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Deterministic chaos
• Determinism and predictability
• Deterministic chaos and absolute chaos
• Logistic map (several visualisation methods)
• Fractals
• Measuring chaos
• Chaos in classical billiards
• Deterministic chaos and roundoff
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Determinism and predictability

Deterministic chaos and absolute chaos
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Determinism

Pierre Simon de Laplace (1749-1827)  strongly believed in causal 
determinism:

“ We ought to regard the present state of the universe as the effect of its 
antecedent state and as the cause of the state that is to follow.  An 
intelligence knowing all the forces acting in nature at a given instant, as well 
as the momentary positions of all things in the universe, would be able to 
comprehend in one single formula the motions of the largest bodies 
as well as the lightest atoms in the world, provided that its intellect were 
sufficiently powerful to subject all data to analysis; to it nothing would 
be uncertain, the future as well as the past would be present to its eyes. “

(from: "Essai philosophique sur les probabilites")

Determinism indicates that  every event is 
determined by a chain of prior occurrences. 
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Predictability

                Determinism ≠ predictability 
The world could be highly predictable, in some senses, and 
yet not deterministic; and it could be deterministic yet 
highly unpredictable...

Determinism: related to the nature of the physical system

Predictability: related to what we can do (observe, analyze, calculate);
to predict something we need:
- knowledge of initial conditions
- capability of solving exactly the equation of evolution
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Chaos and determinism
a system is chaotic if its trajectory through 
the configuration space is sensitively 
dependent on the initial conditions, that is, if 
very small causes can produce large effects

 (in meteorology: "butterfly effect")
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Chaos and determinism

In the last few decades, physicists have become aware 
that even systems studied by classical mechanics can 
behave in an intrinsically unpredictable manner. Although 
such a system may be perfectly deterministic in principle, 
its behavior is completely unpredictable in practice. This 
phenomenon was called deterministic chaos.
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Deterministic chaos is not the same as absolute 
chaos. Absolute chaos or randomness is when you 
don't know nothing at all of what will be the next 
value: it can be any value! 

Deterministic chaos�
is not randomness

Another important difference is that for deterministic 
chaos we have a simple law that will produce all the 
values in the “attractor”. Instead for randomness there is 
no known recipe to produce past and future values.
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Chaos and determinism:
logistic map; 

Mandelbrot function and fractals
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Chaos and determinism

Chapter 6

The Chaotic Motion of Dynamical
Systems

c©2001 by Harvey Gould and Jan Tobochnik
27 March 2001

We study simple deterministic nonlinear models which exhibit complex behavior.

6.1 Introduction

Most natural phenomena are intrinsically nonlinear. Weather patterns and the turbulent motion
of fluids are everyday examples. Although we have explored some of the properties of nonlinear
physical systems in Chapter 5, it is easier to introduce some of the important concepts in the
context of ecology. Our first goal will be to motivate and analyze the one-dimensional difference
equation

xn+1 = 4rxn(1 − xn), (6.1)

where xn is the ratio of the population in the nth generation to a reference population. We shall see
that the dynamical properties of (6.1) are surprisingly intricate and have important implications
for the development of a more general description of nonlinear phenomena. The significance of the
behavior of (6.1) is indicated by the following quote from the ecologist Robert May:

“ . . . Its study does not involve as much conceptual sophistication as does elementary
calculus. Such study would greatly enrich the student’s intuition about nonlinear sys-
tems. Not only in research but also in the everyday world of politics and economics
we would all be better off if more people realized that simple nonlinear systems do not
necessarily possess simple dynamical properties.”

The study of chaos is currently very popular, but the phenomena is not new and has been
of interest to astronomers and mathematicians for about one hundred years. Much of the current
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Deterministic chaos described by 
intrinsically NON LINEAR equations.

E.g., dynamics of population:

WHICH  DYNAMICAL  BEHAVIOR?
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interest is due to the use of the computer as a tool for making empirical observations. We will use
the computer in this spirit.

6.2 A Simple One-Dimensional Map

Many biological populations effectively consist of a single generation with no overlap between
successive generations. We might imagine an island with an insect population that breeds in the
summer and leaves eggs that hatch the following spring. Because the population growth occurs
at discrete times, it is appropriate to model the population growth by difference equations rather
than by differential equations. A simple model of density-independent growth that relates the
population in generation n + 1 to the population in generation n is given by

Pn+1 = aPn, (6.2)

where Pn is the population in generation n and a is a constant. In the following, we assume that
the time interval between generations is unity, and refer to n as the time.

If a > 1, each generation will be a times larger than the previous one. In this case (6.2)
leads to geometrical growth and an unbounded population. Although the unbounded nature of
geometrical growth is clear, it is remarkable that most of us do not integrate our understanding
of geometrical growth into our everyday lives. Can a bank pay 4% interest each year indefinitely?
Can the world’s human population grow at a constant rate forever?

It is natural to formulate a more realistic model in which the population is bounded by the
finite carrying capacity of its environment. A simple model of density-dependent growth is

Pn+1 = Pn(a − bPn). (6.3)

Equation (6.3) is nonlinear due to the presence of the quadratic term in Pn. The linear term
represents the natural growth of the population; the quadratic term represents a reduction of this
natural growth caused, for example, by overcrowding or by the spread of disease.

It is convenient to rescale the population by letting Pn = (a/b)xn and rewriting (6.3) as

xn+1 = axn(1 − xn). (6.4)

The replacement of Pn by xn changes the system of units used to define the various parameters.
To write (6.4) in the form (6.1), we define the parameter r = a/4 and obtain

xn+1 = f(xn) = 4rxn(1 − xn). (6.5)

The rescaled form (6.5) has the desirable feature that its dynamics are determined by a single
control parameter r. Note that if xn > 1, xn+1 will be negative. To avoid this unphysical feature,
we impose the conditions that x is restricted to the interval 0 ≤ x ≤ 1 and 0 < r ≤ 1.

Because the function f(x) defined in (6.5) transforms any point on the one-dimensional interval
[0, 1] into another point in the same interval, the function f is called a one-dimensional map. The
form of f(x) in (6.5) is known as the logistic map. The logistic map is a simple example of a
dynamical system, that is, the map is a deterministic, mathematical prescription for finding the
future state of a system.
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The logistic map 

x⇤ is a fixed point if xn+1 = xn = x⇤, i.e., f(x⇤) = x⇤

1
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The sequence of values x0, x1, x2, · · · is called the trajectory or the orbit. To check your
understanding, suppose that the initial value of x0 or seed is x0 = 0.5 and r = 0.2. Use a
calculator to show that the trajectory is x1 = 0.2, x2 = 0.128, x3 = 0.089293, . . . In Figure 6.1 the
first thirty iterations of (6.5) are shown for two values of r.
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Figure 6.1: (a) Time series for r = 0.2 and x0 = 0.6. Note that the stable fixed point is x = 0. (b)
Time series for r = 0.7 and x0 = 0.1. Note the initial transient behavior. The lines between the
points are a guide to the eye.

The following class IterateMap computes the trajectory of the logistic map (6.5).

