
F2833x - FLASH - API 16 - 1

Introduction
In Chapter 14 we discussed the option to start our embedded control program directly from
the F2833x internal Flash memory. Another important task of a real-world project is to
update parts of the internal FLASH whilst the control code is still running in FLASH
memory.

Texas Instruments provides an “Application Programmers Interface” (API) - library for such
purposes. The API is free for download from Texas Instruments website (www.ti.com).
There are different versions of this library, depending on the type of device. For the F2833x,
the literature number is “SPRC539” and for the F2823x it can be found under “SPRC665”.
For the laboratory exercise at the end of this chapter it is necessary that you have installed
the correct library on your PC. The default installation path is either:

C:\tidcs\c28\Flash28_API\Flash28335_API_V210\ or

C:\tidcs\c28\Flash28_API\Flash28332_API_V210

If the library is not already present on your PC, download the corresponding latest archive
file from the website, unzip and install it on your PC.

Here is a block diagram that shows the execution flow, when FLASH - API - algorithms are
involved. Method “C” shows the embedded code solution, which we will discuss and
perform a lab exercise later in this chapter.

 F2833x FLASH - API

http://www.ti.com/�

Module Topics

16 - 2 F2833x - FLASH - API

Module Topics
F2833x FLASH - API .. 16-1

Introduction ... 16-1

Module Topics ... 16-2

F2833x FLASH - API Installation ... 16-3

F2833x FLASH API Fundamentals ... 16-4
Erase ... 16-4
Program ... 16-5
Verify .. 16-5

General Guidelines ... 16-6

FLASH - API Checklist ... 16-7
Step1: Modify Flash2833x_API_Config.h ... 16-8
Step 2: Include Flash2833x_API_Library.h ... 16-8
Step 3: Include the appropriate Flash API library ... 16-9
Step 4: Initialize PLL Control Register (PLLCR) ... 16-9
Step 5: Check PLL Status for Limp Mode Operation ... 16-9
Step 6: Copy the Flash API functions to Internal SARAM .. 16-10
Step 7: Initialize Flash_CPUScaleFactor .. 16-10
Step 8: Initialize the Callback Function Pointer.. 16-10

F2833x FLASH - API Reference ... 16-11
Data Type Conventions... 16-11
API Function Naming Conventions .. 16-11
FLASH - API - Functions ... 16-12
Files included with the API ... 16-12

Lab 16: Use of FLASH - API.. 16-13
Objective ... 16-13
Procedure .. 16-14
Open Project ... 16-14
Build project ... 16-18
Verify Linker Results - The map - File ... 16-18
Use CCS integrated Flash Program Tool .. 16-19
Close CCS & Restart the Peripheral Explorer Board .. 16-20

 F2833x FLASH - API Installation

F2833x - FLASH - API 16 - 3

F2833x FLASH - API Installation
The F2833x FLASH - API function library can be downloaded free of charge from the Texas
Instruments website. It supports FLASH programming via embedded function calls, as
shown as path ‘C’ in Slide 16-2. All functions can be integrated into the code of an existing
project.

16 - 2

TMS320F2833x FLASH Load Options

16 - 3

FLASH – API - Installation

1. Download from: www.ti.com:
• F2833x: “SPRC539”
• F2823x: “SPRC665”

2. Default Installation path:
• C:\tidcs\c28\FLASH28_API\

3. Read included documentation
• “Flash2833x_API_Readme.pdf”

F2833x FLASH API Fundamentals

16 - 4 F2833x - FLASH - API

F2833x FLASH API Fundamentals
The Flash Application Program Interface (Flash API) consists of functions that the client
application calls to perform flash specific operations. The flash array and One Time Pro-
grammable (OTP) block on the device are managed via CPU execution of algorithms in the
Flash API library. Texas Instruments provides API functions to erase, program and verify the
flash array as briefly described here:

Erase

Erase operates on the flash array only. The One Time Programmable (OTP) block cannot be
erased once it has been programmed. The Erase function is used to set the flash array con-
tents to all 1’s (0xFFFF). The erase operation includes the following steps:

• Pre-compact all sectors. This step is to make sure no bits are in an over-erased or
“depleted” state before attempting the sector erase. Depletion can occur as a result of
stopping the erase function before its post-condition or compaction step can com-
plete. Even with this step, halting the erase function before it completes is not rec-
ommended.

• Pre-condition or “clear” the sector to be erased. This step programs all of the bits in
the sector to 0 to allow for an even erase across the sector.

• Erase the sector. This step removes charge from the bits in the sector until all of the
bits within the sector are erased.

