Motor Control and PFC Developer’s Kit
Overview

June 2009

The Motor Control and PFC Developer’s Kit gives a great way to begin
learning about digital motor control. This kit contains a motherboard that can
accept any of the C2000 series controlCARDSs. This board is divided into a Power
Factor Correction (PFC) stage and two identical three-phase inverter stages.

Features of the Motor Control and PFC Developer’s Kit board:
e Sensorless field oriented control of 2 permanent magnet motors using the
Texas Instruments DRV8402 IPM module
e PFC provides current-shaping of the AC input and regulates the DCbus.
[]

Closed-loop digital control with feedback using the C2000’s on-chip PWM
and ADC peripherals

On-board isolated JTAG emulation

e Over-current and over-voltage protection for the PFC stage and over-
current protection for each inverter section
UART communication header available for host-control

o Hardware Developer’s Package is available and includes schematics, bill
of materials, Gerber files, etc.

WARNING

This equipment may generate voltages and currents that can be injurious to
humans, and must be used with caution. The user must employ appropriate
safeguards to avoid serious injury.

Getting Started

Hardware Overview

[M2] TB1 -
AC Input connector
(13-16Vac)

2-phase Interleaved
PFC Stage
[M3]

[M3] TB1 -
External PFC
load
connector

[M4] JP1 -
Auxiliary
DCBus input
(16-36Vdc)

[M4] sw1 -
Main power

[Main] J2—
UART connector

[Main] J5, J6 —
PWM configuration
jumpers

switch

[M4] sSwW2 -
DCBus power
switch

[M4] SW3 -
12V, 5V, 3V3
power switch

[M4] TB1 —
Auxiliary 12V
supply connector

[Main] J14 —
DAC outputs

[Main] J1 —
C2000
controlCARD
connector

[Main] TB2 —
Outputs from HB5-8
which can be used to

control Motor 2

[M1] 35 - On-
board emulation
disable jumper

[M1] JP1 - USB
Connection for
onboard emulation

[M1] J2 — External
JTAG emulator

interface

Motor Inverter Stages
[M5] & [M6]

[Main] TB1 — Outputs

from HB1-4 which
can be used to
control Motor 1

[Main] J4 —
CAP/QEP output
connector

[Main] J3 — QEP
outout connector

More information on the Motor Control and PFC Developer’s Kit can be found in the document:
C:\TI_F28xxx_SysHW\Multi-Axis-HWdevPkg\Multi-Axis_ HWGuide.pdf

Software Installation

The Motor Control and PFC Developer’s Kit application software example, step-by-step lab
style documentation, and other useful soft collateral can all be found on the Tl website. The target
mother board included in this kit is designed to be run in the Code Composer Studio v3.3 IDE.

To run any of the application specific software in the CCStudio IDE, you will also need to
install Code Composer Studio v3.3, the Baseline Software Package for C2000 kits, and the
Board Specific Software Package. A 32KB-limited version of the Code Composer IDE has
been included with this kit. The Baseline software package contains the header files, libraries, etc
necessary for the Code Composer project to compile. This baseline installer is common to all
C2000 development kits and may not need to be downloaded if it is already installer to your
computer.

The kit's software includes three separate projects to make the learning process easier. The
2xPM_Motors project and PFC2PHIL project each thoroughly go over the theory and process of
learning motor control and PFC separately. The final project, PFC+2PM_Motors, shows the
integrated and project and its documentation shows how this integration was achieved.

1) Baseline soft collateral and hardware installer
¢ On an Internet browser type: http://www.ti.com/f28xkits
e At the C2000 collateral page search for the Motor Control and PFC Developer’s Kit
and download the “Baseline Software” for this Kkit.
e Save the .zip file to the directory of your choice
¢ Unzip the file and run the install program Baseline Software Setup
e The installer will create the following default directories:

C:\TI_F28xxx_SysSW

~Docs - contains general software documentation
~SupportFiles - contains C2000 header files, key libraries, etc
C:\TI_F28xxx_SysHW - contains schematics, etc for all controlCARDs

2) Install Code Composer Studio v3.3
e Place the Code Composer trial version CD into your CD-ROM drive
e Follow the automated installer through the rest of the install
e See the document “QSG-CodeComposerC2000.pdf” for more information
(CATI_F28xxx_SysSW\~Docs)

3) Motor Control and PFC Developer’s Kit board specific collateral and hardware installer
e On an Internet browser type: http://www.ti.com/f28xkits
e Atthe C2000 collateral page search for the Motor Control and PFC Developer’s Kit
and download the “Board Specific” software download for this kit.
e Save the .zip file to the directory of your choice
e Unzip the file and run the install program Multi-AxisDMC.exe
e The installer will create the following default directories:

C:\TI_F28xxx_SysSW
MotorCtrl+PfcKit
~Docs
2xPM_Motors
~Docs
PFC2PHIL
~Docs
PFC+2PM_Motors
~Docs

C:\TI_F28xxx_SysHW
Multi-Axis-HWdevPkg

Hardware Setup

Note that the Multi-Axis DMC kit is separated into multiple function-specific macro blocks.
Components shown below will be referred to with their macro number in brackets. For
example, [M3]-C1 would refer to the C1 located in the macro M3.