// updated 3/6/01, 7:54 pm
package edu.clarku.sip.chapter6;
import edu.clarku.sip.plot.*;
import edu.clarku.sip.templates.*;

public class IterateMap implements Model
{

private double r;
private double x;
private int iterations;
private Control myControl = new SControl(this);
private Plot plot;

public IterateMap()
{

plot = new Plot("iterations","x","Iterate Map");
}

public void reset()
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(*): condition (f(x))max ≤ 1 ⇒ r ≤ 1; x∗=fixed point ≤ 1 ⇒ r > 0

The logistic map 
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{

plot = new Plot("iterations","x","Iterate Map");
}

public void reset()
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The sequence of values x0, x1, x2, · · · is called the trajectory or the orbit. To check your
understanding, suppose that the initial value of x0 or seed is x0 = 0.5 and r = 0.2. Use a
calculator to show that the trajectory is x1 = 0.2, x2 = 0.128, x3 = 0.089293, . . . In Figure 6.1 the
first thirty iterations of (6.5) are shown for two values of r.
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Figure 6.1: (a) Time series for r = 0.2 and x0 = 0.6. Note that the stable fixed point is x = 0. (b)
Time series for r = 0.7 and x0 = 0.1. Note the initial transient behavior. The lines between the
points are a guide to the eye.
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0 ≤ x ≤ 1; 0 < r ≤ 1
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2. Set c1 = 10, c3 = 0.005, and c4 = 0.02. The constant c2 is the control parameter. Consider
c2 = 0.10 to 0.16 in steps of 0.005. What is the period of lnY for each value of c2?

3. Determine the values of c2 at which the period doublings occur for as many period doublings
as you can determine. Compute the constant δ (see (6.10)) and compare its value to the
value of δ for the logistic map.

4. Make a bifurcation diagram by taking the values of lnY from the Poincaré plot at X = Z, and
plotting them versus the control parameter c2. Do you see a sequence of period doublings?

5. If you have three-dimensional graphics capability, plot the trajectory of (6.63) with lnX,
ln Y , and lnZ as the three axes. Describe the attractors for some of the cases considered in
part (b).

Appendix 6A: Stability of the Fixed Points of the Logistic
Map

In the following, we derive analytical expressions for the fixed points of the logistic map. The
fixed-point condition is given by

x∗ = f(x∗). (6.64)

From (6.5) this condition yields the two fixed points

x∗ = 0 and x∗ = 1 − 1
4r

. (6.65)

Because x is restricted to be positive, the only fixed point for r < 1/4 is x = 0. To determine the
stability of x∗, we let

xn = x∗ + εn (6.66a)

and
xn+1 = x∗ + εn+1. (6.66b)

Because |εn| " 1, we have

xn+1 = f(x∗ + εn) ≈ f(x∗) + εnf ′(x∗)
= x∗ + εnf ′(x∗). (6.67)

If we compare (6.66b) and (6.67), we obtain

εn+1/εn = f ′(x∗). (6.68)

If |f ′(x∗)| > 1, the trajectory will diverge from x∗ since |εn+1| > |εn|. The opposite is true
for |f ′(x∗)| < 1. Hence, the local stability criteria for a fixed point x∗ are

1. |f ′(x∗)| < 1, x∗ is stable;
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{
myControl.setValue("r", 0.2 );
myControl.setValue("x", 0.6);
myControl.setValue("iterations", 50);

}

public void calculate()
{

r = myControl.getValue("r");
x = myControl.getValue("x");
// method getValue returns double
iterations = (int) myControl.getValue("iterations");
plot.deleteAllPoints();
for (int i = 0; i <= iterations; i++)
{

plot.addPoint(0, i, x); // 0 is data index
map();

}
plot.repaint();

}

public void map()
{

x = 4*r*x*(1 - x); // iterate map
}

public static void main(String[] args)
{

IterateMap map = new IterateMap();
map.reset();

}
}

In Problems 6.1 and 6.3 we use this program to explore the dynamical properties of the logistic
map.
Problem 6.1. Exploration of period-doubling

1. Explore the dynamical behavior of (6.5) with r = 0.24 for different values of x0. Show that
x = 0 is a stable fixed point. That is, for sufficiently small r, the iterated values of x converge
to x = 0 independently of the value of x0. If x represents the population of insects, describe
the qualitative behavior of the population.

2. Explore the dynamical behavior of (6.5) for r = 0.26, 0.5, 0.74, and 0.748. A fixed point is
unstable if for almost all x0 near the fixed point, the trajectories diverge from it. Verify that
x = 0 is an unstable fixed point for r > 0.25. Show that for the suggested values of r, the
iterated values of x do not change after an initial transient, that is, the long time dynamical
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Figure 6.3: Graphical representation of the iteration of the logistic map (6.5) with r = 0.7 and
x0 = 0.9. Note that the graphical solution converges to the fixed point x∗ ≈ 0.643.

This graphical method is illustrated in Figure 6.3 for r = 0.7 and x0 = 0.9. If we begin
with any x0 (except x0 = 0 and x0 = 1), continued iterations will converge to the fixed point
x∗ ≈ 0.642857. Repeat the procedure shown in Figure 6.3 by hand and convince yourself that you
understand the graphical solution of the iterated values of the map. For this value of r, the fixed
point is stable (an attractor of period 1). In contrast, no matter how close x0 is to the fixed point
at x = 0, the iterates diverge away from it, and this fixed point is unstable.

How can we explain the qualitative difference between the fixed point at x = 0 and x∗ =
0.642857 for r = 0.7? The local slope of the curve y = f(x) determines the distance moved
horizontally each time f is iterated. A slope steeper than 45◦ leads to a value of x further away
from its initial value. Hence, the criterion for the stability of a fixed point is that the magnitude
of the slope at the fixed point must be less than 45◦. That is, if |df(x)/dx|x=x∗ is less than unity,
then x∗ is stable; conversely, if |df(x)/dx|x=x∗ is greater than unity, then x∗ is unstable. Inspection
of f(x) in Figure 6.3 shows that x = 0 is unstable because the slope of f(x) at x = 0 is greater
than unity. In contrast, the magnitude of the slope of f(x) at x = x∗ is less than unity and the
fixed point is stable. In Appendix 6A, we use similar analytical arguments to show that

x∗ = 0 is stable for 0 < r < 1/4 (6.6a)

and
x∗ = 1 − 1

4r
is stable for 1/4 < r < 3/4. (6.6b)

:

xn+1 = 4rxn(1 − xn)

x
∗

= 1 −

1

4r
is stable for

1

4
< r < . . .?

It can be demonstrated that:

(condition x
∗

> 0)

(< 1)

1 2

2

1

2

x⇤ is a fixed point if xn+1 = xn = x⇤, i.e., f(x⇤) = x⇤

1
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The logistic map 

the iterated values of  x  converge to  x*  independently of  the value of x0

unstable fixed point :



The logistic map 
xn+1 = 4rxn(1 − xn)

Graphical interpretation of the logistic map: intersection 
with the diagonal (solution other than x=0) for  

y(x)

x

r=1

r=1/4

y(x) = 4rx(1� x)

y0(x = 0) = 4r

1

y(x) = 4rx(1� x)

y0(x = 0) = 4r

1/4  r  1

1

r<1/4
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This graphical method is illustrated in Figure 6.3 for r = 0.7 and x0 = 0.9. If we begin
with any x0 (except x0 = 0 and x0 = 1), continued iterations will converge to the fixed point
x∗ ≈ 0.642857. Repeat the procedure shown in Figure 6.3 by hand and convince yourself that you
understand the graphical solution of the iterated values of the map. For this value of r, the fixed
point is stable (an attractor of period 1). In contrast, no matter how close x0 is to the fixed point
at x = 0, the iterates diverge away from it, and this fixed point is unstable.

