Announcements

- § HW
- Project

272SM: Artificial Intelligence

Propositional Logic I

Instructor: Tatjana Petrov

ww.webdesignersdream.wordpress.com

University of Trieste, Italy

Outline

1. Propositional Logic I

- Basic concepts of knowledge, logic, reasoning
- Propositional logic: syntax and semantics, Pacworld example
- 2. Propositional logic II
	- Inference by theorem proving (briefly) and model checking
	- A Pac agent using propositional logic

Agents that know things

- Agents acquire knowledge through perception, learning, language
	- Knowledge of the effects of actions ("transition model")
	- Knowledge of how the world affects sensors ("sensor model")
	- Knowledge of the current state of the world
- Can keep track of a partially observable world
- Can formulate plans to achieve goals
- Can design and build gravitational wave detectors.....

LIGO

Knowledge, contd.

- **E** Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
	- Tell it what it needs to know (or have it **Learn** the knowledge)
	- Then it can Ask itself what to do—answers should follow from the KB
- Agents can be viewed at the *knowledge level* i.e., what they *know*, regardless of how implemented
- A single inference algorithm can answer any answerable question

Knowledge base Inference engine

Domain-specific facts

Generic code

Logic

- § *Syntax*: What sentences are allowed?
- § *Semantics*:
	- § What are the *possible worlds*?
	- Which sentences are *true* in which worlds? (i.e., *definition* of truth)

Syntaxland Semanticsland

Different kinds of logic

■ Propositional logic

- Syntax: $P \vee (\neg Q \wedge R)$; $X_1 \Leftrightarrow (Raining \Rightarrow \neg Sunny)$
- Possible world: {P=true, Q=true, R=false, S=true} or 1101
- Semantics: $\alpha \wedge \beta$ is true in a world iff is α true and β is true (etc.)
- First-order logic
	- Syntax: $\forall x \exists y P(x,y) \land \neg Q(Joe,f(x)) \Rightarrow f(x)=f(y)$
	- **Possible world: Objects** o_1 **,** o_2 **,** o_3 **; P holds for** $\langle o_1, o_2 \rangle$ **; Q holds for** $\langle o_3 \rangle$ **;** $f(o_1)=o_1$; Joe= o_3 ; etc.
	- Semantics: $\phi(\sigma)$ is true in a world if $\sigma = o_j$ and ϕ holds for o_j ; etc.

Different kinds of logic, contd.

■ Relational databases:

- § Syntax: ground relational sentences, e.g., *Sibling*(*Ali*,*Bo*)
- Possible worlds: (typed) objects and (typed) relations
- Semantics: sentences in the DB are true, everything else is false
	- Cannot express disjunction, implication, universals, etc.
	- Query language (SQL etc.) typically some variant of first-order logic
	- Often augmented by first-order rule languages, e.g., Datalog
- Knowledge graphs (roughly: relational DB + ontology of types and relations)
	- Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
	- Facebook network: 2.93 billion people, trillions of posts, maybe quadrillions of facts

Inference: entailment

- **Entailment**: α |= β (" α entails β " or " β follows from α ") iff in every world where α is true, β is also true
	- **E** I.e., the α -worlds are a **subset** of the β -worlds $\mathsf{models}(\alpha) \subset \mathsf{models}(\beta)$
- ln the example, α_2 = α_1
- (Say α_2 is \neg Q \wedge R \wedge S \wedge W α_1 is $\neg \mathbf{Q}$) α_1 α_2

Inference: proofs

- A proof is a *demonstration* of entailment between α and β
- **Sound** algorithm: everything it claims to prove is in fact entailed
- § *Complete* algorithm: every that is entailed can be proved

Inference: proofs

§ Method 1: *model-checking*

- **For every possible world, if** α **is true make sure that is** β **true too**
- OK for propositional logic (finitely many worlds); not easy for first-order logic

■ Method 2: *theorem-proving*

- Search for a sequence of proof steps (applications of *inference rules*) leading from α to β
- E.g., from P and $(P \implies Q)$, infer Q by **Modus Ponens**

Propositional logic syntax

- Given: a set of proposition symbols $\{X_1, X_2, ..., X_n\}$
	- (we often add True and False for convenience)
- \blacktriangleright X_i is a sentence
- **F** If α is a sentence then $\neg \alpha$ is a sentence
- **•** If α and β are sentences then $\alpha \wedge \beta$ is a sentence
- **F** If α and β are sentences then $\alpha \vee \beta$ is a sentence
- **•** If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- **•** If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
- And p.s. there are no other sentences!