• Post-condition or compact the sector that was erased. This step makes sure no bits
are left in an over-erased (or depleted) state.

16 - 4

FLASH – API – Fundamentals
Erase:

• Pre - Compact
• ensure that no bits are over erased

• Pre – Condition
• set all bits to ‘0’ to allow an even erase

• Erase
• set all memory bits to ‘1’ (= Erased state)

• Post – Conditioning
• ensure that no bits are left in “over – erased”

Program:
• program selected bits from ‘1’ to ‘0’

Verify:
• CPU read to compare FLASH and image

 F2833x FLASH API Fundamentals

F2833x - FLASH - API 16 - 5

The smallest amount of memory that can be erased at a particular time is a single sector.
Some traditional algorithms, such as those for the 240x family, require that the flash be pre-
conditioned or “cleared” before it is erased. The Flash API erase function for the F2833x
includes the flash pre-conditioning and a separate “clear” step is not required.

The flash array and OTP block are in an erased state (all 0xFFFF) when the device is shipped
from the factory.

Program

The program function operates on both the flash array and the OTP block. This function is
used to put application code and data into the flash array or OTP. The program function can
only change bits from a 1 to a 0. Bits cannot be moved from a 0 back to a 1 by the program-
ming function. For this reason, flash is typically in an erased state (all 0xFFFF) before call-
ing the programming function. The programming function operates on a single 16-bit word
at a time.

To protect the flash or OTP and allow for user flexibility, the program operation will not at-
tempt to program any bit that has previously been programmed. For example, a flash or OTP
location can be programmed with 0xFFFE and later the same location can be programmed
with 0xFFFC without going through an erase cycle. During the second programming call, the
program operation will detect that bit 0 was already programmed and will only program bit
1.

Verify

The erase and program functions perform verification with voltage margin as they execute.
The verify function provides a second check via a CPU read that can be run to verify the
flash contents against the reference value. The verify function operates on both the flash ar-
ray and OTP blocks.

To integrate one of the Flash APIs into your application you will need to follow the steps
described in this chapter.

For a detailed description of all API - functions please refer to document “FLASH
2833x_API_Readme.pdf” (part of SPRC539.zip).

General Guidelines

16 - 6 F2833x - FLASH - API

General Guidelines
Here is a list of general rules that should be followed, when using the FLASH - API:

1. Install the latest and correct version of the FLASH - API. For the F28335, the literature
number is “SPRC539”. The default location of the package is:
“C:\tidcs\c28\Flash28_API”.

2. Execute the Flash API code from zero-wait state internal SARAM memory.

3. Configure the API for the correct CPU frequency of operation.

4. Follow the Flash API checklist in section 5 of “FLASH 2833x_API_Readme.pdf” to
integrate the API into an application.

5. Initialize the PLL control register (PLLCR) and wait for the PLL to lock before calling
an API function.

6. Initialize the API callback function pointer (Flash_CallbackPtr). If the callback function
is not going to be used then it is best to explicitly set the function pointer to NULL.
Failure to initialize the callback function pointer can cause the code to branch to an
undefined location. Carefully review the API restrictions for the callback function,
interrupts, and watchdog described in Section 15 of “FLASH 2833x_API_Readme.pdf”.

There is also a list what should be not done:
7. Do not execute the Flash APIs from the flash or OTP. If the APIs are stored in flash or

OTP memory, they must first be copied to internal SARAM before they are executed.
8. Do not execute any interrupt service routines (ISRs) that can occur during an erase, pro-

gram or depletion recovery API function from the flash or OTP memory blocks. Until
the API function completes and exits the flash and OTP are not available for program
execution or data storage.

9. Do not execute the API callback function from flash or OTP. When the callback function
is invoked by the API during the erase, program or depletion recovery routine the flash
and OTP are not available for program execution or data storage. Only after the API
function completes and exits do the flash and OTP become available.

10. Do not stop the erase, program or depletion recovery functions while they are executing
(for example, do not stop the debugger within API code, do not reset the part, etc).

11. Do not execute code or fetch data from the flash array or OTP while the flash and/or
OTP is being erased, programmed or during depletion recovery.

Sounds pretty complicated, doesn’t it? Well, since we are students we can keep it simple
(first). Later, when we have a functional framework, we can implement a more detailed solu-
tion.

