s 19 10 2
125 kbit/s 39 10 2
100 kbit/s 49 10 2
50 kbit/s 99 10 2
& Example 100 kbit/s
TQ = (49+1)/ 75 MHz = 0.667 pus
tsegl = 0.667 ps (10 + 1) =7.337 ps =>» tcan = 10 ps;
tseg2 =0.667 us (2 +1) =2 s
11-46

11-30 F2833x - Controller Area Network

CAN Error Register

CAN Error Register

Error and Status - CANES

31

24

23

22

21

20

19

18

17

CAN Error and Status Register (CANES) — 0x006018

16

reserved

FE

BE

SAl

CRCE

SE

ACKE

BO

EP

EW

Form Error (FE)
0 = normal operation

1 = one of the fixed form bit fields of a message was wrong.

Bit Error (BE)
0 = no bit error detected

(outside of the arbitration field).

1 =areceived bit does not match a transmitted bit

Acknowledgement Error (ACKE)
0 = normal operation
1= CAN module has not received an ACK.

Stuck at dominant Error (SA1)
0 =The CAN module detected a recessive bit

1 =The CAN module never detected a recessive bit.

Cyclic Redundancy Check Error (CRCE)
0 = normal operation
1=awrong CRC was received.

Stuff Bit Error (SE)
0 = normal operation
1 = a stuff bit error has occurred.

Bus Off State (BO)

0 = normal operation

1=CANTEC has reached the limit of 256. Module
has been switched of the bus.

Error Passive State (EP)
0=CAN is in Error Active Mode
1=CAN: s in Error Passive Mode

Warning Status (EW)
0 = values of both error counters are less than 96
1 =one error counter has reached 96

11-47

CAN Error and Status Register (CANES) — 0x006018

15

reserved

SMA | CCE | PDA | Res. | RM | T™M

Suspend Mode Acknowledge (SMA)

0 = normal operation

1 =CAN module has entered suspend mode.
Note: Suspend mode is activated by the debugger
when the DSP is not in run mode.

Change Configuration Enable (CCE)

0 = CPU cannot write into
configuration registers.

1=CPU has write access into

Power Down Mode Acknowledge (PDA)
0 = normal operation
1 =CAN module has entered power down mode.

Receive Mode (RM)
0= CAN controller is not receiving a message.
1= CAN controller is receiving a message.

configuration registers.

Transmit Mode (TM)
0= CAN controller is not transmitting a message.
1= CAN controller is transmitting a message.

11-48

F2833x - Controller Area Network

11-31

CAN Interrupt Register

CAN Error Counter — CANTEC / CANREC

31

CAN Transmit Error Counter Register (CANTEC) — 0x00601A

16

reserved

15

reserved

TEC

Transmit Error Counter (TEC)

Value TEC is incremented or decremented according to the CAN protocol specification

CAN Receive Error Counter Register (CANREC) — 0x00601C

31

16

reserved

15

reserved

REC

Receive Error Counter (REC)

Value REC is incremented or decremented according to the CAN protocol specification

11-49

CAN Interrupt Register

Global Interrupt Mask - CANGIM

CAN Global Interrupt Mask Register (CANGIM) — 0x006020

31 18 17 16
reserved MTOM[TCOM

15 14 13 12 1 10 9 8 7 3 2 1 0
Res. | AAM |WDIM|WUIM|[RMLIM|BOIM | EPIM |WLIM reserved GIL | I1EN | IOEN

MTOM
TCOM
AAM
WDIM
WUIM
RMLIM
BOIM
EPIM
WLIM

Interrupt Mask Bits:

Interrupt Mask Bits
0 = Interrupt disabled
1 = Interrupt enabled

= Mailbox Timeout Mask

= Timestamp Counter Overflow Mask
= Abort Acknowledge Interrupt Mask
Write Denied Interrupt Mask
Wake-up Interrupt Mask

= Receive message lost Interrupt Mask
= Bus Off Interrupt Mask

= Error Passive Interrupt Mask
=Warning level Interrupt Mask

Global Interrupt Level (GIL)

For Interrupts TCOF,WDIF,WUIF,BOIF and WLIF
0 = mapped into HECC_INT_REQ[0] line - GIFO

1 =mapped into HECC_INT_REQI[1] line —- GIF1

Interrupt 1 Enable (I1EN)
0=HECC_INT_REQ[1] line is disabled
1=HECC_INT_REQI1] line is enabled

Interrupt 0 Enable (I0EN)
0=HECC_INT_REQ[O0] line is disabled
1=HECC_INT_REQIO0] line is enabled

11-50

11-32

F2833x - Controller Area Network

CAN Interrupt Register

Global Interrupt 0 Flag - CANGIFO

CAN Global Interrupt Flag 0 Register (CANGIF0) — 0x00601E

31 18 17 16
reserved MTOF0| TCOFO

15 14 13 12 11 10 9 8 7-5 4 3 2 1 0
GMIFO| AAIFO|WDIFO[WUIFORMLIFO[BOIFO| EPIFO (WLIFO| Res. |MIV0.4(MIV0.3|MIV0.2 [MIVO0.1|MIV0.0

Interrupt Flag Bits:

MTOF0 = Mailbox Timeout Flag

TCOFO0 = Timestamp Counter Overflow Flag
GMIFO0 = Global Mailbox Interrupt Flag
AAIF0 = Abort Acknowledge Interrupt Flag
WDIF0 = Write Denied Interrupt Flag
WUIF0 =Wake-up Interrupt Flag

RMLIFO = Receive message lost Interrupt Flag
BOIFO = Bus Off Interrupt Flag

EPIFO = Error Passive Interrupt Flag
WLIFO =Warning level Interrupt Flag

Interrupt Flag Bits
0 = Interrupt has not occurred
1= Interrupt has occurred

Mailbox Interrupt Vector (MI1VO0)

Indicates the number of the message object that set the

global mailbox interrupt flag (GMIF0)