How can we explain the qualitative difference between the fixed point at x = 0 and x∗ =
0.642857 for r = 0.7? The local slope of the curve y = f(x) determines the distance moved
horizontally each time f is iterated. A slope steeper than 45◦ leads to a value of x further away
from its initial value. Hence, the criterion for the stability of a fixed point is that the magnitude
of the slope at the fixed point must be less than 45◦. That is, if |df(x)/dx|x=x∗ is less than unity,
then x∗ is stable; conversely, if |df(x)/dx|x=x∗ is greater than unity, then x∗ is unstable. Inspection
of f(x) in Figure 6.3 shows that x = 0 is unstable because the slope of f(x) at x = 0 is greater
than unity. In contrast, the magnitude of the slope of f(x) at x = x∗ is less than unity and the
fixed point is stable. In Appendix 6A, we use similar analytical arguments to show that

x∗ = 0 is stable for 0 < r < 1/4 (6.6a)

and
x∗ = 1 − 1

4r
is stable for 1/4 < r < 3/4. (6.6b)
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=
0)

=
4r

Note: the graphical intersection between y(x) and the diagonal gives the fixed point, but it is not 
sufficient to determine whether it is stable or unstable

xn+1 = 4rxn(1 − xn) y(x) = 4rx(1� x)

y0(x = 0) = 4r

1

x0

(x0, f(x0))
x1 = f(x0)
(x1, f(x1))
f(x1)
x⇤ is a fixed point if xn+1 = xn = x⇤, i.e., f(x⇤) = x⇤

1

.
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(x0, y(x0))(x1 = y(x0), y(x0))

(x1, y(x1))

(cobweb plot) : 
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Cobweb plots of the logistic map for r=0.675, pulling initial population 
values of 0.1 (A), 0.5 (B) and 0.9 (C) into the same fixed-point 
attractor over time.

From: G. Boeing, https://www.mdpi.com/2079-8954/4/4/37

The logistic map 
/4 /4 /4



The logistic map 
0 ≤ x ≤ 1; 0 < r ≤ 1

xn+1 = 4rxn(1 − xn)

r=1/4 r

xn

n → ∞

.

17

r=1/4
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Figure 6.2: Bifurcation diagram of the logistic map. For each value of r, the iterated values of
xn are plotted after the first 1000 iterations are discarded. Note the transition from periodic to
chaotic behavior and the narrow windows of periodic behavior within the region of chaos.

public Bifurcate()
{

plot = new Plot("r", "x", "Bifurcate");
}

public void calculate()
{

r = myControl.getValue("r");
rmax = myControl.getValue("rmax");
dr = myControl.getValue("dr");
ntransient = (int) myControl.getValue("ntransient");
nplot = (int) myControl.getValue("nplot");
x = 0.5;
nvalues = (int)((rmax - r)/dr);
xmax = 1;

xn+1 = 4rxn(1 − xn)

(a=4r)

zoom on the bifurcation diagram

0.75           0.8           0.85           0.9          0.95         1
      r           
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In the chaotic region, the trajectory is extremely sensitive to
the initial conditions

; r=0.975

From: G. Boeing, https://www.mdpi.com/2079-8954/4/4/37
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The logistic map 
state-space 
reconstruction:
plot (xi+1, xi)
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on visualizing these state spaces. Few real-world systems are fully observable, yet the dynamics in
a properly reconstructed state space are identical to the true dynamics of the entire system [34].

In our case, the two variables are: (1) the population value at generation t; and (2) the value at
t + 1. For example, with a growth rate of 3.5, the population value at Generation 1 is 0.5; the value
at Generation 2 is 0.875; the value at Generation 3 is 0.383; and so forth (see Table 1). Therefore,
our two-dimensional phase diagram will have (x, y) points at (0.5, 0.875) and (0.875, 0.383), and so on
(Figure 6B). Remember that our model follows a simple deterministic rule, so if we know a certain
generation’s population value, we can easily determine the next generation’s value. Like earlier,
to produce these phase diagrams, Pynamical runs the logistic model for 200 generations and then
discards the first 100 rows, to visualize only those values that the system settles toward over time.

Figure 6. Phase diagrams of the logistic map over 200 generations for growth rate parameter values of:
2.9 (A); 3.5 (B); 3.56 (C); and 3.57 (D). When the parameter is set to 2.9, the model converges at a single
fixed-point. When the parameter is set to 3.5 or higher, the model oscillates over four points, then eight,
and on and on as it bifurcates.

/4 /4

/4/4

(each plot: 
fix r, consider 
different x0)

r=0.725 r=0.875

r=0.89 r=0.8925
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In Figure 6A, the phase diagram shows that the logistic map homes in on a fixed-point attractor at
0.655 (on both axes) when the growth rate parameter is set to 2.9. This corresponds to the vertical slice
above the x-axis value of 2.9 in the bifurcation diagram in Figure 2. Figure 6B depicts a period-four
limit cycle attractor: when the growth rate is set to 3.5, the logistic map oscillates over four points,
as shown in this phase diagram (and in Figures 1 and 2). If we adjust the growth rate parameter up
to 3.56, we witness a period-doubling bifurcation: Figure 6C shows the system now oscillating over
eight points. As we approach the chaotic regime, the range of parameter values in which our system
behaves chaotically, the period-doubling bifurcations start to come more quickly. Figure 6D shows that
several additional bifurcations occurred between the growth rates of 3.56 and 3.57.

A kind of structure is slowly being revealed across Figure 6, but we can see it much more clearly
as we push the growth rate parameter value deep into the chaotic regime. The phase diagram in
Figure 7A reveals the system’s attractor at a growth rate of 3.9. Figure 7B visualizes 50 different
growth rate parameter values between 3.6 and 4, each with its own color. Those rates that exhibit
chaos form parabolas, but some gaps exist where the system occasionally settles down into periodic
behavior (e.g., in the teal band when the growth rate is set to 3.83; compare this band of periodicity
with Figure 4).

Figure 7. Cropped phase diagrams of the logistic map over 200 generations for: (A) a growth rate
parameter value of 3.9; and (B) 50 growth rate parameter values between 3.6 and 4 (the chaotic regime),
each with its own colored line

Strange attractors are revealed by these shapes as the system is somehow oddly constrained, yet it
never settles into a fixed point or limit cycle like it did in Figure 6. Instead it just bounces around
different population values (i.e., points on the parabola) forever without ever repeating the same
value twice. It is impossible to predict if any two consecutive observations appear near each other
or far apart on the parabola. Further, the parabolas in Figure 7B never overlap due to their fractal
geometry and the deterministic nature of the logistic map. Consider: if two different parameter values
could ever land on the exact same point, their systems would have to evolve identically over time
because the logistic map is deterministic. We can see in these visualizations that this indeed never
happens. While the dynamics of a chaotic system appear to have no pattern whatsoever, in reality, they
conform to a remarkable fractal pattern, a strange attractor, which confines the system to a limited slice
of state space and ensures that no state will ever repeat [62]. Fractals are indeed strange. Rather than
having a whole-number dimension such as two or three, they are characterized by a fractional
(hence, fractal) dimension [55,61,63]. The fractal dimension refers to the space-filling characteristics of
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Strange attractors stretch and fold state space in higher dimensions, allowing their fractal forms to fill
space without ever producing the same value twice.