 FLASH - API Checklist

F2833x - FLASH - API 16 - 7

FLASH - API Checklist
Here is the sequence of steps required to use parts of the FLASH - API Library code:

A called API - Function will perform the following actions:

16 - 5

FLASH – API Checklist

Project Preparation:
1. Modify file “Flash2833x_API_Config.h”
2. Include Flash2833x_API_Library.h in source – code
3. Add FLASH-API – library to your project

Source - Code Modification:
4. Initialize PLL and wait for lock
5. Make sure, that PLL is not in “limp” – mode
6. Copy all API – functions from FLASH into SARAM
7. Initialize global variable “Flash_CPUScaleFactor”
8. Initialize callback – pointer “Flash_CallbackPtr”
9. Call API - functions

16 - 6

FLASH – API function

A called FLASH – API – function will perform:

1. A disable of the Watchdog – Timer
2. A check of the registers CLASSID/PARTID

• Addresses 0x0882 and 0x380090)
3. A check of the content of 0x3FFFB9

• API – version versus silicon - revision
4. Start of the selected operation and:

• Disables and restores interrupts around time critical sections
• Invokes the callback – function

5. It returns an success - or error code

FLASH - API Checklist

16 - 8 F2833x - FLASH - API

Step1: Modify Flash2833x_API_Config.h
Modify file “Flash2833x_API_Config.h” to be found in the include directory of each API, to
match your specific target. Set the corresponding line to ‘1’:

#define FLASH_F28335 1
#define FLASH_F28334 0
#define FLASH_F28332 0

Uncomment the line corresponding to the CPU Clock rate (SYSCLKOUT) in nanoseconds at
which the API functions will run. This is done by removing the leading // in front of the re-
quired line. Only one line should be uncommented. The file lists a number of commonly oc-
curring clock rates. If your CPU clock rate is not listed, then provide your own definition
using the examples as a guideline.
For example: Suppose the final CPU clock rate will be 150 MHz. This corresponds to a
6.667 ns cycle time. If there is no line present for this clock speed, so you should insert your
own entry and comment out all other entries:

#define CPU_RATE 6.667L // for a 150MHz
 SYSCLKOUT
//#define CPU_RATE 10.000L // for a 100MHz
 SYSCLKOUT
//#define CPU_RATE 13.330L // for a 75MHz
 SYSCLKOUT
//#define CPU_RATE 20.000L // for a 50MHz
 SYSCLKOUT
//#define CPU_RATE 33.333L // for a 30MHz
 SYSCLKOUT
//#define CPU_RATE 41.667L // for a 24MHz
 SYSCLKOUT
//#define CPU_RATE 50.000L // for a 20MHz
 SYSCLKOUT
//#define CPU_RATE 66.667L // for a 15MHz
 SYSCLKOUT
//#define CPU_RATE 100.000L // for a 10MHz
 SYSCLKOUT

The CPU clock rate is used during the compile phase to calculate a scale factor for your op-
erating frequency. This scale factor will be used by the Flash API functions to properly scale
software delays that are VITAL to the proper operation of the API. The formula found at the
bottom of the Flash2833x_API_Config.h file provides this calculation:

#define SCALE_FACTOR 1048576.0L*((200L/CPU_RATE)) // IQ20

Step 2: Include Flash2833x_API_Library.h

The file “Flash2833x_API_Library.h” is the main include file for the Flash API and should
be included in any application source - code file that interfaces to the Flash API.

#include "FLASH2833x_API_Library.h"

 FLASH - API Checklist

F2833x - FLASH - API 16 - 9

Also, include the search path to this header - file into the project C/C++ build options. In the
“C/C++” perspective, right click on the active project, select “properties”, C2000 compiler,
Include Options and add:

C:\tidcs\c28\Flash28_API\Flash28335_API_V210\include

Step 3: Include the appropriate Flash API library

The appropriate Flash API library must also be linked to your project.

By default, the symbol “ <>” stands for “C:\tidcs\c28”

F28335: <>\Flash28_API\Flash28335_API_V210\lib\Flash28335_API_V210.lib
F28334: <>\Flash28_API\Flash28334_API_V210\lib\Flash28334_API_V210.lib
F28332: <>\Flash28_API\Flash28332_API_V210\lib\Flash28332_API_V210.lib

The Flash APIs have been compiled with the large memory model (-ml) option. The small
memory model option is not supported. For information on the large memory model refer to
the TMS320C28x Optimizing C/C++ Compiler User’s Guide (literature #SPRU514).

The F2833x Flash APIs have been compiled using the “--float_support=fpu32” floating point
option. Only object files compiled as such can be linked to the APIs.

