Announcements

= HW
= Project

272SM: Artificial Intelligence

Propositional Logic |

Instructor: Tatjana Petrov

University of Trieste, Italy

Outline

1. Propositional Logic |
= Basic concepts of knowledge, logic, reasoning

" Propositional logic: syntax and semantics, Pacworld example

2. Propositional logic I
= [nference by theorem proving (briefly) and model checking

= A Pacagent using propositional logic

Agents that know things

Agents acquire knowledge through perception, learning, language

= Knowledge of the effects of actions (“transition model”)

" Knowledge of how the world affects sensors (“sensor model”)

= Knowledge of the current state of the world
Can keep track of a partially observable world
Can formulate plans to achieve goals
Can design and build gravitational wave detectors

LIGO Hanford

Knowledge, contd.

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
» Tell it what it needs to know (or have it Learn the knowledge)

" Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

A single inference algorithm can answer any answerable question

Knowledge base| Domain-specific facts
Inference engine| Generic code

SCORE: 0

Logic

" Syntax: What sentences are allowed?

= Semantics:
= What are the possible worlds?

= Which sentences are true in which worlds? (i.e., definition of truth)

Synmxfomc[Semanticsland

Different kinds of logic

" Propositional logic
= Syntax: P v (—=Q A R); X; < (Raining = —Sunny)
= Possible world: {P=true,Q=true,R=false,S=true} or 1101
" Semantics: o A B is true in a world iff is o true and 3 is true (etc.)

" First-order logic
= Syntax: Vx dy P(x,y) A —=Q(Joe,f(x)) = f(x)=f(y)

" Possible world: Objects o4, 0,, 03; P holds for <0,,0,>; Q holds for <03>;
f(o1)=04; Joe=03; etc.

= Semantics: ¢(c) is true in a world if =0,and ¢ holds for o;; etc.

Different kinds of logic, contd.

= Relational databases:
» Syntax: ground relational sentences, e.g., Sibling(Ali,Bo)
= Possible worlds: (typed) objects and (typed) relations
* Semantics: sentences in the DB are true, everything else is false

= Cannot express disjunction, implication, universals, etc.
= Query language (SQL etc.) typically some variant of first-order logic
= Often augmented by first-order rule languages, e.g., Datalog

» Knowledge graphs (roughly: relational DB + ontology of types and relations)

" Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
" Facebook network: 2.93 billion people, trillions of posts, maybe quadrillions of facts

Inference: entailment

" Entailment: o |= 3 (“o entails 3” or “P follows from o”) iff
in every world where a is true, 3 is also true

" |.e., the a-worlds are a subset of the 3-worlds [models(a) = models([3)]

" |In the example, o, |= a,

" (Say o, is—-QARASAW
o, is—Q)

Inference: proofs

" A proof is a demonstration of entailment between o and [3
= Sound algorithm: everything it claims to prove is in fact entailed
= Complete algorithm: every that is entailed can be proved

Inference: proofs

* Method 1: model-checking

" For every possible world, if o is true make sure that is [3 true too
» OK for propositional logic (finitely many worlds); not easy for first-order logic

* Method 2: theorem-proving

= Search for a sequence of proof steps (applications of inference rules) leading
from o to 3

" E.g., from P and (P = Q), infer Q by Modus Ponens

Propositional logic syntax

Given: a set of proposition symbols {X;,X,,..., X_}

= (we often add True and False for convenience)

X;1s a sentence

f oo anc
f oo anc
f oo anc

f oo anc

J are sentences t
J are sentences t
J are sentences t

J are sentences t

nen o A

nen o v

f o is a sentence then —o is a sentence

J is a sentence
J is a sentence

nen o =

3 is a sentence

henh oo < 3 is a sentence

And p.s. there are no other sentences!

Propositional logic semantics

Let m be a model assignhing true or false to {X,,X,,..., X, }

If o is @ symbol then its truth value is given in m

—oLis true in m iff o is false in m

o A Bis true in miff ais true in m and B is true in m

o Vv [is true in m iff ais true in m or B is true in m

a =
o <=

3istruein miff ais falsein mor 3 is truein m

Jistrueinmiffa = Pistrueinmand B = ais truein m

Example: Partially observable Pacman

= Pacman knows the map but perceives just wall/gap to NSEW

= Formulation: what variables do we need?