Figure 10. Phase diagrams of the time series in Figure 9. (A) is a two-dimensional state space version
(the xy-plane) of the three-dimensional one (B).

To press this further, we can use Pynamical to visualize the rest of the logistic map’s chaotic
regime in three dimensions: the phase diagram in Figure 11 is a three-dimensional version of the
two-dimensional state space we saw in Figure 7B. The novel color coding exposes the dynamical
system’s behavior across the chaotic regime: information virtually impenetrable without visualization.
The beautiful structure of the strange attractor is revealed as it twists and curls around its
three-dimensional state space (see Appendix A for an animated visualization). This structure again
demonstrates that our apparently random time series data from the logistic model is not truly random
at all. Instead, it is aperiodic deterministic chaos, constrained by a mind-bending strange attractor.
No matter how much we zoom in, the parabolas never overlap and no point ever repeats itself.

Figure 11. Two different viewing perspectives of a single three-dimensional phase diagram of the
logistic map over 200 generations for 50 growth rate parameter values between 3.6 and 4, each with its
own colored line.

/4r from 0.9 to 1

0.9 to 1, each with its

r = 0.975

r from 0.9 to 1 r from 0.9 to 1
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Chaos or randomness?
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The blue lines intersect the red curve at those values our system lands on as it iterates from
an initial population value of 0.5. In Figure 8A,B, the cobweb shows the system homing in on fixed-point
attractors of zero and 0.65, respectively. At a growth rate of 3.5 (Figure 8C), the system oscillates over
four points in its limit cycle attractor, denoted by rectangular closed loops. The points where the
blue lines intersect the red curve are the same as those revealed by the attractor in Figure 6B for the
same parameter value. Finally, Figure 8D visualizes our system’s behavior in the chaotic regime at
a growth rate of 3.9. The chaotic orbit fills the plot with rectangles, an eventually infinite number of
never-repeating trajectories that form a fractal cobweb throughout the diagram.

5. Chaos and Randomness

Phase diagrams are useful for visually revealing strange attractors in time series data, like that
produced by the logistic map, because they embed this one-dimensional data into a two- or even
three-dimensional state space. It can be difficult to ascertain if certain time series are deterministic
or just random if we do not fully understand their underlying dynamics [64]. Take the two series
plotted by Pynamical in Figure 9 as an example. Both of the lines seem to jump around randomly.
The red line does depict random data, but the blue line comes from our logistic model when the
growth rate is set to 3.99. This is deterministic chaos, but it is difficult to differentiate from randomness.
Instead in Figure 10, we visualize these same two datasets with phase diagrams rather than time
graphs, giving us a clear window into the qualitative behavior of our systems. Now, we can clearly see
our chaotic system constrained by its strange attractor. By contrast, the random data just look like the
noise that they actually are.

Figure 9. Plot of two time series, one deterministic/chaotic from the logistic map (blue), and one
random (red).

This is particularly revealing in a three-dimensional phase diagram from Pynamical (Figure 10B)
that embeds our time series into a three-dimensional state space by plotting the population value
at generation t + 2 versus the value at t + 1 versus the value at t. This plot essentially extrudes
our two-dimensional plot (Figure 10A), then pans and rotates the viewpoint. In fact, if we looked
straight down at the xy-plane of the three-dimensional plot in Figure 10B, it would look identical
to the two-dimensional plot in Figure 10A (see Appendix A for an animated visualization of this).
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Strange attractors stretch and fold state space in higher dimensions, allowing their fractal forms to fill
space without ever producing the same value twice.

Figure 10. Phase diagrams of the time series in Figure 9. (A) is a two-dimensional state space version
(the xy-plane) of the three-dimensional one (B).

To press this further, we can use Pynamical to visualize the rest of the logistic map’s chaotic
regime in three dimensions: the phase diagram in Figure 11 is a three-dimensional version of the
two-dimensional state space we saw in Figure 7B. The novel color coding exposes the dynamical
system’s behavior across the chaotic regime: information virtually impenetrable without visualization.
The beautiful structure of the strange attractor is revealed as it twists and curls around its
three-dimensional state space (see Appendix A for an animated visualization). This structure again
demonstrates that our apparently random time series data from the logistic model is not truly random
at all. Instead, it is aperiodic deterministic chaos, constrained by a mind-bending strange attractor.
No matter how much we zoom in, the parabolas never overlap and no point ever repeats itself.

Figure 11. Two different viewing perspectives of a single three-dimensional phase diagram of the
logistic map over 200 generations for 50 growth rate parameter values between 3.6 and 4, each with its
own colored line.



The logistic map 
Numerics:

for a given parameter r:

- for a given x0, iterate the map and plot the trajectory (n, xn);

- verify whether it converges and, in case, to which value(s)

- verify numerically if the analytically predicted fixed points 
x1*, x2* are stable or unstable fixed points
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Example 7.5.1
Consider the so-called tent map

f(x) =

{
rx 0 ≤ x ≤ 1/2

r − rx 1/2 ≤ x ≤ 1

(for 0 ≤ r ≤ 2 and 0 ≤ x ≤ 1).

Fig. 7.5.1

This looks similar to the logistic map, but is

much easier to analyse!

24

7.6 Universality

Consider the sine map xn+1 = r sinπxn for
0 ≤ r ≤ 1 and 0 ≤ x ≤ 1.

Fig. 7.6.1

It has qualitatively the same shape as the

logistic map - such maps are called unimodal.

We now compare the orbit diagrams for the

sine map and the logistic map. . .

the resemblance is quite amazing. . .

26

Fig. 7.6.2

The qualitative dynamics of the two maps
are identical! Metropolis (1973) proved that
all unimodal maps have periodic attractors
(i.e. stable periodic solutions) occurring in
the same sequence. This implies that the
algebraic form of the map f(x) is irrelevant
- only its overall shape matters!

27

Fig. 7.6.2

The qualitative dynamics of the two maps
are identical! Metropolis (1973) proved that
all unimodal maps have periodic attractors
(i.e. stable periodic solutions) occurring in
the same sequence. This implies that the
algebraic form of the map f(x) is irrelevant
- only its overall shape matters!
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Other unimodal maps 

r

https://en.wikipedia.org/wiki/Tent_map#/media/File:TentMap_BifurcationDiagram.png

Higher density indicates increased probability of the x variable 
acquiring that value for the given value of the r parameter.



Chaos and fractals
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Another famous example
other equations intrinsically NON LINEAR can show a 
chaotic behavior for certain values of the parameters.