Step 4: Initialize PLL Control Register (PLLCR)

It is vital that the API functions be run at the correct clock frequency. To achieve this, the
calling application must initialize the PLLCR register before calling any of the API func-
tions. To change the PLLCR, follow the flow outlined in the device appropriate System Con-
trol and Interrupts Reference Guide. Following this flow is important in order to make sure
that the PLL is not operating in limp mode before changing the PLLCR register. As part of
this initialization, the calling application must guarantee that the PLL has had enough time to
lock to the new frequency before making API calls. To do this the application can monitor
the PLLLOCKS bit in the PLLSTS register. When this bit is set it indicates that the PLL has
completed locking and the CPU is running at the specified frequency.

The best way to follow these requirements for setting up the PLL is to call function “Init-
SysCtrl()”, provided by Texas Instruments in file “DSP2833x_SysCtrl.c”.

Step 5: Check PLL Status for Limp Mode Operation

The API functions contain time-critical code with software delay loops that must execute to
meet specific timing requirements. For this reason, the device must be operating at the cor-
rect CPU frequency before the Flash API functions are called. If the input clock to the device
has gone missing, the PLL will enter what is called limp mode operation and the CPU will be
clocked at a much lower frequency. When this happens the device is reset and the
MCLKSTS bit will be set in the PLLSTS register. If this bit is set, the API functions should
not be called.

FLASH - API Checklist

16 - 10 F2833x - FLASH - API

Refer to the device appropriate TMS320x2833x System Control and Interrupts Reference
Guide for more information on the missing clock detection logic of the F2833x devices.

Step 6: Copy the Flash API functions to Internal
SARAM

If the Flash API functions are stored in flash or OTP, then the calling application must first
copy the required code into SARAM before making any calls into the API. The following
sequence describes how to accomplish this copy:

• Link the linker command file “F28335.cmd” to your project
• This linker command file defines 3 symbols:

o Load address start: Flash28_API_LoadStart
o Load address end: Flash28_API_LoadEnd
o Run address start: Flash28_API_RunStart

• Use the symbols in a copy loop, such as:
Uint16 * pSourceAddr;
Uint16 * pDestAddr;
Uint16 i;
pSourceAddr = &Flash28_API_LoadStart;
pDestAddr = &Flash28_API_RunStart;
for(i=0;i<(&Flash28_API_LoadEnd- &Flash28_API_LoadStart);
i++)
{
 *pDestAddr++ = *pSourceAddr++;
}

Step 7: Initialize Flash_CPUScaleFactor

“Flash_CPUScaleFactor” is a global 32-bit variable defined by the Flash API functions. The
Flash API functions contain several delays that are implemented as software delays. The cor-
rect timing of these software delays is vital to the proper operation of the API functions. The
32-bit global variable “Flash_CPUScaleFactor” is used by the API functions to properly
scale these software delays for a particular CPU operating frequency (SYSCLKOUT).

Flash_CPUScaleFactor = SCALE_FACTOR;

Step 8: Initialize the Callback Function Pointer

A callback function is one that is not invoked explicitly by the user’s application; rather the
responsibility for its invocation is delegated to the API function by way of the callback func-
tion's address. The callback function can be used whenever the application must process cer-
tain information itself at some time in the middle of the execution of an API function. For
example, if the system has an external watchdog that must be serviced or if status needs to be
sent by way of a communications port, this can be done by the user inserting code within the
callback function.

F2833x - FLASH - API 16 - 11

The variable “Flash_CallbackPtr” is global function pointer used to specify the callback
function to be used by the Flash API. The Flash API functions will call the callback function
at safe times during the program, erase, verify and depletion recovery algorithms. To use the
callback function, the calling application must first initialize the function pointer
Flash_CallbackPtr before calling any API function. If the callback feature is not going to
be used, then set the pointer to NULL. When Flash_CallbackPtr is NULL the API will not
make a call to any function.

Flash_CallbackPtr = NULL;

F2833x FLASH - API Reference

Data Type Conventions

The following data type definitions are defined in Flash2833x_API_Library.h:

#ifndef DSP28_DATA_TYPES
#define DSP28_DATA_TYPES
typedef int int16;
typedef long int32;
typedef long long int64;
typedef unsigned int Uint16;
typedef unsigned long Uint32;
typedef unsigned long long Uint64;
typedef float float32;
typedef long double float64;
#endif

API Function Naming Conventions

The F2833x API function names are of the following form:

Flash<device>_<operation>(args)

Where

<device> is 28335, 28334, 28332
<operation> is the operation being performed such as Erase, Program, Verify

For example:

Flash28335_Program(args)

is the F28335 Program function.