Propositional logic semantics

- Example 1 a model assigning true or false to $\{X_1, X_2, ..., X_n\}$
- **F** If α is a symbol then its truth value is given in *m*
- \blacksquare $\neg \alpha$ is true in *m* iff α is false in *m*
- $\alpha \wedge \beta$ is true in *m* iff α is true in *m* and β is true in *m*
- **•** $\alpha \vee \beta$ is true in *m* iff α is true in *m* or β is true in *m*
- **•** $\alpha \Rightarrow \beta$ is true in *m* iff α is false in *m* or β is true in *m*
- **•** $\alpha \Leftrightarrow \beta$ is true in *m* iff $\alpha \Rightarrow \beta$ is true in *m* and $\beta \Rightarrow \alpha$ is true in *m*

Example: Partially observable Pacman

- Pacman knows the map but perceives just wall/gap to NSEW
- § Formulation: *what variables do we need?*
	- § Wall locations
		- \blacksquare Wall 0,0 there is a wall at $[0,0]$
		- Wall 0,1 there is a wall at [0,1], etc. (*N* symbols for *N* locations)
	- Percepts

§ Blocked_W (blocked by wall to my West) etc.

- Blocked_W_0 (blocked by wall to my West *at time 0*) etc. (47 symbols for *T* time steps)
- Actions
	- W 0 (Pacman moves West at time 0), E 0 etc. (47 symbols)
- Pacman's location
	- At 0,0 0 (Pacman is at [0,0] at time 0), At 0,1 0 etc. (*NT* symbols)

How many possible worlds?

- *N* locations, *T* time steps => $N + 4T + 4T + NT = O(NT)$ variables
- *O*(2^{*NT*}) possible worlds!
- $N=200$, $T=400 \Rightarrow \sim 10^{24000}$ worlds
- Each world is a complete "history"
	- But most of them are pretty weird!

Pacman's knowledge base: Map

- Pacman knows where the walls are:
	- Wall_0,0 \land Wall_0,1 \land Wall_0,2 \land Wall_0,3 \land Wall_0,4 \land Wall_1,4 \land …
- Pacman knows where the walls aren't!
	- \neg Wall_1,1 \land \neg Wall_1,2 \land \neg Wall_1,3 \land \neg Wall_2,1 \land \neg Wall_2,2 \land …

Pacman's knowledge base: Initial state

- Pacman doesn't know where he is
- But he knows he's somewhere!
	- \blacktriangleright At_1,1_0 \lor At_1,2_0 \lor At_1,3_0 \lor At_2,1_0 \lor …

Pacman's knowledge base: Sensor model

- State facts about how Pacman's percepts arise...
	- <Percept variable at t > \Leftrightarrow <some condition on world at t >
- Pacman perceives a wall to the West at time *t if and only if* he is in *x,y* and there is a wall at *x-1,y*
	- Blocked_W_0 \Leftrightarrow ((At_1,1_0 \land Wall_0,1) v

 $(At 1, 2 0 \wedge Wall 0, 2) v$ (At $1,3$ O \wedge Wall $0,3$) v)

- § 4T sentences, each of size *O*(*N*)
- Note: these are valid for any map

Pacman's knowledge base: Transition model

- How does each **state variable** at each time gets its value?
	- Here we care about location variables, e.g., At 3,3 17
- A state variable X gets its value according to a *successor-state axiom*
	- X t \Leftrightarrow [X t-1 \land \neg (some action t-1 made it false)] v
		- $\lceil -X \t{-1} \wedge (some action t-1 made it true) \rceil$
- For Pacman location:
	- At_3,3_17 \Leftrightarrow [At_3,3_16 \land ¬((\neg Wall_3,4 \land N_16) v (\neg Wall_4,3 \land E_16) v …)] v $[-At 3,3 16 \wedge ((At 3,2 16 \wedge \neg Wall 3,3 \wedge N 16) v$ (At 2,3 $16 \land \neg$ Wall $3,3 \land N$ 16) v …)]

How many sentences?

- Vast majority of KB occupied by O(NT) transition model sentences
	- Each about 10 lines of text
	- *N*=200, *T*=400 => ~800,000 lines of text, or 20,000 pages
- This is because propositional logic has limited expressive power
- Are we really going to write 20,000 pages of logic sentences???
- No, but your code will generate all those sentences!
- **In first-order logic, we need** $O(1)$ **transition model sentences**
- (State-space search uses atomic states: how do we keep the transition model representation small???)

Some reasoning tasks

Example 2 Figure 10 Increment Control Figure 2.1 **Localization** with a map and local sensing:

- Given an initial KB, plus a sequence of percepts and actions, where am I?
- **Mapping** with a location sensor:
	- Given an initial KB, plus a sequence of percepts and actions, what is the map?
- § *Simultaneous localization and mapping*:
	- Given ..., where am I and what is the map?
- § *Planning*:
	- Given ..., what action sequence is guaranteed to reach the goal?

§ *ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!*

Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge
	- A logic is defined by: syntax, set of possible worlds, truth condition
- A simple KB for Pacman covers the initial state, sensor model, and transition model
- Logical inference computes entailment relations among sentences, enabling a wide range of tasks to be solved