1) Ensure that [M4]-SW1, [M4]-SW2, and [M4]-SW3 are in the “Off” position. Ensure that
[M4]-J1 is put in the “En” position.
[M4]-JP1 T [M4]-SwWi
[M4]-SW2
[M4]-J1
[M4]-SW3
2) Ensure that [Main]-J5 has 3 jumpers attached to it and [Main]-J6 has 2 jumpers attached
to it.
3) Ensure that [Main]-J7 is jumpered in the “DChus-FB” position.
4) Unpack the DIMM style controlCARD and place it loosely in the connector slot of [Main]-
J1. See picture below.
5) Push vertically down using even pressure from both ends of the card until the clips snap
and lock. (to remove the card simply spread open the retaining clip with thumbs)
6) Connect the motors to the board. Each motor will have several wires. Find the larger

gauge wires of the motor (they should be yellow, black, and red) and connect the motor’'s
power wires to the U, V, and W terminals of [Main]-TB1 & [Main]-TB2 respectively.

7) Connect 24Vdc supply to [M4]-JP1.
8) Turn [M4]-SW1 on. This enables power to be sent to the other two switches in [M4].
9) Turn on [M4]-SW2. This will enable DC power to be sent into the inverter stages. [M4]-

LD1 should turn on.

10) Turn on [M4]-SW3. This will enable generation of the 12V, 5V, and 3.3V power rails, and
turn on the controlCARD. [M4]-LD2 should turn on.

11) Connect a USB cable to connector [M1]-JP1. This will enable isolated JTAG emulation to
the C2000 device. [M1]-LD1 should turn on.

e |If the included Code Composer Studio is installed the drivers for the onboard JTAG
emulation will automatically be installed.

o If a windows installation window appears try to automatically install drivers from those
already on your computer. The emulation drivers are found at
http://www.ftdichip.com/Drivers/D2XX.htm. The correct driver is the one listed to
support the FT2232.

Note: For full details (schematics, pin-out table, etc) of the hardware please refer to the
Multi-Axis_ HWGuide and the Hardware Developer’'s Package, MultiAxis-HWdevPkg. See
References for download location.

Running the Application

This document goes through how to configure and run the 2xPM_Motors.pjt project. To
configure and run either of the other two projects please see its project specific
documentation.

1. Configure Code Composer to work with an XDS100 emulator and a Piccolo F28035
MCU.

e For details on setting up Code Composer Studio please see “QSG-
CodeComposerC2000.pdf” (C:ATI_F28xxx_SysSW\~Docs)

2. Open Code Composer and attempt to connect (Debug -> Connect).

3. Load workspace 2xPM_Motors.wks, found in C:\TI_F28xxx_SysSW\MotorCtrl+PfcKit\
2xPM_Motors\ (File->Load Workspace) This workspace will populate the watch window
and graphs with variables useful in debugging.

4. Confirm that F2803x_RAM configuration is chosen from the “Select Active Configuration”
dropdown menu. (this dropdown box should be located near the top of Code Composer’s
toolbar). At this point F2803x_RAM is the only supported build option.

r
J
ol
@ Files
+-(_7 GEL files
= a Projects
=25 2xPM_Motors.pjt (F2803x_RAM)
[_] Dependent Projects
D Documents
[Z1 DSRBIOS Config
(1 Generated Files
+-(_7] Include
+-[_1] Libraties
+- 1 source
DSP2602x_Headers_nonBIoS, cmd
D F2B8027_FLASH_2xPM_Wators. CHD
D F2B8027_RAN_2<PM_Mators. CHD
D F2B035_FLASH_2xPM_Woators. CHD
B F2B035_RAM_2xPh_Mators. CWD

5. In the project window, expand the Include directory. In this directory open the file
“2PM_Motors-Settings.h. Confirm incremental build is 5. Line 29 should be
#define BUILDLEVEL LEVEL6

<€) 2xPM_Motors-Settings.h

e e e e e s e e e e s e s e e R e s e

Fallowing 15 the list of the Suild Leveld! cboices.

#define LEVEL1
#define LEVELZ
#define LEVEL3
#define LEVEL4
#define LEVELS
#define LEVELS

 Module check-out fdo sot conmect mator)

< Par i 400, clarfe-park, celcuilsie ofifsst
< fne motor, cloased currest/torgue) oo

o Veri sy gpeed esiimation sag rolor postioan
e motor, ofosed spesd Joop

< Twer motors, olassd speed loop

[n T Y N T Y S

o e e S et e e e e et s e e e

fhis {ine sets the SUTLHEEVEY to ane of the sveilsile chaices.