The API function definitions for the F2833x API libraries are compatible. For this reason the
file
Flash2833x_API_Library.h includes macro definitions that allow a generic function call to
be used in place of the device specific function call.

Flash_<operation>(args)

F2833x FLASH - API Reference

16 - 12 F2833x - FLASH - API

The use of these macros is optional. They have been provided to allow easy porting of code
between the devices.

FLASH - API - Functions
The following API - Functions are available:

Generic Function F28335 API Function
Flash_ToggleTest Flash28335_ToggleTest
Flash_Erase Flash28335_Erase
Flash_Program Flash28335_Program
Flash_Verify Flash28335_Verify
Flash_DepRecover Flash28335_DepRecover
Flash_APIVersion Flash28335_APIVersion
Flash_APIVersionHex Flash28335_APIVersionHex

All functions use a structure “FLASH_ST”. This structure is used to pass information back
to the calling routine by the Program, Erase and Verify API functions. This structure is de-
fined in Flash2833x_API_Library.h:

typedef struct {
Uint32 FirstFailAddr;
Uint16 ExpectedData;
Uint16 ActualData;

}FLASH_ST;

For the parameter list of all API - functions please refer to the documentation file
“Flash2833x_API_Readme.pdf”.

Files included with the API

In a typical installation, <base> = c:\tidcs\c28\Flash28_API

API Library:
<base>\Flash28335_API_V210\lib\Flash28335_API_V210.lib

API Include Files:
<base>\Flash28335_API_V210\include\Flash2833x_API_Library.h
<base>\Flash28335_API_V210\include\Flash2833x_API_Config.h

Documentation:
< base >\Flash28335_API_V210\doc

Example:
< base >\Flash28335_API_V210\example

 Lab 16: Use of FLASH - API

F2833x - FLASH - API 16 - 13

Lab 16: Use of FLASH - API

Objective
The objective of this laboratory exercise is to practice using the F2833x FLASH - API
library. Here is what we will do:

• We will run a small amount of control code direct from FLASH - A. The main - loop
of this control code will permanently read a data memory variable
“FLASH_Voltage_A0“, located in FLASH - section B, and display the four most
significant bits (bit 11…bit 8) of “FLASH_Voltage_A0” on four LEDs
(LD4…LD1).

16 - 7

• Run stand alone control code from FLASH – A
• “main()” - loop reads value “FLASH_Voltage_A0” from

FLASH-B and display the four most significant bits at LEDs
LD4…LD1.

• CPU – Timer 0 will start an ADC conversion of channel
ADCINA0 (potentiometer VR1) each 50 milliseconds.

• The ADC interrupt service will store the result of the
conversion in SARAM - variable “Voltage_A0”

• If button PB1 is pushed, FLASH – B variable
“FLASH_Voltage_A0” is updated with “Voltage_A0”
using FLASH – API functions “Erase”, “Program” and
“Verify”.

Lab16: Use of FLASH – API

• ADC channel ADCINA0, started by CPU - Timer 0 every 50 milliseconds, will
convert the value from potentiometer “VR1” of the Peripheral Explorer Board into a
local 12 - bit - variable “Voltage_A0”. The CPU-Timer 0 - Interrupt service will
perform the software - start of the ADC; the ADC - Interrupt service will update
“Voltage_A0”

• If we push button “PB1” of the Peripheral Explorer Board, we start another part of
the control code. We will call our function “Update_FLASHB()” to update the
FLASH-B - variable “FLASH_Voltage_A0“ with the current value from
“Voltage_A0”. This function includes some API - Function calls from the Texas
Instruments FLASH-API.

Lab 16: Use of FLASH - API

16 - 14 F2833x - FLASH - API

• After a successful update of FLASH-B, our code will perform a warm reset to re-
start the code. To do so, you have to set the boot-sequence to “Boot to FLASH”. On
the “Peripheral Explorer Board”, make sure that jumper J3 (“SCI_BOOT 84) is
open!

• Note: The provided test function “Update_FLASHB()” is intended to be used in
experimental student laboratories only, it does not cover error - handling or timeout
monitoring. For a real product version you can easily extend the functionality of this
example; all code sequences are based on Texas Instruments API - Functions. To
keep the first example simple, we will use basic API - features only.

Procedure

Open Project
1. For convenience, open the project “Lab16.pjt” from C:\DSP2833x_V4\Labs\Lab16. If

you create your own project, you have to add the provided files from
C:\DSP2833x_V4\Labs\Lab16 manually.