11-51

CAN Global Interrupt Flag 1 Register (CANGIF1) — 0x006022

31 18 17 16

reserved MTOF1| TCOF1
15 14 13 12 11 10 9 8 7-5 4 3 2 1 0

GMIF1{AAIF1|WDIF1{(WUIF1|RMLIFLBOIF1| EPIF1 (WLIF1| Res. |MIV14[MIV13|MIV12[MIV1.1|MIV10
Interrupt Flag Bits:

MTOF1 = Mailbox Timeout Flag

TCOF1 = Timestamp Counter Overflow Flag

GMIF1 = Global Mailbox Interrupt Flag

AAIF1 = Abort Acknowledge Interrupt Flag

WDIF1 = Write Denied Interrupt Flag Mailbox Interrupt Vector (MIV1)

WUIF1 =Wake-up Interrupt Flag Indicates the number of the message object that set the
RMLIF1 = Receive message lost Interrupt Flag global mailbox interrupt flag (GMIF1)

BOIF1 = Bus Off Interrupt Flag

EPIF1 = Error Passive Interrupt Flag

WLIF1 =Warning level Interrupt Flag

Interrupt Flag Bits

0 = Interrupt has not occurred

1= Interrupt has occurred

11-52

F2833x - Cont

roller Area Network

11-33

CAN Interrupt Register

Mailbox Interrupt Mask - CANMIM

CAN Mailbox Interrupt Mask Register (CANMIM) — 0x006024

31 16

CANMIM[31:16]

15

CANMIM[15:0]

Mailbox Interrupt Mask Bits (MI1M)

0 = mailbox interrupt is disabled.

1 =mailbox interrupt is enabled. An Interrupt is generated if a
message has been transmitted successfully or if a message has
been received without an error.

CAN Mailbox Interrupt Level Register (CANMIL) — 0x006026

31 16

CANMIL[31:16]

15

CANMIL[15:0]

Mailbox Interrupt Level Bits (MIL)
0 = mailbox interrupt is generated on HECC_INT_REQI[O0] line.
1 =mailbox interrupt is generated on HECC_INT_REQ[1] line.

11-53

Overwrite Protection Control - CANOPC

CAN Overwrite Protection Control Register (CANOPC) — 0x006028

31 16

CANOPC[31:16]

15

CANOPC[15:0]

Overwrite Protection Control Bits (OPC)

0 = the old message in mailbox N may be overwritten by a new one.
This will be notified by the receive message lost bit RML[n].

1 = an old message in mailbox N is protected against being overwritten
by a new one.
Thus, the next mailboxes are checked for a matching ID.
If no other mailbox is found, the new message is lost.

11-54

11-34 F2833x - Controller Area Network

CAN Interrupt Register

Transmit I/O Control - CANTIOC

CAN I/0 Control Register (CANTIOC) — 0x00602A

0=CANTX pin is a normal 1/O pin.
1=CANTX is used for CAN transmit functions.

TXDIR

0= CANTX pin is an input pin if configured as a normal 1/O pin.
1=CANTX pin is an output pin if configured as a normal 1/0 pin.

TXOUT

Output value for CANTX pin, if configured as normal output pin

TXIN
0 = Logic 0 present on pin CANTX.
1= Logic 1 present on pin CANTX.

31 16
reserved
15 3 2 1 0
reserved TXFUNC [TXDIR | TXOUT| TXIN
TXFUNC

11 - 55
Receive 1/0 Control - CANRIOC
CAN I/0 Control Register (CANRIOC) — 0x00602C
31 16
reserved
15 3 2 1 0
reserved RXFUNC | RXDIR |RXOUT| RXIN
RXFUNC
0= CANRX pin is a normal 1/O pin.
1=CANRX is used for CAN receive functions.
RXDIR
0= CANRX pin is an input pin if configured as a normal 1/O pin.
1= CANRX pin is an output pin if configured as a normal 1/O pin.
RXOUT
Output value for CANRX pin, if configured as normal output pin
RXIN
0 = Logic 0 present on pin CANRX.
1= Logic 1 present on pin CANRX.
11 - 56
F2833x - Controller Area Network 11-35

Alarm / Time Out Register

Alarm / Time Out Register

Local Network Time - CANLNT

CAN Local Network Time Register (CANLNT) — 0x00602E

31 16
LNT[31:16]

15 0

LNT[15:0]

¢ LNT is a Free Running Counter, Clocked from the bit
clock of the CAN module.

¢ LNT is written into the time stamp register (MOTS) of
the corresponding mailbox when a received message
has been stored or a message has been transmitted.

¢ LNT is cleared when mailbox #16 is transmitted or
received. Thus mailbox #16 can be used for a global
network time synchronization.

11-57

Time Out Control - CANTIOC

CAN Time Out Control Register (CANTOC) — 0x006030

31 0

TOC[31:0]

Time Out Control Bits (TOC)
0 = Time Out function is disabled for mailbox n.
1 = Time Out function is enabled for mailbox n.
If LNT is greater than the corresponding MOTO register, a time out event will be generated

CAN Time Out Status Register (CANTOS) — 0x006032

31 0
TOS[31:0]

Time Out Status Flags (TOS)
0= No Time Out occurred for mailbox n.
1=The value in LNT is greater or equal to the value in the corresponding MOTO register

11-58

11-36 F2833x - Controller Area Network

Alarm / Time Out Register

Local Acceptance Mask - LAMn

CAN Local Acceptance Mask Register
0x00 6040 - 0x00 607F

0 = IDE bit of mailbox determines which message shall be received

1 = extended or standard frames can be received.
extended: all 29 bit of LAM are used for filter against all 29 bit of mailbox .
standard: only first eleven bits of mailbox and LAM [28-18] are used.

31 30-29 28 16

LAMI reserved LAMN[28:16]

15 0

LAMN[15:0]

LAMN[28-0]: Masking of identifier bits of incoming messages
1=don’t care (accept 1 or O for this bit position) of incoming identifier.
0 = received identifier bit must match the corresponding message identifier bit (MID).

