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Closed-loop Models

Closed-loop Models contain:
Dynamics describing Physical Processes (Plant)

Code describing Embedded Control, Sensing, Actuation

Models of connection between plant and controller (hard-wired vs. wired network vs.
wireless communication)
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Black Box Assumption
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Black Box Assumption

For simplicity, consider the composed plant model, controller and communication to be a
model M that is excited by an input signal u(t) and produces some output signal y(t)

1030

L — (t)

u(t) m=  w—
|

4




Verification vs. Testing

For simplicity, u is a function from T to R™; let the set of all possible
functions representing input signals be U

Verification Problem:

Prove the following: Vu € U: (y = M(u)) Eo(u,y)
Falsification/Testing Problem:

Find a witness to the query: Ju € U : (y = M(u)) # o(u,y)

These formulations are quite general, as we can include the following
“model uncertainties” as input signals: Initial states, tunable parameters in

both plant and controller, time-varying parameter values, noise, etc.,



Challenges with real-world systems

If plant model, software and communication is simple (e.g. linear models),
then we can do formal analysis

Most real-world examples have very complex plants, controllers and
communication!

Verification problem, in the most general case is undecidable

it is proved to be impossible to construct an algorithm that always leads to
a correct yes-or-no answer to the problem



Falsification/Testing
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Falsification by optimization
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Falsification/Testing

Falsification or testing attempts to find one or more u signals such that
—@(u, M(u)) is true.

In verification, the set T (the time domain) could be unbounded, in falsification or
testing, the time domain is necessarily bounded, i.e. T C 10, T], where T is some

finite numeric constant

In verification the co-domain of u, could be an unbounded subset of R™, i
falsification, we typically consider some compact subset of R™

For the it" input signal component, let D; denote its compact co-domain. Then

the input signalu : T -> DX ---XD,,, where T C 10, T]
In simple words: input signals range over bounded intervals and over a bounded

time horizon



Falsification CPS
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Goal:
Find the inputs (1) which falsify the requirements (4)
Problems:
* Falsify with a low number of simulations Active Learning
* Functional Input Space Adaptive Parameterization




Falsification re-framed

Given:
Set of all such input signals : U
Input signalu :T — D; X --XD,,, where T € [0,T], D; € R compact set

ModelMst.M(u) =y, y:T - R"
M maps u to some signal y with the same domain as u, and co-domain
some subset of R"

Property ¢ that can be evaluated to true/false over given u and y

Check: Ju € U : (y = M(u)) F =¢(u,y)



Input/Output Properties for Closed-loop Models

Properties/Specifications/Requirements are rarely monolithic formulas

¢(u,y)
Typically specified as a pair: a pre-condition ¢; on the inputs, and a post-
condition @, on the outputs

Verification problem then stated as:

Prove that: Vu € U: (u E ¢;) A (y = M(u)) = (y E ¢p)
Testing problem stated as:

Find u such that (u = ¢;) A (y = M(u)) ANy HEQy)



Input Properties/Pre-conditions

Common practice in control theory to excite closed-loop models with input
signals of certain special shapes

Motivation comes from theory of linear systems, where a step-response or
impulse-response are enough to characterize all behaviors of the system

Such special shapes do not provide comprehensive information for
nonlinear closed-loop systems, yet, it is still common to excite these systems
with a few common patterns

Frequently, input signal patterns come from engineering insights or
application-specific domain expertise



Common input patterns used for testing
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Testing In practice

Each time-point in a sighal is an independent dimension, i.e. the sighal can
change arbitrarily at each time-point in the signal

Number of independent domains is infinite (e.g. consider a signal defined
over rational time-points)

Typical testing approach is to find a test-suite: This is a finite number of test
input signals (satisfying ¢;) and then obtain output behaviors using these
signals as test inputs.

If each corresponding output signal satisfies the output property ¢, then
testing concludes, indicating that the model is correct for the given test-suite
(i.e. no output in the test-suite satisfies ¢).