2. From “C:\DSP2833x_V4\Labs\Lab14” open the file “Lab14.c”, save it in
“C:\DSP2833x_V4\Labs\Lab16” as “Lab16.c” and add “Lab16.c” to your project.

3. Open the file “Lab16.c” to edit.

• At the beginning of “Lab16.c”, add two macros to define the push-buttons PB1
and PB2:

#define START GpioDataRegs.GPADAT.bit.GPIO17 // Button PB1
#define STOP GpioDataRegs.GPBDAT.bit.GPIO48 // Button PB2

• Also at the beginning of “main()”, add an external function prototype for
function “Update_FLASHB()”. This function is defined in file
“Lab16_FLASH_API.c”, which will be inspected shortly. Add:

extern void Update_FLASHB(int);

• Since we will use the ADC, we will also call function “InitAdc()”, which is
defined in the file “DSP2833x_ADC.c”. Add a 2nd additional external function
prototype:

extern void InitAdc(void);

• Third, add another external function prototype:

extern void display_ADC(unsigned int);

This function, defined in the provided source code file “Display_ADC.c”, will
be used to convert the four most significant bits of an input value into a “light-
beam” at the four LEDs LD1…LD4.

• Next, add a prototype for the local ADC interrupt service routine. Add:
interrupt void adc_isr(void);

• Finally add two global variables:

 Lab 16: Use of FLASH - API

F2833x - FLASH - API 16 - 15

unsigned int Voltage_A0;
extern unsigned int FLASH_Voltage_A0;

The variable “FLASH_Voltage_A0” is already defined in the file
“Lab16_FLASH_DATA.c”; therefore we need the “extern” keyword.

4. Edit function “main()” of file “Lab16.c”:

• Delete the variable “counter” and the code in the endless while(1)-loop of
“main()”, which is related to “counter”.

• Next, add a line to re-load the entry for the ADC in the PIE -vector table with
the name of our own interrupt service function. Search for line of code, which
we used to reload TINT0 and add:

PieVectTable.ADCINT = &adc_isr;

• Change the function call to “ConfigCpuTimer()” from a 100 milliseconds to a 50
milliseconds period.

• After the function call to “ConfigCpuTimer()”, add a new call to the function
“InitAdc()”. This function, provided by Texas Instruments, will switch the ADC
- module to a default standby mode. Add:

InitAdc();

• Next, add the initialization for the ADC sequencer unit.

For register “ADCTRL1”:

o set acquisition window to 8 clocks (ACQ_PS)

o set clock prescaler CPS to “divide by 1”

o select single run mode (CONT_RUN)

o select cascaded mode (SEQ_CASC)

For register “ADCTRL2”:

o enable interrupt (INT_ENA_SEQ1)

For register “ADCCTRL3”:

o Set bit fields “ADCCLKPS” to select HSPCLK / 8

Set “MAXCONV” to convert 1 channel

Set channel selector “CONV00” to convert ADCINA0

• Next, add a line to enable also PIE-interrupt 1.6 (ADC). Note: PIE-interrupt 1.7
(Timer 0) is also active; keep its enable command line in your code. Add:

 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

Lab 16: Use of FLASH - API

16 - 16 F2833x - FLASH - API

5. Edit the endless while(1) - loop of function “main()”:

• At the beginning of this loop, add a call to the function “display_ADC(0);”. This
will switch OFF all four LEDs LD1…LD4.

• Next, wait for 100 milliseconds

• Next update the LEDs by a 2nd function call
“display_ADC(FLASH_Voltage_A0);”. This will update the LEDs with the
value from the global variable “FLASH_Voltage_A0”

• Next, wait for another 100 milliseconds, before you clear the Timer 0 interrupt
counter and before you service the watchdog. The whole new code snippet looks
like:

display_ADC(0);
while(CpuTimer0.InterruptCount < 2);
display_ADC(FLASH_Voltage_A0);
while(CpuTimer0.InterruptCount < 4);
CpuTimer0.InterruptCount = 0;
EALLOW;
SysCtrlRegs.WDKEY = 0x55;
EDIS;

• Finally, we have to add code that samples button “PB1”. In the event of an
active button (pushed down = 0), we have to call our FLASH re-programming
function “Update_FLASHB(Voltage_A0)”. After returning from this call, the
new data values are programmed into FLASH and we have to start the F2833x
with a reset. The question is: how can we cause a reset by an instruction? One
answer is: the watchdog control register does the trick. If we intentionally violate
the watchdog control register security bits (WDCHK2…0) by writing 000 into
this bit-field, we cause a reset. The whole code snippet look like this:

if (START == 0) // START Button is pressed down (zero)
{

Update_FLASHB(Voltage_A0);
 EALLOW;