Note: There are two operating modes of the CAN module : “HECC” and “SCC”.
In “SCC” (default after reset) LAMO is used for mailboxes 0 to 2, LAM3 is used for mailboxes 3 to 5
and the global acceptance mask (CANGAM) is used for mailboxes 6 to 15.

In “HECC” (CANMC:13 = 1) each mailbox has its own mask register LAMO to LAM31.

11-59

Message Object Time Stamp - MOTSn

CAN Message Object Time Stamp

0x00 6080 - 0x00 60BF

31 16

MOTSn[31:16]

15 0

MOTSn[15:0]

A free running counter (register CANLNT) is used to get a stamp
of the time of reception or transmission of a message.

CANLNT is a 32 bit timer that is clocked by the CAN - bit — time unit.
The current content of CANLNT is written into MOTSn when a

received message has been stored or a message has been
transmitted successfully.

11-60

F2833x - Controller Area Network 11-37

Alarm / Time Out Register

Message Object Time Out - MOTOn
CAN Message Object Time-Out

0x00 60CO0 - 0x00 60FF

31 16

MOTON[31:16]

15

MOTOn[15:0]

If the value in CANLNT is equal or greater than the value in
MOTON, the appropriate bit in register CANTOS will be set ,
assuming this feature was allowed in CANTOC.

Also, an Interrupt Service can be triggered from such an event.

11-61

11-38 F2833x - Controller Area Network

Mailbox Memory

Mailbox Memory
Message Identifier - CANMID

31

CAN Mailbox Memory

0x00 6100 - 0x00 61FF

Message Identifier Register (MID) Mailbox n

30 29 28 16 15 0

IDE

AME AAM 1Dn[28:16] 1DN[15:0]

Message ldentifier
Standard Frames : 1Dn[28:18] are used
Extended Frames : 1Dn[28:0] are used

Auto Answer Mode Bit (transmitter only)
0 = mailbox does not reply to remote requests.
1 =if a matching Remote Request is received, the contents of this mailbox will be sent.

Acceptance Mask Enable Bit (receiver only)
0 = no Acceptance Mask used. All identifier bits must match to receive the message
1 = the corresponding Mailbox Acceptance Mask is used

Identifier Extension Bit)
0 = Standard Identifier (11 Bits) 0x6100 MSGID Mailbox 0
1 = Extended Identifier (29 Bits)

0x6102 MSGCTRL Mailbox 0
0x6104 CANMDL Mailbox 0O; 4 lower data bytes
0x6106 CANMDH Mailbox 0; 4 upper data bytes 4,

Message Control Field - CANMCF

31

CAN Mailbox Memory

0x00 6100 - 0x00 61FF

Message Control Field Register (MCF) Mailbox n
15

16 13 12 8 7 5 4 3 0

reserved reserved TPL reserved RTR DLC

Transmit Priority Level
Priority compared to the other 31 mailboxes.
Highest number has highest priority.

Data Length Code
Valid numbers are 0 to 8.

Remote Transmission Request

0=no RTR requested.

1 = for receiver mailboxes:
if TRS bit is set, a remote frame is transmitted and the corresponding
data frame will be received in the same mailbox.

1 = for transmit mailboxes:
if TRS bit is set, a remote frame is transmitted but the corresponding
data frame has to be received in another mailbox.

11-63

F2833x - Controller Area Network

11-39

Mailbox Memory

Message Data Field Low - CANMDL
CAN Mailbox Memory

0x00 6100 - 0x00 61FF

Message Data Low (MDL) Register with DBO = 0 Mailbox n

31 24 23 16 15 8 7 0
Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3
Message Data Low (MDL) Register with DBO = 1 Mailbox n
31 24 23 16 15 8 7 0
Data Byte 3 Data Byte 2 Data Byte 1 Data Byte 0
11- 64
Message Data Field High - CANMDH
CAN Mailbox Memory
0x00 6100 - 0x00 61FF
Message Data High (MDH) Register with DBO = 0 Mailbox n
31 24 23 16 15 8 7 0
Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7
Message Data High (MDH) Register with DBO = 1 Mailbox n
31 24 23 16 15 8 7 0
Data Byte 7 Data Byte 6 Data Byte 5 Data Byte 4
11-65

11-40

F2833x - Controller Area Network

Lab Exercise 11_1

Lab Exercise 11 1

CAN Example: transmit a frame

¢ Lab 11 1. Transmit a CAN message
+ CAN baud rate: 100 kBit/s
+ Transmit a one byte message every second
+ Message Identifier Ox 1000 0000 (extended frame)
+ Use Mailbox #5 as transmit mailbox

+ Message content: current value of a binary
counter

+ Transceiver SN65HVD230 in use
+ Connect CAN at header J4 of Peripheral Explorer

+ J4-1: CAN_H
« J4-2: CAN_L
@ .g.;.%.g./© @ .%.E..;.B..]©
Pins Socket 11-66

Preface

After this lengthy (and boring) discussion of all CAN registers in an F2833x, it is time for an
exercise. Again, it is a good idea to start with some simple experiments to get our hardware
to work. Later, we can try to refine the projects by setting up enhanced operation modes such
as “Remote Transmission Request”, “Auto Answer Mode”, “Pipelined Mailboxes” or
“Wakeup Mode”. We will also refrain from using the powerful error recognition and error
management, which of course would be an essential part of a real - world project. To keep it
simple, we will first use a polling method instead of an interrupt driven communication be-
tween the core of the DSP and the CAN mailbox server. Once you have a working example,
it is much simpler to improve the code in this project by adding more enhanced operating
modes to it.

The CAN physical layer requires a transceiver circuit between the digital signals of the
F2833x and the bus lines to adjust the physical voltages. The Peripheral Explorer Board is
equipped with a Texas Instruments SN65HVD230 for high speed ISO 11898 applications.
This transceiver is connected to GP1030 (CAN - RX) and GPIO31 (CAN - TX).