E.g.
quadratic recurrence equation
Mandelbrot function (in general in the complex field):


Z(n+1) = Z(n)2 + C        with C constant (also negative)
                                               and n = 0, 1, 2, …

Start with an initial value Z(0), then calculate:

Z(1) = Z(0)2 + C

then:

Z(2) = Z(1)2 + C

etc etc ... 26

http://mathworld.wolfram.com/QuadraticRecurrenceEquation.html


C = 0.2 and Z(0) = 0

Convergence to  Z*= 0.2764

! Sequenza di valori con

C = 0.2 e Zini = 0

! Converge al punto

Z* = 0.2764

0.276416

0.276415

0.276414

0.276313

0.276312

0.276211

0.276110

0.27599

0.27558

0.27487

0.27346

0.27095

0.26644

0.25763

0.24002

0.20001

0.00000

Z1(n)n

Convergenza

Some examples in the real field
Z(n+1) = Z(n)2 + C

27



Some examples in the real field

Previous example: C = 0.2 and Z(0) = 0 => Convergence to  Z*= 0.2764

In general:

Starting from Z(0) = 0:


For 0<C<= 0.25 : convergence to a fixed point, solution of	 Z = Z2 + C

(attractor)


For C<~ -0.75 : convergence with damped oscillation


For C~-0.76 : bifurcation (two-values attractor)


Decreasing C: further bifurcations


Further decreasing, at C~-1.42: chaotic behavior 

(infinite points of attraction; and very small change of Z(0)=> very 

different behavior of the sequence - “butterfly effect”) 

Z(n+1) = Z(n)2 + C

28



Il caos

! Sequenza caotica

(C = -1.7)

! I valori si susseguono
senza mai ripetersi

! Tuttavia i valori restano
sempre entro certi limiti

! La regione coperta  dai
punti della successione si
definisce attrattore
caotico oppure strano
attrattore

0.832616

-1.591415

-0.329514

-1.170713

0.727512

-1.558111

-0.376810

-1.15039

-0.74148

-0.97917

-0.84916

0.92255

-1.61944

-0.28393

1.19002

-1.70001

0.00000

Z1(n)n

Chaotic sequence at C = -1.7:


The values of the sequence do not repeat

However they are within a certain range


Range including all points of the series:

chaotic attractor or strange attractor

Some examples in the real field
Z(n+1) = Z(n)2 + C

29



Some examples in the complex field - fractal sets
Remainder:  Z(n+1) = Z(n)2 + C; in general, C and Z(n) are complex numbers.

Repeat the iteration either until |z| > 2 or until a maximum number of iterations is 
reached.

For fixed C complex, the set of the values Z(0) whose “evolution” Z(n→!) 
tends to a finite value: such set produces a fractal figure (Z(0) is represented in 
black if Z(n→!) is finite). In general, if Z(n→!)→!" color the corresponding pixel; better, 
use a color derived from the number of iterations keeping Z(n) within a certain value.

Alcuni esempi: coniglio di Douady,
c = −0.123 + 0.745i

Lucidi per il corso di Laboratorio – p.4

Alcuni esempi: coniglio di Douady,
c = −0.123 + 0.745i

Lucidi per il corso di Laboratorio – p.4

Alcuni esempi: dendrite,
c = i

Lucidi per il corso di Laboratorio – p.3

Alcuni esempi: dendrite,
c = i

Lucidi per il corso di Laboratorio – p.3

Alcuni esempi: frattale di San Marco,
c = −0.75

Lucidi per il corso di Laboratorio – p.7

Alcuni esempi: frattale di San Marco,

c = −0.75

Lucidi per il corso di Laborator
io – p.7

30

Douady rabbit San Marco fractalDendrite

extreme points on x axis: Z(0)=0,1

Maps of Z(0) in the complex plane for three different values of C:

Re(Z(0))

Im(Z(0))



the set of those points C in the 
complex plane for which the 
“evolution” of Z(0)=0 under 
iteration of Z(n) remains “bounded”,  i.e., 
|Z(n)| never diverges as n grows.

“The” Mandelbrot set 

The Mandelbrot set can be plotted: in practice, a 
maximum number of iterations nmax and a maximum 
value of  |Z|=rmax=2 is considered (it can be 
demonstrated that if there is a |Zn|>2, then the 
sequence diverges)

one-color plots: black pixel: C is in the Mandelbrot set (|Z| remains 
limited)/ white: C is NOT 

multicolor plots: C points are colored according to the number of 
iterations n<nmax required to have |Zn|>rmax (here: see the animation)

=> FRACTAL CHARACTERISTICS
http://mathworld.wolfram.com/MandelbrotSet.html 31
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one-color plots: black pixel: C is in the Mandelbrot set (|Z| remains 
limited)/ white: C is NOT 

multicolor plots: C points are colored according to the number of 
iterations n<nmax required to have |Zn|>rmax 

=> FRACTAL CHARACTERISTICS

The Mandelbrot set can be plotted: in practice, a 
maximum number of iterations nmax and a maximum 
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sequence diverges)

“The” Mandelbrot set 
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the set of those points C in the 
complex plane for which the 
“evolution” of Z(0)=0 under 
iteration of Z(n) remains “bounded”,  i.e., 
|Z(n)| never diverges as n grows.

http://mathworld.wolfram.com/MandelbrotSet.html
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Measuring chaos 

CHAPTER 6. THE CHAOTIC MOTION OF DYNAMICAL SYSTEMS 171

6.5 Measuring Chaos

How do we know if a system is chaotic? The most important characteristic of chaos is sensitivity
to initial conditions. In Problem 6.3 for example, we found that the trajectories starting from
x0 = 0.5 and x0 = 0.5001 for r = 0.91 become very different after a small number of iterations.
Because computers only store floating numbers to a certain number of digits, the implication of
this result is that our numerical predictions of the trajectories are restricted to small time intervals.
That is, sensitivity to initial conditions implies that even though the logistic map is deterministic,
our ability to make numerical predictions is limited.

How can we quantify this lack of predictably? In general, if we start two identical dynamical
systems from different initial conditions, we expect that the difference between the trajectories
will change as a function of n. In Figure 6.8 we show a plot of the difference |∆xn| versus n
for the same conditions as in Problem 6.3a. We see that roughly speaking, ln |∆xn| is a linearly
increasing function of n. This result indicates that the separation between the trajectories grows
exponentially if the system is chaotic. This divergence of the trajectories can be described by the
Lyapunov exponent, which is defined by the relation:

|∆xn| = |∆x0| eλn, (6.15)

where ∆xn is the difference between the trajectories at time n. If the Lyapunov exponent λ
is positive, then nearby trajectories diverge exponentially. Chaotic behavior is characterized by
exponential divergence of nearby trajectories.

A naive way of measuring the Lyapunov exponent λ is to run the same dynamical system
twice with slightly different initial conditions and measure the difference of the trajectories as a
function of n. We used this method to generate Figure 6.8. Because the rate of separation of the
trajectories might depend on the choice of x0, a better method would be to compute the rate of
separation for many values of x0. This method would be tedious, because we would have to fit the
separation to (6.15) for each value of x0 and then determine an average value of λ.