= Wall locations
= Wall 0,0 thereisa wallat[0,0]
= Wall 0,1 thereisawallat[0,1], etc. (N symbols for N locations)

= Percepts

o AAvAv iy tw S A B wJ A A v v i~ A god v a A A ~r) oy o e
" Blocked W O (blocked by wall to my West at time 0) etc. (4T symbols for T time steps)

= Actions
= \W 0 (Pacman moves West at time 0), E_0 etc. (4T symbols)

* Pacman’s location
= At 0,0 O (Pacmanis at[0,0] attime 0), At 0,1 O etc. (NT symbols)

How many possible worlds?

N locations, T time steps => N + 4T + 4T + NT = O(NT) variables
O(2"T) possible worlds!

N=200, T=400 => ~10%4900 worlds

Each world is a complete “history”

" But most of them are pretty weird!

Pacman’s knowledge base: Map

= Pacman knows where the walls are:

= Wall 0,0 AWall 0,1 AWall 0,2 AWall 0,3AWall 0,4AWall 1,4n ...
= Pacman knows where the walls aren’t!

= -Wall_1,1 A—=Wall 1,2 A—=Wall_1,3 A—=Wall 2,1 A—-Wall 2,2 A ..

Pacman’s knowledge base: Initial state

" Pacman doesn’t know where he is

= But he knows he’s somewhere!
= At 1,1 OVAt 1,2 0 vAt 1,3 0 VAt 2,1 Ov ..

Pacman’s knowledge base: Sensor model

= State facts about how Pacman’s percepts arise...
" <Percept variable at t> << <some condition on world at t>
"= Pacman perceives a wall to the West at time t
if and only if he is in x,y and there is a wall at x-1,y
= Blocked W 0 < ((At_ 1,1 0 A Wall_0,1) v
(At 1,2 0 A Wall _0,2) v
(At 1,3 0 AWall 0,3)v....)
= AT sentences, each of size O(N)

" Note: these are valid for any map

Pacman’s knowledge base: Transition model

= How does each state variable at each time gets its value?

" Here we care about location variables, e.g., At 3,3 17

= A state variable X gets its value according to a successor-state axiom

" X t< [X t-1 A =(some action_t-1 made it false)] v
[—=X_t-1 A (some action _t-1 made it true)]

= For Pacman location:
" At 3,3 17 < [At_3,3 16 A —((—=Wall 3,4 AN _16) v (=Wall 4,3 AE 16)v..)]
v [-At 3,3 16 A ((At_3,2 16 A—Wall 3,3 AN_16) v
(At 2,3 16 A—=Wall 3,3 AN_16)v..)]

How many sentences?

Vast majority of KB occupied by O(NT) transition model sentences
= Each about 10 lines of text

= =200, T=400 => ~800,000 lines of text, or 20,000 pages
This is because propositional logic has limited expressive power
Are we really going to write 20,000 pages of logic sentences???
No, but your code will generate all those sentences!

In first-order logic, we need O(1) transition model sentences

(State-space search uses atomic states: how do we keep the
transition model representation small???)

Some reasoning tasks

" Localization with a map and local sensing:
" Given an initial KB, plus a sequence of percepts and actions, where am I?
" Mapping with a location sensor:
" Given an initial KB, plus a sequence of percepts and actions, what is the map?
= Simultaneous localization and mapping:
" Given ..., where am | and what is the map?
* Planning:
" Given ..., what action sequence is guaranteed to reach the goal?
= ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!

SCORE: 0

Summary

One possible agent architecture: knowledge + inference
Logics provide a formal way to encode knowledge
" Alogicis defined by: syntax, set of possible worlds, truth condition

A simple KB for Pacman covers the initial state, sensor model, and
transition model

Logical inference computes entailment relations among sentences,
enabling a wide range of tasks to be solved