SysCtrlRegs.WDCR = 0; // force a “warm” - RESET
while(1); // line is never reached

}

6. Change CPU - Timer 0 Interrupt Service Routine

When we enter the FLASH - API functions, the hardware interrupts are still active and
must be serviced. The problem is that we cannot execute code from FLASH, when we
re-program it. This includes the Interrupt Service Functions. The solution is to copy
the ISRs from FLASH to RAM at the beginning of the code execution. We have used
a similar principle for function “InitFlash()”. All we need is a connection of the RAM
runtime functions to section “ramfuncs”. In front of function “cpu_timer0_isr()”, add:

#pragma CODE_SECTION(cpu_timer0_isr, "ramfuncs");

To start the ADC, add a line in the function “cpu_timer0_isr()” to force a software
start:

 AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; // start ADC by SW

 Lab 16: Use of FLASH - API

F2833x - FLASH - API 16 - 17

At the end of “Lab16.c” add a new interrupt function “adc_isr()”.

Again, use a pragma - statement to assign this function to a RAM run - time location

#pragma CODE_SECTION(adc_isr, "ramfuncs");

In this function, read the ADC result, store it in the global variable “Voltage_A0” and
clear the ADC for the next conversion. The whole function is:
interrupt void adc_isr(void)
{

Voltage_A0 = AdcRegs.ADCRESULT0>>4;
 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge PIE
}

7. Inspect and adjust the header file “Flash2833x_API_Config.h”. This file defines a few
macros. Make sure to have those macros active that correspond to your
F28335ControlCard. There are two versions out, a 20MHz (100MHz SYSCLKOUT)
and a 30MHz (150MHz SYSCLKOUT) version. The following snippet is for a
F28335 running at external 30MHz clock speed:

#define FLASH_F28335 1
#define FLASH_F28334 0
#define FLASH_F28332 0
#define CPU_RATE 6.667L // for a 150MHz CPU (SYSCLKOUT)
//#define CPU_RATE 10.000L // for a 100MHz CPU (SYSCLKOUT)

8. Inspect the provided file “Lab16_FLASH_DATA.c”. This file defines a new global
variable “FLASH_Voltage_A0”. The “DATA_SECTION” directive connects the
variable to a linker symbol “myFlashConstants”.

#ifdef __cplusplus
#pragma DATA_SECTION("myFlashConstants")
#else
#pragma DATA_SECTION(FLASH_Voltage_A0,"myFlashConstants");
#endif
volatile unsigned int FLASH_Voltage_A0;

9. Inspect the provided linker command file “Lab16.cmd”.
SECTIONS
{
 myFlashConstants : > FLASHB PAGE =1
 Flash28_API:
 {
 -lFlash28335_API_V210.lib(.econst)
 -lFlash28335_API_V210.lib(.text)
 } LOAD = FLASHD,
 RUN = RAML0,
 LOAD_START(_Flash28_API_LoadStart),
 LOAD_END(_Flash28_API_LoadEnd),
 RUN_START(_Flash28_API_RunStart),
 PAGE = 0

Lab 16: Use of FLASH - API

16 - 18 F2833x - FLASH - API

 }

First, this file connects the section “myFlashConstants” to physical FLASH-B memory
block (0x330000). Second, it connects section “Flash28_API” to a load address in
FLASH- D block (0x320000) and to run-address RAML0 (0x8000). It also defines
symbols “Flash28_API_LoadStart”, “Flash28_API_RunStart” and
“Flash28_API_LoadEnd”, which are used in the next source file (see procedure step
11). All memory blocks (FLASHB, FLASHD, and RAML0) are defined in the default
linker command file “F28335.cmd”.

10. Inspect the source code file “Lab16_FLASH_API.c”. This file is an example on how
to use the FLASH-API - functions. Note: Again, this is an example just for student
exercises and not for real production code. It does not cover any error situations, as
you can see in the rather sparse function “Error()” at the end of this file.

 The function “Update_FLASHB()” basically performs the following steps:

(1) It checks, whether the F2833x is in “Limp”-Mode (clock has been lost). If
so, the function just returns (which is one point to be improved for
production code)

(2) If not in limp - mode, it copies all FLASH-API - functions from FLASHD
into RAML0.

(3) Next, it checks the correct FLASH-API - version
(“Flash_APIVersionHex()”).

(4) If the version is correct, it erases FLASHB by function call to
“Flash_Erase(SECTORB, &Flash_Status)”.