A more important limitation of the naive method is that because the trajectory is restricted
to the unit interval, the separation |∆xn| ceases to increase when n becomes sufficiently large.
However, to make the computation of λ as accurate as possible, we would like to average over as
many iterations as possible. Fortunately, there is a better procedure. To understand the procedure,
we take the natural logarithm of both sides of (6.15) and write λ as

λ =
1
n

ln
∣∣∣∣
∆xn

∆x0

∣∣∣∣. (6.16)

Because we want to use the data from the entire trajectory after the transient behavior has ended,
we use the fact that

∆xn

∆x0
=

∆x1

∆x0

∆x2

∆x1
· · · ∆xn

∆xn−1
. (6.17)

Hence, we can express λ as

λ =
1
n

n−1∑

i=0

ln
∣∣∣∣
∆xi+1

∆xi

∣∣∣∣. (6.18)
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Δx0 = 0.00001, Δxn>40 = ???

r=0,975
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Because we want to use the data from the entire trajectory after the transient behavior has ended,
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The difference between two trajectories may diverge 
exponentially :
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Figure 6.9: The Lyapunov exponent calculated using the method in (6.20) as a function of the
control parameter r. Compare the behavior of λ to the bifurcation diagram in Figure 6.2. Note
that λ < 0 for r < 3/4 and approaches zero at a period doubling bifurcation. A negative spike
corresponds to a superstable trajectory. The onset of chaos is visible near r = 0.892, where λ
first becomes positive. For r > 0.892, λ generally increases except for dips below zero whenever
a periodic window occurs. Note the large dip due to the period 3 window near r = 0.96. For
each value of r, the first 1000 iterations were discarded, and 105 values of ln |f ′(xn)| were used to
determine λ.

Problem 6.9. Lyapunov exponent for the logistic map

1. Compute the Lyapunov exponent λ for the logistic map using the naive approach. Choose
r = 0.91, x0 = 0.5, and ∆x0 = 10−6, and plot ln |∆xn/∆x0| versus n. What happens to
ln |∆xn/∆x0| for large n? Estimate λ for r = 0.91, r = 0.97, and r = 1.0. Does your estimate
of λ for each value of r depend significantly on your choice of x0 or ∆x0?

2. Compute λ using the algorithm discussed in the text for r = 0.76 to r = 1.0 in steps of
∆r = 0.01. What is the sign of λ if the system is not chaotic? Plot λ versus r, and explain
your results in terms of behavior of the bifurcation diagram shown in Figure 6.2. Compare
your results for λ with those shown in Figure 6.9. How does the sign of λ correlate with the
behavior of the system as seen in the bifurcation diagram? If λ < 0, then the two trajectories
converge and the system is not chaotic. If λ = 0, then the trajectories diverge algebraically,
that is, as a power of n. For what value of r is λ a maximum?
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xn+1 = 4rxn(1 − xn) (a0 = x0)

for the logistic map

0.75           0.8            0.85           0.9          0.95          1
      r           

36



Measuring chaos 

A PROBLEM in a numerical approach:

ROUNDOFF: 
small initial errors are exponentially amplified in time;
after some (?) iterations the trajectories can diverge!

How to calculate    ?
FIT over several trajectories
 

λ
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Measuring chaos 
According to the previous definition, 
the Lyapunov parameter λ is given by:

λ =
1
n

ln
Δxn

Δx0
=

1
n

ln
Δxn

Δxn−1
⋅

Δxn−1

Δxn−2
⋅

Δxn−2

Δxn−3
⋅ ⋅ ⋅

Δx1

Δx0
=

1
n

n−1

∑
i=0

ln
Δxi+1

Δxi

xi+1 = f(xi) ⇒ Δxi+1 = Δf(xi) ⇒
Δxi+1

Δxi
=

Δf(xi)
Δxi

= f′￼(xi)

If we consider the map as a function, we have:

if the Δxi  are sufficiently small, which is true 
in case of convergence towards fixed pointsSince f ′(x) = ±r for all x, we find

λ = lim
n→∞



1

n

n−1∑

i=0
ln |f ′(xi)|





= lim
n→∞



ln r

n

n−1∑

i=0
1





= ln r

This suggests that the tent map has chaotic
solutions for all r > 1, since λ = ln r > 0.

In general one needs a computer to calculate
λ!

e.g. λ for the Logistic Map

25

hence:
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6.5 Measuring Chaos

How do we know if a system is chaotic? The most important characteristic of chaos is sensitivity
to initial conditions. In Problem 6.3 for example, we found that the trajectories starting from
x0 = 0.5 and x0 = 0.5001 for r = 0.91 become very different after a small number of iterations.
Because computers only store floating numbers to a certain number of digits, the implication of
this result is that our numerical predictions of the trajectories are restricted to small time intervals.
That is, sensitivity to initial conditions implies that even though the logistic map is deterministic,
our ability to make numerical predictions is limited.

How can we quantify this lack of predictably? In general, if we start two identical dynamical
systems from different initial conditions, we expect that the difference between the trajectories
will change as a function of n. In Figure 6.8 we show a plot of the difference |∆xn| versus n
for the same conditions as in Problem 6.3a. We see that roughly speaking, ln |∆xn| is a linearly
increasing function of n. This result indicates that the separation between the trajectories grows
exponentially if the system is chaotic. This divergence of the trajectories can be described by the
Lyapunov exponent, which is defined by the relation:

|∆xn| = |∆x0| eλn, (6.15)

where ∆xn is the difference between the trajectories at time n. If the Lyapunov exponent λ
is positive, then nearby trajectories diverge exponentially. Chaotic behavior is characterized by
exponential divergence of nearby trajectories.

A naive way of measuring the Lyapunov exponent λ is to run the same dynamical system
twice with slightly different initial conditions and measure the difference of the trajectories as a
function of n. We used this method to generate Figure 6.8. Because the rate of separation of the
trajectories might depend on the choice of x0, a better method would be to compute the rate of
separation for many values of x0. This method would be tedious, because we would have to fit the
separation to (6.15) for each value of x0 and then determine an average value of λ.

A more important limitation of the naive method is that because the trajectory is restricted
to the unit interval, the separation |∆xn| ceases to increase when n becomes sufficiently large.
However, to make the computation of λ as accurate as possible, we would like to average over as
many iterations as possible. Fortunately, there is a better procedure. To understand the procedure,
we take the natural logarithm of both sides of (6.15) and write λ as

λ =
1
n

ln
∣∣∣∣
∆xn

∆x0

∣∣∣∣. (6.16)

Because we want to use the data from the entire trajectory after the transient behavior has ended,
we use the fact that

∆xn

∆x0
=

∆x1

∆x0

∆x2

∆x1
· · · ∆xn

∆xn−1
. (6.17)

Hence, we can express λ as

λ =
1
n

n−1∑

i=0

ln
∣∣∣∣
∆xi+1

∆xi

∣∣∣∣. (6.18)
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Example 7.5.1
Consider the so-called tent map

f(x) =

{
rx 0 ≤ x ≤ 1/2

r − rx 1/2 ≤ x ≤ 1

(for 0 ≤ r ≤ 2 and 0 ≤ x ≤ 1).

Fig. 7.5.1

This looks similar to the logistic map, but is

much easier to analyse!
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Since f ′(x) = ±r for all x, we find

λ = lim
n→∞



1

n

n−1∑

i=0
ln |f ′(xi)|





= lim
n→∞



ln r

n

n−1∑

i=0
1





= ln r

This suggests that the tent map has chaotic
solutions for all r > 1, since λ = ln r > 0.

In general one needs a computer to calculate
λ!

e.g. λ for the Logistic Map
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Other 1D chaotic maps
xi+1 = r sin(πxi)

NOTE:
here r redefined:
r => r/2
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Fig. 1. Bifurcation diagrams (top row) and LEs (bottom row) of (a) the
logistic map, (b) sine map, and (c) tent map.