The physical CAN lines for ISO 11898 require a correct line termination at the ends of the
transmission lines by 120 Ohm terminator resistors. The Peripheral Explorer Board has a
terminator of 120 Ohm (R8) connected between CANH and CANL. This resistor can be ac-
tivated by closing header J24 of the Peripheral Explorer Board. However, if your laboratory
layout consists of a group of devices, only the two outmost devices should be equipped with
that terminator resistor. In such circumstances all inner boards should keep jumper J24 open.

F2833x - Controller Area Network 11-41

Lab Exercise 11_1

Recall that the overall line resistance should match 60 Ohms. If you are in doubt, ask your
teacher which set up is the correct one.

To test your code, you will need a partner team with a second F2833x doing Lab 11_2. This
lab is an experiment to receive a CAN message and display its data at GP109, GPIO11,
GP1034 and GP1049 (LEDs LD1 to LD4) on the Peripheral Explorer Board.

The lines CANH and CANL are available at header J4 of the Peripheral Explorer Board. A
common technique according to CiA DS 102 (www.can-cia.org) for physical CAN cables is
based on DB9 connectors:

Pin Nr. Signal Description
1 - Reserved
2 CAN_L CAN Bus Signal (dominant low)
3 CAN_GND |CAN ground
4 - Reserved
5 CAN_SHLD | Optional shield
6 GND Optional CAN ground
7 CAN_H CAN Bus Signal (dominant high)
8 - Reserved
9 CAN_V+ |Optional external voltage supply Vcc

At minimum we need CANL (pin 2), CANH (pin 7) and preferably CAN_GND (pin3).
34 5
Y@

Pins Socket

©_;

Before you start the hard wiring, ask your teacher or a laboratory
technician what exactly you are supposed to do to connect the
boards!

Objective

The objective of Lab 11 _1 is to transmit a one byte data frame every second via
CAN.

e The transmitted data byte is the current value of a binary counter, which is in-
cremented after each transmission.

e The baud rate for this CAN exercise should be set to 100 kbit/s.

e The exercise will use extended identifier 0x1000 0000 for the transmit message.
You can also use any other number as identifier, but please make sure that your
partner team (Lab 11 2) knows about your intentions. If several Peripheral Ex-
plorer Boards in your classroom are in use simultaneously, there is the option to
set-up pairs of teams sharing the CAN by using different identifiers. It is also

11-42 F2833x - Controller Area Network

http://www.can-cia.org/�

Lab Exercise 11_1

possible that due to the structure of the laboratory set-up at your university, not
all identifier combinations might be available to you. You surely don’t want in-
advertently to start the ignition of a combustion engine control unit that is also
connected to the CAN for some other experiments. Before you select other iden-
tifiers, ask your teacher!

e Use Mailbox #5 as your transmit mailbox.
e Once you have started a CAN transmission, wait for completion by polling the
status bit. Doing so we can avoid using CAN interrupts for this first CAN exer-

cise.

e Use CPU core timer 0 to generate the one second interval.

Procedure

Open Files, Create Project File

1.

Using Code Composer Studio, create a new project, called Labll.pjt in
C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

A good point to start with is the source code of Lab6.c, which produces a hardware
based time period using CPU core timer 0. Open the file Lab6.c from
C:\DSP2833x_V4\Labs\Lab6 and save it as Labll 1.c in folder
C:\DSP2833x_V4\Labs\Lab11.

Define the size of the C system stack. In the project window, right click at project
“Labl1” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4.

In the C/C++ perspective, right click at project “Lab8” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source™ and
link:

o DSP2833x_GlobalVariableDefs.c

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:

DSP2833x_PieCtrl.c
DSP2833x_PieVect.c
DSP2833x_Defaultlsr.c
DSP2833x_CpuTimers.c
DSP2833x_SysCitrl.c
DSP2833x_CodeStartBranch.asm
DSP2833x_ADC_cal.asm
DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

F2833x - Controller Area Network 11-43

Lab Exercise 11_1

o DSP2833x_Headers _nonBIOS.cmd

Project Build Options

5.

We have to extent the search path of the C-Compiler for include files. Right click at
project “Lab11” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include
C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Specify a preinclude file (—preinclude) | Browse... |

Add dirto #include search path {-include_path, -1) =] & & 5l &
"2¢iCGE TOOL ROOTVinclude"

Close the Property Window by Clicking <OK>.

Preliminary Test

6.

So far we have just created a new project “Lab11.pjt” with the same functionality as in
Lab6. A good step would be to rebuild Lab11, load the code into the controller and
verify the binary counter at LEDs LD1 to LD4 of the Peripheral Explorer Board. The
LEDs should display the counter at 100 milliseconds time steps.

Now change time step size in “Labl11_1.c” from 100 ms to 1 second. All you need to
do is to change the initialization call for CPU Timer 0:

ConfigCpuTimer(&CpuTimer0,150,1000000);
Rebuild the code and test again; the counter frequency should be 1 second.
Is your result as expected? NO, the LEDs are not blinking anymore!
Do you have the answer?

Well, we forgot to take care of the watchdog unit! When you inspect the while(1)-loop
in main, you see that we wait until variable “CpuTimerO0.InterruptCount” gets set to 1.
Because of our change in the Timer 0 setup we now wait exactly 1000 milliseconds,
which is too long for the watchdog unit.

What can be done? We have to include the watchdog service instructions (0x55 and
0xAA\) into the wait - construction.

Change the code accordingly, rebuild and test again.

The LEDs should now change once every second.

11-44 F2833x - Controller Area Network

Lab Exercise 11_1

Note: To place both watchdog service instructions into the same place in the program
is not the best solution. A better initialization would be to keep the first service
instruction inside the CPU Timer O Interrupt service function and to add the second
service instruction only into the wait - construction. However, we have to reduce the
period of CPU - Timer 0 back to 100 milliseconds to keep it inside the watchdog
range. In this case we have to wait until variable “CpuTimer0.InterruptCount” gets set
to 10 to get the 1 second interval. If your laboratory time permits, you should try to
improve your code in such a way.

Add CAN Initialization Code

9.

10.

11.