(5) It programs new data into section FLASHB by function call
“Flash_Program(&FLASH_Voltage_A0,&new_value,1,&Flash_Status)”.

Now let us finish the lab exercise!

Build project
11. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

Verify Linker Results - The map - File
12. Before we actually start the Flash programming, it is always good practice to verify

the used sections of the project. This is done by inspecting the linker output file
“lab16.map”

13. Open the file “lab16.map” in the sub-folder ..\Debug

 In the “MEMORY CONFIGURATION” column "used" you will find the amount of
physical memory that is used by your project.

 Verify that only the following five lines from PAGE 0 are used:

 Lab 16: Use of FLASH - API

F2833x - FLASH - API 16 - 19

Name origin length used unused attr
RAML0 00008000 00001000 0000055f 00000aa1 RWIX
FLASHD 00320000 00008000 0000055f 00007aa1 RWIX
FLASHA 00338000 00007f80 000007f3 0000778d RWIX
BEGIN 0033fff6 00000002 00000002 00000000 RWIX
ADC_CAL 00380080 00000009 00000007 00000002 RWIX

The number of addresses used in FLASHA and FLASHD might be different in your
lab session. Depending on how efficiently you programmed your code, you will end
up with more or less words in this section.

Verify that in PAGE1 section FLASHB has been allocated:
Name origin length used unused attr
FLASHB 00330000 00008000 00000001 00007fff RWIX

In the SECTION ALLOCATION MAP you can see how the different portions of our
project’s code files are distributed into the physical memory sections. For example, the
.text - entry shows all the objects that were concatenated into FLASHA.

Entry symbol “codestart” connects the object “CodeStartBranch.obj” to physical
address 0x33 FFF6 and occupies two words.

Use CCS integrated Flash Program Tool
14. Perform  Target  Debug Active Project

The FLASH based sections of the project will be erased and programmed
automatically!

Lab 16: Use of FLASH - API

16 - 20 F2833x - FLASH - API

Close CCS & Restart the Peripheral Explorer Board
15. Close your Code Composer Studio session.

16. Disconnect power from the Peripheral Explorer Board.

17. Verify that Peripheral Explorer Board Jumper J3 (“SCI-BOOT GPIO84”) is open

Test Application
18. Re-connect the Peripheral Explorer Board to the power supply. The code should run

immediately after power on. If this is you first test of “Lab16” and FLASH-B has not
been used so far, e.g. variable “FLASH_Voltage_A0” is still programmed with
0xFFFF, the four LEDs LD1…LD4 should blink simultaneously at 100 milliseconds
intervals.

19. Turn potentiometer VR1 into its middle position. Next push PB1 shortly. This push
should start the FLASH - programming sequence and program the new voltage into
FLASHB. The LED - blinking should stop for approximately 1 second. After that
programming time, the code should start again, now showing the new value in
FLASHB.

20. If you power OFF and ON again, the code should immediately show the value, which
was stored in FLASHB, before powering OFF the tool.

21. Re-Start Code Composer Studio and connect to the target.

22. To test code in FLASH, we can also apply a symbolic test strategy.

• Reload project “Lab16.pjt”.

• Perform “Go main” and Run (F8)

• Inspect variables “FLASH_Voltage_A0” and “Voltage_A0”.

• LEDs LD1...LD4 are toggled between “0000” and the corresponding values in
bit 11 to bit 8 of “FLASH_Voltage_A0”

END of Lab16.

	F2833x FLASH - API
	Introduction
	Module Topics
	F2833x FLASH - API Installation
	F2833x FLASH API Fundamentals
	Erase
	Program
	Verify

	General Guidelines
	FLASH - API Checklist
	Step1: Modify Flash2833x_API_Config.h
	Step 2: Include Flash2833x_API_Library.h
	Step 3: Include the appropriate Flash API library
	Step 4: Initialize PLL Control Register (PLLCR)
	Step 5: Check PLL Status for Limp Mode Operation
	Step 6: Copy the Flash API functions to Internal SARAM
	Step 7: Initialize Flash_CPUScaleFactor
	Step 8: Initialize the Callback Function Pointer

	F2833x FLASH - API Reference
	Data Type Conventions
	API Function Naming Conventions
	FLASH - API - Functions
	Files included with the API
	API Library:
	API Include Files:
	Documentation:
	Example:

	Lab 16: Use of FLASH - API
	Objective
	Procedure
	Open Project
	Build project
	Verify Linker Results - The map - File
	Use CCS integrated Flash Program Tool
	Close CCS & Restart the Peripheral Explorer Board