Fig. 2. Structure of STBCS.

defined as follows:

xi+1 = T (xi) =

{
2rxi, for xi < 0.5
2r(1 − xi), for xi ≥ 0.5

(3)

where the control parameter r is also within range [0, 1].
The bifurcation diagram is to describe the output ranges of a

dynamical system along with its parameter’s change. The Lya-
punov exponent (LE) is a widely used indictor of chaotic system
and a positive LE demonstrates the existence of chaotic behav-
ior [43]. Fig. 1 plots the bifurcation diagrams and LEs of the
logistic, sine, and tent maps with the change of their parameters.
As can be observed, the logistic, sine, and tent maps have chaotic
behaviors when r ∈ [0.89, 1], r ∈ [0.87, 1], and r ∈ (0.5, 1), re-
spectively. Even the logistic and sine maps are two different
maps with totally different definitions, they have similar behav-
iors, which can be seen from their bifurcation diagrams and LEs.
Moreover, the logistic and sine maps do not have robust chaos
as periodic windows exist in their chaotic ranges, but the tent
map has robust chaos when its control parameter r ∈ (0.5, 1).

III. SINE-TRANSFORM-BASED CHAOTIC SYSTEM

This section proposes the STBCS, discusses its properties,
and analyzes its chaotic behavior.

A. Structure of STBCS

Fig. 2 shows the structure of STBCS, where f(a, xi) and
g(b, xi) are two seed maps with control parameters a and b,

Fig. 3. Structure of extended STBCS with N seed maps.

respectively. The combination is to linearly combine the out-
puts of the two seed maps while the sine transform performs a
nonlinearly transformation to the combination results.

Mathematically, the proposed STBCS can be defined as
follows:

xi+1 = N (xi) = sin(π(f(a, xi) + g(b, xi))). (4)

In each iteration, the input xi is simultaneously fed into
f(a, xi) and g(b, xi), and then the sine transform is performed
to the combination of f(a, xi) and g(b, xi)’s outputs.

Any existing 1-D chaotic maps can be used as the seed maps
of STBCS. Users can set the seed maps f(a, xi) and g(b, xi) as
the same or different chaotic maps.

1) When f(a, xi) and g(b, xi) are the same 1-D chaotic
maps, STBCS can be represented as follows:

xi+1 = sin(π(f(a, xi) + f(b, xi))) or

xi+1 = sin(π(g(a, xi) + g(b, xi))). (5)

In this case, STBCS is degraded as that the outputs of
a chaotic map with two different control parameters are
linearly combined and nonlinearly transformed to obtain
more complex chaotic behavior.

2) When f(a, xi) and g(b, xi) are selected as two different
1-D chaotic maps, STBCS defined in (4) has the property
of commutativity. Exchanging the positions of its two
seed maps f(a, xi) and g(b, xi), STBCS generates an
identical chaotic map.

STBCS offers users the great flexibility to generate a large
number of new chaotic maps using different settings of f(a, xi)
and g(b, xi). Compared with their corresponding seed maps,
these generated new chaotic maps are completely different, and
always have much more complex chaotic behaviors.

Moreover, the structure of STBCS in Fig. 2 can be further
extended into three or more seed maps. Fig. 3 shows an exten-
sion example of STBCS with N seed maps. In each iteration,
the input xi is simultaneously fed into the N seed maps, i.e.,
f1(a1 , xi), f2(a2 , xi), . . ., and fN (aN , xi), and the sine trans-
form is performed to the combination of all the seed maps’
outputs. This offers users even more flexibility of selecting seed
maps. The generated chaotic maps have much more compli-
cated chaotic behaviors and more parameter settings, and thus
they may have much better chaos performance and can generate
more random and unpredictable output sequences. On the other
hand, utilizing more seed maps may result in many negative

(1, 2)

(1, 2)



(Finally, some physics…!)

Chaos in classical billiards

42



Billiards
MODEL  BILLIARDS

(conservation of energy law,
reflection law of geometric optics)

calculate trajectories
(which depend on:

shape of the billiard;
initial position and velocity)
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Billiards

Circular billiards support regular (periodic or non - periodic) 
trajectories, but in any case non - ergodic.   
(note also: 
conservation of angular momentum, incidence angle constant)

In phase space (q(t),p(t)): 
limited region (a line: q(t) varies, p(t) constant)
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Billiards
Also elliptical billiards support regular trajectories:

The convolution of a trajectory can be: ellipse, hyperbole, regular polygon
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Billiards
Rectangular billiards also support regular (periodic or non - 
periodic) trajectories, which in this case can be also ergodic
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Billiards

Electronic and Optical Billiards - Taylor Lab http://materialscience.uoregon.edu/taylor/science/taylor_lab.html

2 of 8 5-12-2005 0:59

between the layers of GaAs and AlGaAs. By shaping the gate patterns to form an
enclosed region, the device becomes analogous to a billiard table (Fig. 3).

Figure 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Figure 4

The current project investigates billiard shapes designed to induce chaos in the
classical electron trajectories. The Sinai billiard, shown in Fig. 4, is of particular 
interest. The 'empty' square has been predicted to support stable (i.e., non-chaotic)
trajectories. By inserting a circle at the centre of the square, the billiard is transformed
into the 'Sinai' geometry, named after the Russian chaologist who, back in 1972,
predicted that this billiard would generate chaotic trajectories. Figure 5 shows the 
state-of-the-art multilevel gate architecture we use to investigate Sinai's proposal - the
fundamental transition to chaotic behaviour in a controllable, physical environment.
Whereas transitions to chaos have previously been observed in systems such as a
pendulum and a dripping tap, here we induce the transition in the flow of fundamental 
particles - electrons. In addition to addressing fundamental aspects of chaology, the
results are of interest to the electronics industry, where the ability to exploit the
extreme sensitivity of chaotic behaviour is important. This work serves as a 
demonstration of the precision with which semiconductor technology can tune
electronic properties of small devices.

In perfectly rectangular/square/elliptic billiards the trajectories are regular but 
also stable, i.e. changing the initial conditions, they remain close each other

By inserting a circle in a rectangular or square billiard, chaotic 
trajectories, strongly dependent on the initial conditions, are 
generated
(“Sinai billiard”, from the name of the Russian chaologist, 1972)
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Billiards

Electronic and Optical Billiards - Taylor Lab http://materialscience.uoregon.edu/taylor/science/taylor_lab.html

2 of 8 5-12-2005 0:59

between the layers of GaAs and AlGaAs. By shaping the gate patterns to form an
enclosed region, the device becomes analogous to a billiard table (Fig. 3).

Figure 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Figure 4

The current project investigates billiard shapes designed to induce chaos in the
classical electron trajectories. The Sinai billiard, shown in Fig. 4, is of particular 
interest. The 'empty' square has been predicted to support stable (i.e., non-chaotic)
trajectories. By inserting a circle at the centre of the square, the billiard is transformed
into the 'Sinai' geometry, named after the Russian chaologist who, back in 1972,
predicted that this billiard would generate chaotic trajectories. Figure 5 shows the 
state-of-the-art multilevel gate architecture we use to investigate Sinai's proposal - the
fundamental transition to chaotic behaviour in a controllable, physical environment.
Whereas transitions to chaos have previously been observed in systems such as a
pendulum and a dripping tap, here we induce the transition in the flow of fundamental 
particles - electrons. In addition to addressing fundamental aspects of chaology, the
results are of interest to the electronics industry, where the ability to exploit the
extreme sensitivity of chaotic behaviour is important. This work serves as a 
demonstration of the precision with which semiconductor technology can tune
electronic properties of small devices.