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link to your project:
¢ DSP2833x_ECan.c

Before we can start editing our own code we have to inspect two files, which have
been provided by Texas Instruments.

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\include open
“DSP2833x_Examples.h”.

Verify that the following macros are defined as below:

#define DSP28 DIVSEL 2 /l Enable /2 for SYSCLKOUT
#define DSP28_PLLCR 10 /I multiply by 10/2
#define CPU_RATE 6.667L /l for 150MHz (SYSCLKOUT)

#define CPU_FRQ_150MHZ 1 /1 150 MHz CPU Freq (30 MHz Osc.)

The source code in “DSP2833x_ECan.c” uses the macro “CPU_FRQ_150MHZ” to
initialize the CAN data rate; therefore we have to make sure that this macro is set to 1.

Open and edit file “DSP2833x_ECan.c”.

We have to set the CAN data rate to 100 kbit/s. If the F2833x runs at SYSCLKOUT =
150MHz, the CAN input clock is 75 MHz. According to the numbers given in Slide 11
- 46, we have to initialize register CANBTC with:

e BRP = 49
e TSEGl = 10
e TSEG2 = 2

F2833x - Controller Area Network 11 -45

Lab Exercise 11_1

CAN Bit-Timing Examples
¢ Bit Configuration for BaseCLK =75 MHz
¢ Sample Point at 80% of Bit Time :

CAN - BRP TSEG1 TSEG2

data rate

1 Mbit/s 4 10 2
500 kbit/s 9 10 2
250 kbit/s 19 10 2
125 kbit/s 39 10 2
100 kbit/s 49 10 2
50 kbit/s 99 10 2

¢ Example 100 kbit/s
TQ = (49+1)/ 75 MHz = 0.667 us
tsegl =0.667 ps (10 + 1) = 7.337 pys = tcan = 10 ps;
tseg2 =0.667 us 2+ 1) =2 us
11-46

In function “InitECana(void)” search for the line
#if (CPU_FRQ_150MHZ)

and change the initialization values for BRPREG, TSEG1REG and TSEG2REG.

Initialize CAN Mailbox

12.

13.

14.

Now open Labl11_1.c to edit.

First, add a new structure “ECanaShadow” as a local variable in main:

struct ECAN_REGS ECanaShadow;

This structure will be used as a local copy of the original CAN registers. A
manipulation of individual bits is done inside the copy. At the end of the access, the
whole copy is reloaded into the original CAN structures. This operation is necessary
because of the inner structure of the CAN unit; some registers are only accessible by
32 - bit accesses and by copying the whole structure, we make sure to generate 32 - bit
accesses only.

In “main()”, after the function call “Gpio_select()”, add a function call of
“InitECan()”. Also, add an external prototype for that function at the beginning of
“main()”.

Next, inside function “Gpio_select()”, enable the peripheral function of CANA TX
and CANA_RX connected to lines GPIO30 and GPIO31.

11 - 46 F2833x - Controller Area Network

Lab Exercise 11_1

15. In “main()”, after the function call to “InitECan()”, add code to prepare the transmit
mailbox. In this exercise, we will use mailbox #5, an extended identifier of
0x10000000 and a data length code of 1. Add the following steps:

Write the identifier 0x10000000 into register “EcanaMboxes.MBOX5.MSGID”.

To transmit with extended identifiers set bit “IDE” of register
“EcanaMboxes.MBOX5.MSGID” to 1.

Configure Mailbox #5 as a transmit mailbox. This is done by setting bit MD5 of
register “ECanaRegs.CANMD” to 0. Caution! Due to the internal structure of the
CAN-unit, we cannot execute single bit accesses to the original CAN registers. A
good practice is to copy the whole register into a shadow register, manipulate the
shadow register and copy the modified 32 - bit shadow value back into the original
register

ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;

ECanaShadow.CANMD.bit.MD5 = 0;

ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;
Enable Mailbox #5:

ECanaShadow.CANME.all = ECanaRegs.CANME.all;

ECanaShadow.CANME.bit.ME5 = 1;

ECanaRegs.CANME.all = ECanaShadow.CANME.all;

Set up the Data Length Code Field (DLC) in Message Control Register
“ECanaMboxes.MBOX5.MSGCTRL” to 1 and clear all remaining bits of this
register.

Add the Data Byte and Transmit

16. Now we are almost done. The last part of code modification is the periodical loading
of the data byte into the mailbox and the transmit request command. This must be
done inside the while(1)-loop of “main()”. Locate the code where we waited for the
next period of 1 second. Here add:

Load the current value of variable counter into register
“ECanaMboxes.MBOX5.MDL.byte.BYTEQ”. Recall that we would like to send a
one - byte message; therefore we have to load only the lower 8 bits of “counter”!

Request a transmission of mailbox #5. Init register “ECanaShadow.CANTRS”.
Set bit TRS5=1 and all other 31 bits to 0. Next, load the whole register into
“ECanaRegs.CANTRS”

Wait until the CAN unit has acknowledged the transmit request. The flag
“ECanaRegs.CANTA.bit. TA5” will be set to 1 if your request has been
acknowledged.

Clear bit “ECanaRegs.CANTA.bit. TA5”. Again the access must be made as a 32
- bit access:

ECanaShadow.CANTA.all = 0;
ECanaShadow.CANTA.bit.TA5 = 1;

F2833x - Controller Area Network 11 - 47

Lab Exercise 11_1

17.

ECanaRegs.CANTA.all = ECanaShadow.CANTA. all;

Remove the old code that was used to display the binary counter at LEDs LD1 to LDA4.
Just keep the increment instruction for “counter”.

Build, Load and Run

18.

19.

20.

21.

Click the “Rebuild Active Project ” button or perform:

Project = Rebuild All (Alt +B)
and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

Load the output file in the debugger session:
Target - Debug Active Project
and switch into the “Debug” perspective.

Verify that in the debug perspective the window of the source code “Labll_1.c” is
high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

Perform a real time run.