#define BEUILDLEVEL LEVELG

6. Prepare to run the software by clicking:
e Project -> Rebuild All
e File -> Load Program -> “2803x_RAM\ 2xPM_Motors.out”
e Debug -> Reset CPU

10.

11.

12.

13.

e Debug -> Restart

e Debug -> Go Main

e Debug -> Real-time Mode.
(A message box may appear. If so, select YES to enable debug events. This will set
bit 1 (DGBM bit) of status register 1 (ST1) to a “0”. The DGBM is the debug enable
mask bit. When the DGBM bit is set to “0”, memory and register values can be
passed to the host processor for updating the debugger windows.)

e Debug ->Run

e On the watch window and all graphs, right-click and select “Continuous Refresh”.

Both motors should currently be in a locked rotor state (the rotor should resist any

attempt at rotor rotation).

[Watch Window =) ojed
Marme | Walue Type I Radix ‘
& lswrl o | Uint16 unsigned
& SpesdRefl | 0.25 | ig gwalue(24]
@ 1dRen [IN1] iq qualue(24]
@ilgRef - 01433333762 g - qvalue(24)
& g2 o | Uint16 unsigned
& SpesdRef2 | 0.25 | iq gvalue(24)
& 1dRef2 | 0.0 | ig gvalue(24]
% lgRef2 | 0.1433333762 | iq value(24)
& dlog.prescalar |5 | int dec
E
T B Wthlocas 63 Waich 1

Change the variable “Isw1” to 1. This will close the current (torque) loop of motor 1 and
force constant torque through motor 1. This does however mean that as load increases
speed may not remain constant.

Change the variable “Isw1” to 2. This closes the speed loop of motor 1. Now speed will

remain constant and torque will adapt to the load even as the load changes.

The default value of SpeedRef1, the speed control variable, is 0.25. In the watch window,

change the speed reference, SpeedRefl, to 0.5. The motor will speed up by a factor of 2.

As load increases on the motor, the torque will compensate and the motor will stay at a

set speed reference.

e Look at the graph window located in your workspace and note the estimated rotor
angle and current waveform of Phase U (phase A of the DRV8402). If the load is low,
minimal current will be delivered to the load and the current waveform and angle
waveform will seem distorted. As the load increases, these waveforms will become
less distorted. Slightly changing the variable dlog.prescaler in the watch window may
become necessary to view full waveforms clearly.

e Because of variations in board components and motor build quality there may be an
offset on the current waveform. This offset can cause minor performance issues if it
is not compensated. Please see Phase 2C of the document “Field Oriented Control of
PM Motors.

Continue experimenting by editing the motorl’s speed reference. Note that the control

parameters are optimized for the region from 0.2 to 0.8. Outside of this range, the PID

and sensorless algorithm coefficients may need further tuning.

Next experiment with motor 2. Follow step 11 and 12 with Isw2 (controls the motor 2's

status) and SpeedRef2 (controls motor 2's speed).

To shut down the board

e SetlswlandlIsw2to0

e Debug -> Halt

e Debug -> Real-time Mode

e Debug -> Reset CPU

e Debug -> Disconnect
e Turn off [M4]-SW3, then [M4]-SW2, then [M4]-SW1.
Board is now unpowered. Remove cables and connectors as necessary

References
For more information please see the following guides:

e QSG-CodeComposerC2000 — a step-by-step instruction guide on how to install Code
Composer and get C2000 onboard emulators to work with Code Composer Studio.

C:\TI_28xxx_SysSW\~Docs\QSG-CodeComposerC2000.pdf

e 2xPM_Motors — provides detailed information on the 2xPM_Motors project within an
easy to use lab-style format.

C:A\TI_F28xxx_SysSW\MotorCtrl+PfcKit\2xPM_Motors\ ~Docs\2xPM_Motors.pdf

e PFC2PHIL — provides detailed information on the PFC2PHIL project within an easy to
use lab-style format.

C:A\TIL_28xxx_SysSW\ MotorCtrl+PfcKit\PFC2PHIL\~Docs\ PFC2PHIL.pdf

e PFC+2PM_Motors — provides detailed information on the PFC+2PM_Motors project
within an easy to use lab-style format.

C:A\TI_28xxx_SysSW\ MotorCtrl+PfcKit\PFC+2PM_Motors\~Docs\ PFC+2PM_Motors.pdf

e Multi-Axis_HWGuide — gives more information on the hardware of the Motor Control
and PFC Developer’s Kit. Includes details on all the various connectors, hardware block
diagrams, etc

C:A\TIL_28xxx_SysHW\MultiAxis-HWdevPkg\Mult-Axis_ HWGuide.pdf
o Multi-Axis-HWdevPkg — a folder containing various files related to the hardware on the

Motor Control and PFC Developer’s Kit board (schematics, bill of materials, Gerber files,
PCB layout, etc).

C:A\TIL_28xxx_SysHW\MultiAxis-HWdevPkg\