Sighal Generation

Find a signal generator for the property @,

Function that uses random-ness to generate an input signal that satisfies
@; (hopefully, an input signal different from previously generated ones!)
Signal generation usually relies on defining a finite parameterization for the

input signal
For the chosen class of signals, find parameters that define the shape
Define acceptable ranges for the parameters

Define a generation function that takes the parameter values as inputs and
generates an input signal



Finite Parameterization
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Finite parameterization using control points

Acceptable ranges on

parameters (control points)
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Finite parameterization using control points
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Finite parameterization using linear interpolation
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Finite parameterization using interpolation
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Finite parameterization variable control point times

Finite Parameterization of u(t):
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Sighal Generator
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Sighal Generation controlled by the testing algorithm

Parameter space could be sampled all at once

Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain
Monte Carlo

Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread
out), truncated normal, grid-based sampling (points from a fixed grid), etc.



Black-box Optimization
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Cost function
C(u, M(w))

Black-box

Optimizer

Given:

Function M: U = Y with unknown
symbolic representation

Ability to query the value of M at any
given u; query will return some y

Cost function C: XXY - R
Objective of black-box optimizer
Let x* = min C(x, f(x))
xeX
Find X such that ||[X — x7|| is small

Let X; be the best answer found by
optimizer in its it" iteration

Ideally, lim|| X; —x* || = 0
1l—>00



Falsification using Optimization
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Step-by-step of how falsification works

Given: a finite parameterization for input signals, a model that can be
simulated and an STL property
While the number of allowed iterations is not exhausted do:
pick values for the signal parameters
generate an input signal
run simulation with generated input signal to get output signal
compute robustness value of given property w.r.t. the input/output signals
if robustness value is negative, HALT

pick a new set of values for the signal parameters based on certain
heuristics



Picking new parameter values to explore

Pick random sampling as a (not very good) strategy!
Basic method: locally approximate the gradient of the function p locally, and chose the

direction of steepest descent (greedy heuristic to take you quickly close to a local
optimum)

Challenge 1: cost surface may not be convex, thus you could have many local optima

Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just
gradient-based methods may not work well

Heuristics rely on:
combining gradient-based methods with perturbing the search strategy (e.g. simulated
annealing, stochastic local search with random restarts)
evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
genetic algorithms etc.
probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian
optimization
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Black Box Assumption
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e Less information
* A more general Approach (interesting for industries)




Falsification of CPS

END

Goal:
Find the inputs (1) which falsify the requirements (4)
Problems:
* Falsify with a low number of simulations ‘ Active Learning

e Functional Input Space Adaptive Parameterization




Gaussian Processes

Definition

f ~ GP(m k) €= (f(t), f(t), .., f(t)) ~ N(m, K)

wherem = (m(ty), m(ty),...,m(t,)) is the vector mean

K € R™™ is the covariance matrix, such that K;; = k(f(t), f(¢;))
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Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding u € B

B={ueU|p(p,ud)<0}cU

» Training Set: K= {u;, p(¢,u;,0))}i<,  (the partial knowledge after n iterations)

» Gaussian Process: pr(u)~ GP(mg(u), ox(u)) (the partial model)
0 —
P(pK(u) < 0) = CDF( O':Zfl§u)

ldea: implementing an iterative sample strategy in order to increase the probability to
sample a point in B, as the number of iterations increases.




Algorithm 1

1: procedure [B,d | = DOMAINESTIMATION (mazxlIter,ce,m, f,I)
2: i+—0, B~—0,d+ +o00
3 INITIALIZE(K(f))
4 while ( |B| < ce and ¢ < maxlter) do
5: fr(f) ~ TRAINGAUSSIANPROCESS(K (f))
6: Dgria < LHS(m)
7 Tnew — SAMPLE{(x, P(x € B)),z € Dgria}
8: fne'w — f(xnew)
9: d < min(d, DISTANCE( frnew, 1))

10: K(f) « K(f) U(Znew; frew)}

11: if frew € I then

12: B = BU{Znew}

13: end if

14: 71— 1+ 1

15: end while
16: end procedure




Domain Estimation Algorithm (DEA)

B= {ueU|p(M(u),d)< 0}




Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Algorithm (DEA)
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Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding u € B