Target = Run

Providing you have found a partner team with another F2833x connected to your
laboratory CAN system that has prepared the receiver task (Lab11l_2) you can do a
real network test. The current value from variable “counter” should be transmitted
every second via CAN.

If your teacher can provide a CAN analyser you should be able to trace your data
frames at CAN.

If you end up in a fight between the two teams about whose code might be wrong, ask
your teacher to provide a working receiver node. Recommendation for teachers: Store
a working receiver code version in the internal Flash of one node and start this node
out of flash memory.

EndofLab 11 1

11-48 F2833x - Controller Area Network

Lab Exercise 11_2

Lab Exercise 11 2

CAN Example : receive a frame

¢ Lab 11 2: Receive a CAN message
+ CAN baud rate : 100 kBit/s
+ Message Identifier Ox 1000 0000 (extended frame)
+ Use Mailbox #1 as receive mailbox

+ Display the binary counter at LEDs LD1 to LD4
(GPIO9, GPIO11, GPIO34 and GPI1049)

12 4 5 4 3 21

o @0 0@ e ¢ 2 2 o
6 7 & 2 @ @ 9 8 7 8 @
®* ¢ @ 0 @ 0 0 0

Pins Socket

Pin Nr. signal Description
Reserved
CAN_L CAN Bus Signal (dominant low)
CAN_GND CAN ground
- Reserved
CAN_SHLD Optional shield
GND Optional CAN ground
CAN_H CAN Bus Signal (dominant high)
Reserved

© ® N O O AW N B

CAN_V+ Optional external voltage supply Vcc

11-67

Preface

This laboratory experiment is the second part of a CAN-Lab. Again we have to set up
the physical CAN-layer according to the layout of your laboratory.

The CAN physical layer requires a transceiver circuit between the digital CAN signal
levels of the F2833x and the bus lines to adjust the physical voltages. The Peripheral
Explorer Board is equipped with a Texas Instruments SN65HVD230 for high speed
ISO 11898 applications. This transceiver is connected to GP1IO30 (CAN - RX) and
GPIO31 (CAN - TX).

The physical CAN lines for ISO 11898 require a correct line termination at the ends
of the transmission lines by 120 Ohm terminator resistors. The Peripheral Explorer
Board has a terminator of 120 Ohm (R8) connected between CANH and CANL. This
resistor can be enabled by closing header J24 of the Peripheral Explorer Board.
However, if your laboratory layout consists of a group of devices, only the two out-
most devices should be equipped with that terminator resistor. In such circumstances
all inner boards should keep jumper J24 open. Recall that the overall line resistance
should match 60 Ohms. If you are in doubt, ask your teacher which set up is the cor-
rect one.

To test your code you will need a partner team with a second F2833x doing Lab
11 1, e.g. sending a one byte message with identifier 0x10 000 000 every second.
Before you start the hard wiring, ask your teacher or a laboratory techni-
cian what exactly you are supposed to do to connect the boards!

F2833x - Controller Area Network 11-49

Lab Exercise 11_2

Objective

e The objective of Lab 11 _2 is to receive a one byte data message from CAN and
display the four least significant bits of that byte at LEDs LD1 to LD4 (GP109,
GPI011, GPIO34 and GP1049) of the Peripheral Explorer Board.

e The CAN data rate must be set to 100 kbit/s to match with Lab11 1.

e Also, to be compatible with Lab11 1, this exercise should use extended identi-
fier 0x1000 0000 for the receive filter of mailbox 1. You can also use any other
number as identifier, but please make sure that your partner team (Lab 11 1)
knows about your change. If several Peripheral Explorer Boards in your class-
room are in use simultaneously, it could be an option to set up pairs of teams
sharing the CAN by using different identifiers.

e Use Mailbox #1 as your receiver mailbox
e Once you have initialized the CAN module, wait for a reception of mailbox #1

by polling the status bit. Again, we do not need to use CAN interrupts for this
CAN exercise.

Procedure

Open Files, Create Project File

1.

If you have already completed Lab11_1, you can use project Lab11.pjt as a starting
point. In this case, open project Lab11 and continue with procedure step #13.

If this Lab is your first CAN exercise, you will have to setup a new project. Using
Code Composer Studio, create a new project, called Labll.pjt in
C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

A good point to start with is the source code of Lab6.c, which produces a hardware
based time period using CPU core timer 0. Open the file Lab6.c from
C:\DSP2833x_V4\Labs\Lab6 and save it as Labll 2.c in
C:\DSP2833x_V4\Labs\Lab11.

Define the size of the C system stack. In the project window, right click at project
“Labl1” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4.

In the C/C++ perspective, right click at project “Lab11” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source™ and
link:

o DSP2833x_GlobalVariableDefs.c

11 -50 F2833x - Controller Area Network

Lab Exercise 11_2

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:

DSP2833x_PieCtrl.c
DSP2833x_PieVect.c
DSP2833x_Defaultlsr.c
DSP2833x_CpuTimers.c
DSP2833x_SysCitrl.c
DSP2833x_CodeStartBranch.asm
DSP2833x_ADC_cal.asm
DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

o DSP2833x_Headers _nonBIOS.cmd

Project Build Options

5. We have to extent the search path of the C-Compiler for include files. Right click at
project “Lab11” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include
C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Specify a preinclude file (—preinclude) | Browse... |

Add dir to Hinclude search path (-include_path, -l) & i = Gl 3
"¢ICG TOOL ROOTHinclude"

Close the Property Window by Clicking <OK>.

Preliminary Test

6. So far we have just created a new project “Lab11.pjt” with the same functionality as in
Lab6. A good step would be to rebuild Lab11, load the code into the controller and
verify the binary counter at LEDs LD1 to LD4 of the Peripheral Explorer Board. The
LEDs should display the counter at 100 milliseconds time steps.

F2833x - Controller Area Network 11-51

Lab Exercise 11_2

Add CAN Initialization Code

7.

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:
¢ DSP2833x_ECan.c

Before we can start editing our own code, we have to modify two files, which have
been provided by Texas Instruments:

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\include open
“DSP2833x_Examples.h”.