In perfectly rectangular/square/elliptic billiards the trajectories are regular but 
also stable, i.e. changing the initial conditions, they remain close each other

By inserting a circle in a rectangular or square billiard, chaotic 
trajectories, strongly dependent on the initial conditions, are 
generated
(“dynamical billiard” or “Sinai billiard”, 1963)

48



49

https://www.abelprize.no

https://www.abelprize.no


Billiards
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where φ is the angle of the needle with respect to a fixed axis along the field, µ is the magnetic
moment of the needle, I its moment of inertia, and B0 and ω are the amplitude and the angular
frequency of the magnetic field. Choose an appropriate numerical method for solving (6.53), and
plot the Poincaré map at time t = 2πn/ω. Verify that if the parameter λ =

√
2B0µ/I/ω > 1,

then the motion of the needle exhibits chaotic motion. Briggs (see references) discusses how to
construct the corresponding laboratory system and other nonlinear physical systems.

r

(a)

L

L

r

(b)

Figure 6.14: (a) Geometry of the stadium billiard model. (b) Geometry of the Sinai billiard model.

Project 6.24. Billiard models Consider a two-dimensional planar geometry in which a particle
moves with constant velocity along straight line orbits until it elastically reflects off the boundary.
This straight line motion occurs in various “billiard” systems. A simple example of such a system
is a particle moving with fixed speed within a circle. For this geometry the angle between the
particle’s momentum and the tangent to the boundary at a reflection is the same for all points.

Suppose that we divide the circle into two equal parts and connect them by straight lines of
length L as shown in Figure 6.14a. This geometry is called a stadium billiard. How does the motion
of a particle in the stadium compare to the motion in the circle? In both cases we can find the
trajectory of the particle by geometrical considerations. The stadium billiard model and a similar
geometry known as the Sinai billiard model (see Figure 6.14b) have been used as model systems
for exploring the foundations of statistical mechanics. There also is much interest in relating the
behavior of a classical particle in various billiard models to the solution of Schrödinger’s equation
for the same geometries.

1. Write a program to simulate the stadium billiard model. Use the radius r of the semicircles
as the unit of length. The algorithm for determining the path of the particle is as follows:

(a) Begin with an initial position (x0, y0) and momentum (px0, py0) of the particle such that
|p0| = 1.

(b) Determine which of the four sides the particle will hit. The possibilities are the top and
bottom line segments and the right and left semicircles.

Stadium (Bunimovich) billiard has a geometry simpler
than Sinai billiard, also resulting in chaotic trajectories
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Billiards

Ergodicity
of chaotic
billiards

NON Ergodicity
of circular
billiards
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Conservation of the energy, 

but in some cases (stable trajectories):
- another physical constant

(e.g. angular momentum in case of circular billiards;
x and y “components” of the kinetic energy 

in rectangular billiards)

- no physical constant for stadium billiards
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our model

point-like spheres

no friction:
forces normal to the boundaries	

=> v’//  = v //    =>     v’ = - v

perfectly elastic collisions:	 


energy conservation: |v’| = |v|
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the algorithm

given  x,y,vx,vy  at time t


	 calculate :

time to the next collision

the position of collision

velocity after the collision (reflection)


Iterate N times (N collisions)
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collision time
Calculation of time to the next collision:


x(t) = x0  +  vx t

    y(t) = y0  +  vy t


boundaries:         f(x,y)=0  :    (e.g. :  y0 + vy tc =0)


at the collision time tc:


f(x(tc),y(tc))=f(x0 + vx tc, y0 + vy tc)=0
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where φ is the angle of the needle with respect to a fixed axis along the field, µ is the magnetic
moment of the needle, I its moment of inertia, and B0 and ω are the amplitude and the angular
frequency of the magnetic field. Choose an appropriate numerical method for solving (6.53), and
plot the Poincaré map at time t = 2πn/ω. Verify that if the parameter λ =

√
2B0µ/I/ω > 1,

then the motion of the needle exhibits chaotic motion. Briggs (see references) discusses how to
construct the corresponding laboratory system and other nonlinear physical systems.
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Figure 6.14: (a) Geometry of the stadium billiard model. (b) Geometry of the Sinai billiard model.

Project 6.24. Billiard models Consider a two-dimensional planar geometry in which a particle
moves with constant velocity along straight line orbits until it elastically reflects off the boundary.
This straight line motion occurs in various “billiard” systems. A simple example of such a system
is a particle moving with fixed speed within a circle. For this geometry the angle between the
particle’s momentum and the tangent to the boundary at a reflection is the same for all points.

Suppose that we divide the circle into two equal parts and connect them by straight lines of
length L as shown in Figure 6.14a. This geometry is called a stadium billiard. How does the motion
of a particle in the stadium compare to the motion in the circle? In both cases we can find the
trajectory of the particle by geometrical considerations. The stadium billiard model and a similar
geometry known as the Sinai billiard model (see Figure 6.14b) have been used as model systems
for exploring the foundations of statistical mechanics. There also is much interest in relating the
behavior of a classical particle in various billiard models to the solution of Schrödinger’s equation
for the same geometries.

1. Write a program to simulate the stadium billiard model. Use the radius r of the semicircles
as the unit of length. The algorithm for determining the path of the particle is as follows:

(a) Begin with an initial position (x0, y0) and momentum (px0, py0) of the particle such that
|p0| = 1.

(b) Determine which of the four sides the particle will hit. The possibilities are the top and
bottom line segments and the right and left semicircles.
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collision point

Specify f: here (half) circular boundary, with equation:       

[x( tc) -  xc]2  +  [y ( tc) - yc]2   =   1


i.e.:

(x0 + vx tc -  xc)2  +  (y0 + vy tc - yc)2   =   1


=>  0, 1 o 2  solutions:

 (0 sol.)  no collision

 (1 sol.)  collision (tangent line)

 (2 sol.)  collision (consider only the larger tc)
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velocity after collision

For reflection off of a circular boundary:

(x - xc )2  + y2  =  1


v’x = (y2 - (x-xc)2) vx - 2 (x -  xc)y vy

v’y = - 2 (x-xc) y vx + ((x - xc)2 - y2) vy


(valid if   vx2 + vy2 = 1  )
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Dynamics is chaotic: 

start with two particles with almost identical positions 
and/or momenta (varying by say 10−5); compute the 
difference ∆s of the two phase space trajectories as a 
function of the number of reflections n, where:


Lyapunov exponent can be calculated by a semilog plot 
of ∆s versus n (of course, consider only the initial part, 
since ∆s is limited!)


- L dependence?


- role of single/double precision?   

- Time inversion symmetry?

Lyapunov exponent

∆sn =

√

|r1,n − r2,n|2 + |p1,n − p2,n|2
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recommendation:

don’t forget roundoff errors… 

lim
x→0

log(1 + x)
x

= 1

… but… numerically?

Analytically:

log(1 + x) =



on moodle2:

map.f90
billiard.f90
and 

biliardi2.zip (material in java, from the Lab activity with 
High School students, with G. Pastore)

And also:
julia.f90
Mandelbrot.f90
(taken somewhere from the web,  Author unknown)

From ICTP web site:
https://www.ictp.it/about-ictp/media-centre/news/2018/6/yorke-
interview.aspx

Some programs and materials: 
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