B={ueU]|p(p,u,0)<0}cU

We call B the counterexample set and its elements counterexamples

If B is empty then p(¢p,u,0) = 0

Solving the domain estimation problem could be extremely difficult because of the infinite
dimensionality of the input space, which is a space of functions



Finite Parameterization
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Domain Estimation Problem

Finding the trajectories which falsify the requirements, finding ¢ € B
B ={¢eUyXx X Un | P($,P(6),0)) < 0}

Where C, = {(t]’_('u‘ll’(lk )""’(tgk’ukn )} and Pn = (Pnl;...,Pnlul)

Piecewise linear or polynomial functions are known to be dense in the space of
continuous functions!

Ul

Then, B has at least one element &= 3In € w!Y! | B has at least one element.



Adaptive Parameterization
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Tests Case & Results

® 01(0,@) = Gpgo(v < 0 Aw < @) (in the next 30 seconds the engine and

vehicle speed never reach @ rpm and @ km/h, respectively)
o 02(0,@) = Gpgo(w < @) — G,10/(v < D) (if the engine speed is always &

less than @ rpm, then the vehicle speed can not exceed ©# knm/h in less than 10

sec)
o ¢3(0,@) = Fio10/(v = 7) = Goa0(w < @) (the vehicle speed is above @ _

km/h than from that point on the engine speed is always less than @ rpm)

Adaptive DEA Adaptive GP-UCB S-TaLiRo

Req nval times nval times nval times Alg
01 442+053 216+061 | 416240 055030 | 516+432 057048 UR
01 6.90+222 578+ 388 8.7X+1.78 152+040 | 39.64+4449 446+499 SA
09 324+198 157+191 | 794+£390 155123 | 12.78 1127 146+128 CE
o2 || 10.144+295 1239+6.96 | 23.9+7.39 9.86+4.54 59 142 6.831+4.93 SA
02 852+290 913+£590 | 136348 4124+1.67 | 43.1+39.23 489+443 SA
03 502+097 2914+120 | 544+£3.14 091067 | 1004730 115084 CE
O3 770+£236 707387 | 1052+£1.76 2.43+0.92 11 £9.10 1.25+1.03 UR
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Model

Continuous Dynamics
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https://it. mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html



https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

F S s s

Specification Natural Language

Safety (Opo,019) ¢ should always hold from time 0 to 6.

Liveness (O[g,91¢) ¢ should hold at some point from 0 to  (or now).

Coverage ¢1 through ¢, should hold at some point in the future
(OPp1 AOP2 ... AOdy) (or now), not necessarily in order or at the same time.

Stabilization (¢0O¢) At some point in the future (or now), ¢ should always
hold.

Recurrence (0OG¢) At every point in time, ¢ should hold at some point in
the future (or now).

Reactive Response At every point in time, if ¢ holds then ¥ should hold.
(O(¢ — v))
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Automatic Transmission

Natural Language

MTL

Al The engine speed never reaches w. O(w < @)
AT The engine _and t}Ee vehicle speed O((w < @) A (v < 7))
never reach w and v, resp.
There should be no transition from
4T gear two to gear one and back to | O((g2 A Xg1) — O(0,2.5792)
gear two in less than 2.5 sec.
After shifting into gear one, there
AT should be no shift from gear one to | O((—g1 A Xg1) = O(0,2.5/91)
any other gear within 2.5 sec.
When shifting into any gear, there
4T should be no shift from that gear to | A7_;0((—g; A Xg;) — O(0,2.59:)
any other gear within 2.5sec.
If engine speed is always less than @,
AT then vehicle speed can not exceed v | ~(<Cpo, (v > v) A O(w < @))
in less than 7' sec.
Within T sec the vehicle speed is
AT above ¥ and from that point on the | O 7((v > 2) A D(w < @))
engine speed is always less than w.
A gear increase from first to fourth
in under 10secs, ending in an RPM | ((g1 U g2 U g3 U g4) A <po,101(94 A
4T above @ within 2 seconds of that, | O (w > @))) = <p0(9s —

should result in a vehicle speed
above .

X (g4 Upp,1) (v > 0)))
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