Verify that the following macros are defined as:

#define DSP28 DIVSEL 2 /I Enable /2 for SYSCLKOUT
#define DSP28_PLLCR 10 // multiply by 10/2

#define CPU_RATE 6.667L // for 150MHz CPU SYSCLKOUT
#define CPU_FRQ_150MHZ 1// 150 MHz CPU Freq (30 MHz Osc.)

The source code in “DSP2833x_ECan.c” uses the macro “CPU_FRQ _150MHZ” to
initialize the CAN data rate; therefore we have to make sure that this macro is set to 1.

Open and edit file “DSP2833x_ECan.c”.

We have to set the CAN data rate to 100 Kbit/s. If the F2833x runs at SYSCLKOUT
= 150MHz, the CAN input clock is 75 MHz. According to the numbers given in Slide
11 - 46, we have to initialize register CANBTC with:

e BRP = 49
TSEG1 = 10
e TSEG2 = 2

CAN Bit-Timing Examples
¢ Bit Configuration for BaseCLK =75 MHz
& Sample Point at 80% of Bit Time :

CAN - BRP TSEG1 TSEG2

data rate

1 Mbit/s 4 10 2
500 kbit/s 9 10 2
250 kbit/s 19 10 2
125 kbit/s 39 10 2
100 kbit/s 49 10 2
50 kbit/s 99 10 2

¢ Example 100 kbit/s
TQ = (49+1)/ 75 MHz = 0.667 us
tsegl =0.667 pus (10 + 1) =7.337 pus = tcan = 10 ps;
tseg2 =0.667 us 2+ 1) =2 us
11 - 46

11-52 F2833x - Controller Area Network

Lab Exercise 11_2

In function “InitECana(void)” search for the line
#if (CPU_FRQ_150MHZ2)

and change the initialization values for BRPREG, TSEG1REG and TSEG2REG.
Save and close file “DSP2833x_ECAN.c".

Modify Source Code

10.

11.

12.

13.

14.

15.

Open Lab11_2.c to edit.

In “main()”, remove local variable “counter” and all instructions that use “counter” to
display bits 0, 1, 2 and 3 of “counter” at GP109, GP1011, GP1034 and GP1049.

Add a new structure “ECanaShadow” as a local variable in main:

struct ECAN_REGS ECanaShadow;

This structure will be used as a local copy of the original CAN registers. A
manipulation of individual bits is done inside the copy. At the end of the access the
whole copy is reloaded into the original CAN structures. This principle of operation is
necessary because of the inner structure of the CAN unit; some registers are only
accessible by 32-bit accesses and by copying the whole structure, we make sure to
generate 32-bit accesses only.

In “main()”, after the function call “Gpio_select()”, add a function call to
“InitECan()”. Also, add an external prototype for this function at the beginning of
“main()”.

In function “Gpio_select()”, enable the peripheral function of CANA_TX and
CANA_RX connected to lines GPIO30 and GPIO31.

Continue with procedure step #16!

If you have already completed Labl1l 1, open the file Labll_1.c from
C:\DSP2833x_V4\Labs\Lab11 and save it as Labll 2.c in
C:\DSP2833x_V4\Labs\Lab11.

Exclude file “Lab11_1.c” from build. Use a right mouse click at file “Lab11 1.c”, and
enable “Exclude File(s) from Build”.

In function “main()” of the file “labl11_2”, remove all the code, which we used to
initialize the transmit mailbox #5 and the code to transmit messages with mailbox #5.

Prepare Receiver Mailbox #1

16.

In “main()”, after the function call of “InitECan()”, add code to prepare the receiver
mailbox. In this exercise, we will use mailbox #1, an extended identifier of
0x10000000 and a data length code of 1. Add the following steps:

e Write the identifier into register “EcanaMboxes.MBOX1.MSGID”.

F2833x - Controller Area Network 11 -53

Lab Exercise 11_2

e To transmit with extended identifiers set bit “IDE” of register
“EcanaMboxes.MBOX1.MSGID” to 1.

o Configure Mailbox #1 as a receive mailbox. This is done by setting bit MD1
of register “ECanaRegs.CANMD” to 1. Caution! Due to the internal
structure of the CAN-unit, we cannot execute single bit accesses to the
original CAN registers. A good practice is to copy the whole register into a
shadow register, manipulate the shadow register and copy the modified 32 -
bit shadow value back into the original register

ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;

ECanaShadow.CANMD.bit.MD1 = 1;

ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;
e Enable Mailbox #1:

ECanaShadow.CANME.all = ECanaRegs.CANME.all;

ECanaShadow.CANME.bit.ME1 = 1;

ECanaRegs.CANME.all = ECanaShadow.CANME.all;

Wait for a message in mailbox 1

17. Now we are almost done. The last missing piece is a poll a status flag “RMP1” to see,
if we have received data in mailbox 1. The best position to do this is after the 100
millisecond “while(...)” - wait construct in “main()”. Register
“ECanaRegs.CANRMP” - bit field “RMP1” will be set to 1 if a valid message has
been received. If this bit has been set, we can proceed and process the new message.

18. If bit “RMP1” was set to 1 by the CAN - Mailbox logic we can read the data byte 0
from the mailbox and load it into a local Uint16 variable “temp”:

temp = ECanaMboxes.MBOX1.MDL.byte.BYTEQ;
Of course, we have to define “temp” at the beginning of “main()”.
Next, we have to reset bit RMP1. This is done by writing a ‘1’ to it:

ECanaRegs.CANRMP.bit.RMP1 = 1;

19. Finally we need some code to decode bits 0, 1, 2 and 3 of “temp” and update the LEDs
at GP109, GP1011, GP1034 and GPI1049.

Build, Load and Run

20. Click the “Rebuild Active Project ” button or perform:

Project = Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

21. Load the output file in the debugger session:

11 -54 F2833x - Controller Area Network

Target = Debug Active Project
and switch into the “Debug” perspective.

22. Verify that in the debug perspective the window of the source code “Labl1l_2.c” is
high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

23. Perform a real time run.

Target = Run

24. Assuming you have paired with another team which transmits a one-byte data frame
with identifier 0x10000000 you can do a real network test. Ask your partner team to
start their board and transmit a binary counter every second.

If your teacher can provide a CAN analyzer you can also generate a transmit message
from this CAN analyzer.

If you end up in a fight between the two teams about whose code might be wrong, ask
your teacher to provide a working transmitter node.

Recommendation for teachers: Store a working transmitter code version in the internal
Flash of one node and start this node out of flash memory.

Endof Lab 11 2

What's next?

Congratulations! You’ve successfully finished your first two lab exercises using Controller
Area Network. As mentioned earlier in this chapter these two labs were chosen as a sort of
“getting started” with CAN. To learn more about CAN it is necessary to book additional
classes at your university.

To experiment a little bit more with CAN, choose one or more of the following optional
exercises:

Lab 11 3:

Combine Lab1l 1 (CAN - Transmit) and Labll 2 (CAN-Receive) into a bi-directional
solution. The task for your node is to transmit the status of the 4-bit hex encoder
(GPI0O12...15) every second (or optional: every time the status has changed) with a one-byte
frame and identifier 0x10 000 000. Simultaneously, your node must also be able to receive
CAN messages with identifier 0x11 000 000 and display bits 0 to 3 of that message’s byte 0
at the LEDs (GPIO9 , GP1011, GPI0O34 and GP1049) of the Peripheral Explorer Board.

F2833x - Controller Area Network 11 -55

What's next?

Lab 11_4:

Try to improve Lab11_2 and Labll_3 by using the F2833x Interrupt System for the receiver
part of the exercises. Instead of polling the “CANRMP-bit field” to wait for an incoming
message your task is to use a mailbox interrupt request to read out the mailbox when
necessary.

Lab 11_5:

We did not consider any possible error situations on the CAN side so far. That is not a good
solution for a real - world project. Try to improve your previous CAN experiments by
including the servicing of potential CAN errors. Review the CAN error status register flags
and all possible errors. A good solution would be to allow CAN error interrupts to request
their individual service routines in case of a CAN failure. What should be done in the case of
an error request? Answer: Well, our Peripheral Explorer Board does not feature a lot of
additional hardware that we could use to indicate such an error situation. So let us just switch
LED LD1 to ON in case of a failure.

Another option could be to monitor the status of the two CAN - error counters. If one of the
two counters goes above 50, switch on LED LD2.

If your laboratory is equipped with a CAN failure generator like “CANSstress” (Vector
Informatik GmbH, Germany) you can generate reproducible disturbance of the physical
layer, you can destroy certain messages and manipulate certain bit fields with bit resolution.
Ask your laboratory technician whether you have access to this type of equipment to invoke
CAN errors.

Lab 11_6:

An enhanced experiment is to request a remote transmission from another CAN-node. An
operating mode, that is quite often used is the so-called “automatic answer mode”. A
transmit mailbox, that receives a remote transmission request (“RTR”) answers
automatically by transmitting a predefined frame. Try to establish this operating mode for the
transmitter node (Lab11l 1 or Lab1l 3). Wait for a RTR and send the current status of the 4-
bit hex encoder (GP1012...15) back to the requesting node. The node that has requested the
remote transmission should be initialized to wait for the requested answer and display the
four LSBs of byte 1 from the received data frame at LEDs LD1 to LD4(GPI109, GPIO11,
GP1034 and GP1049).

There are a lot more options for RTR operations available. Again, look out for additional
CAN classes at your university!

11 - 56 F2833x - Controller Area Network

	F2833x Controller Area Network
	Introduction
	Module Topics
	Basic CAN Features
	Automotive Network Systems
	CAN Implementation / Data Format
	CAN Data Frame
	Standardization ISO and SAE
	CAN Application Layer
	CAN Bus Arbitration - CSMA/CA
	High Speed CAN
	CAN Error Frames
	Active Error Frame
	Passive Error Frame
	CAN Error Types
	CAN Error Status
	CAN - Error Counter

	F2833x CAN Module
	F2833x Programming Interface
	CAN Register Map
	Mailbox Enable – CANME Mailbox Direction - CANMD
	Transmit Request Set & Reset - CANTRS / CANTRR
	Transmit Acknowledge - CANTA
	Receive Message Pending - CANRMP
	Remote Frame Pending - CANRFP
	Global Acceptance Mask - CANGAM
	Master Control Register - CANMC

	CAN Bit - Timing
	Bit-Timing Configuration - CANBTC

	CAN Error Register
	Error and Status - CANES
	CAN Error Counter – CANTEC / CANREC

	CAN Interrupt Register
	Global Interrupt Mask - CANGIM
	Global Interrupt 0 Flag - CANGIF0
	Global Interrupt 1 Flag - CANGIF1
	Mailbox Interrupt Mask - CANMIM
	Overwrite Protection Control - CANOPC
	Transmit I/O Control - CANTIOC
	Receive I/O Control - CANRIOC

	Alarm / Time Out Register
	Local Network Time - CANLNT
	Time Out Control - CANTIOC
	Local Acceptance Mask - LAMn
	Message Object Time Stamp - MOTSn
	Message Object Time Out - MOTOn

	Mailbox Memory
	Message Identifier - CANMID
	Message Control Field - CANMCF
	Message Data Field Low - CANMDL
	Message Data Field High - CANMDH

	Lab Exercise 11_1
	Preface
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Preliminary Test
	Add CAN Initialization Code
	Initialize CAN Mailbox
	Add the Data Byte and Transmit
	Build, Load and Run

	Lab Exercise 11_2
	Preface
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Preliminary Test
	Add CAN Initialization Code
	Modify Source Code
	Prepare Receiver Mailbox #1
	Wait for a message in mailbox 1
	Build, Load and Run

	What’s next?
	Lab 11_3:
	Lab 11_4:
	Lab 11_5:
	Lab 11_6:

