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Knowledge Representation



Ontological Engineering

• Representing abstract concepts, such as events, time, physical objects 
and beliefs
• Leave placeholders where new knowledge for any domain can fit in 
à define what it means to be a physical object, details of different 
types can be filled in later
• Upper ontology = general framework of concepts to make simplifying 

assumptions



Ontological Engineering

• General-purpose ontologies:
• Applicable in (more or less) any special-purpose domain à no 

representational issue can be finessed
• In any sufficiently demanding domain, different areas of knowledge must be 

unified
• None of the top AI applications make use of a general ontology 

(special-purpose knowledge and machine learning) 
• Google Knowledge Graph uses semistructured content from Wikipedia, 

combining it with other content gathered from across the web under human 
curation



Categories and Objects

• Organization of objects into categories
• Much reasoning takes place at the level of categories 
• Serve to make predictions about objects once they are classified (using category 

information) 
• Two choices for representing categories in first-order logic: predicates

Basketball(b) and objects Basketballs 
• Member(b, Basketballs) or b ∈ Basketballs: b is member of category of basketballs
• Subset(Basketballs, Balls) or Basketballs ⊂ Balls: Basketballs is subcategory of Balls

• Organize knowledge through inheritance
• Subclass relations organize categories into a taxonomy

• Largest taxonomy organizes 10 million living and extinct species into a single 
hierarchy



Categories and Objects

• First-order logic to relate objects to categories or quantify over their
members:
• Object is member of category: BB9 ∈ Basketballs
• Category is subclass of another category: Basketballs ⊂ Balls
• All members of category have some properties: (x ∈ Basketballs) ⇒ Spherical(x)
• Members of category can be recognized by some properties: Orange(x) ∧ Round(x) 
∧ Diameter(x) = 9.5“ ∧ x ∈ Balls ⇒ x ∈ Basketballs

• Category as a whole has some properties: Dogs ∈ DomesticatedSpecies
• Categories are disjoint if they have no members in common: 

Disjoint({Animals,Vegetables})
• ExhaustiveDecomposition({Americans,Canadians,Mexicans}, NorthAmericans)
• Exhaustive decomposition of disjoint sets is partition: 

Partition({Animals,Plants,Fungi,Protista,Monera}, LivingThings)



Physical Composition

• Objects can be grouped into PartOf hierarchies, reminiscent of Subset 
hierarchy: PartOf(Bucharest,Romania); PartOf(EasternEurope,Europe)
• Transitive and reflexive

• Composite objects are often characterized by structural relations among 
parts: a biped is an object with exactly two legs attached to a body 

• Object is composed of parts in its PartPartition relation
• Define composite objects with definite parts but no particular structure; 

“the apples in this bag weigh two pounds” à need bunch as albeit object:
BunchOf({Apple1,Apple2,Apple3)}



Physical Composition

• BunchOf(Apples) is composite object consisting of all apples - not 
Apples, the category or set of all apples
• Define BunchOf in terms of PartOf relation: 

∀x: x ∈ s ⇒ PartOf(x,BunchOf(s))
• BunchOf is the smallest object satisfying this condition, it must be 

part of any object that has all the elements of s as parts:
∀y: [∀x: x ∈ s ⇒ PartOf(x,y)] ⇒ PartOf(BunchOf(s),y)

• Logical minimization



Measurements

• Values we assign for properties of objects: height, mass, cost, etc. 
• Universe includes abstract measure objects, such as length that can 

have different names in language, f.ex. 1.5 inches or 3.81 centimeters
• Units function represent measures and take number as argument: 

Length(L1) = Inches(1.5) = Centimeters(3.81)
• Conversion is done by multiplication: Centimeters(2.54 * d) = Inches(d)

• Used to describe objects: 
• Diameter(Basketball12) = Inches(9.5)
• Weight(BunchOf({Apple1,Apple2,Apple3})) = Pounds(2)



Measurements

• Measures that cannot be quantified can be compared if they can be 
ordered
• Norvig’s exercises are tougher than Russell’s:

• Monotonic relationships among measures form basis for field of 
qualitative physics
• Subfield of AI that investigates how to reason about physical systems without 

detailed equations and numerical simulations



Natural Kinds

• Some categories have strict definitions, but natural kind categories 
don’t
• Tomatoes have variations: some are yellow or orange, unripe ones are green, 

some smaller or larger than average, etc.
• Problem for a logical agent that cannot be sure that an object it has perceived 

is a tomato and which of the properties of typical tomatoes this one has à
inevitable consequence of partially observable environments 
• Useful approach: separate what is true of all instances of a category from 

what is true only of typical instances
• Typical(Tomatoes) maps category to subclass that contains only typical instances
• Most knowledge about natural kinds will be about their typical instances

x ∈ Typical(Tomatoes) ⇒ Red(x) ∧ Round(x)



Things and Stuff

• Real world consists of primitive objects and composite objects built from 
them
• Significant portion of reality that seems to defy any obvious individuation

(division into distinct objects): stuff
• Distinction between stuff and things (count nouns and mass nouns)
• Representation of stuff

• Recognize a lump of butter as the one left on the table and can pick it up, sell it, 
whatever à object Butter3

• Define category Butter: its elements will be all those things of which one might say 
it’s butter, also Butter3

• Any part of a butter-object is also a butter-object: b ∈ Butter ∧ PartOf(p,b) ⇒ p ∈
Butter



Things and Stuff

• Can define properties, f.ex. Butter melts at 30 degrees centigrade:                
b ∈ Butter ⇒ MeltingPoint(b,Centigrade(30))
• Intrinsic properties: belong to very substance of object, rather than object 

as a whole (density, flavor, color, etc.)
• Extrinsic properties: not retained under subdivision (weight, length, shape, 

etc.) 
• A category of objects that includes in its definition only intrinsic properties: 

substance, or mass noun
• A class that includes any extrinsic properties in its definition: count noun
• Stuff and thing are the most general substance and object categories, 

respectively 



Events/Actions

• Event calculus to consider continuous actions
• Objects of event calculus are events, fluents and time points
• Reify events to add any amount of arbitrary information about them

• Extend to represent simultaneous, exogengeous, continuous, and 
nondeterministic events



Time

• Time intervals: moments and extended intervals, only moments have 
0 duration
• Invent arbitrary time scale and associate points on scale with 

moments to get absolute times: measure in seconds, moment at 
midnight on January 1, 1900 has time 0
• Begin and End: pick out earliest and latest moments in an interval
• Time: delivers point on time scale for a moment
• Duration: gives difference between end and start time 
• Date: takes 6 arguments (hours, minutes, second, day, month, year) and 

returns time point



Time Interval Relations



Fluents and Objects

• Physical objects can be viewed as generalized events: chunk of 
space-time
• F.ex.: USA as an event that began in 1776 as a union of 13 states and is still in 

progress today as a union of 50
• Describe changing properties using state fluents, such as Population(USA)
• President(USA) denotes single object that consists of different people at different times: 

T(Equals(President(USA),GeorgeWashington),Begin(AD1790),End(AD1790)): George  
Washington was president throughout 1790



Mental Objects and Modal Logic

• Agents have beliefs and can deduce new beliefs, but don’t have any 
knowledge about beliefs or about deduction
• Knowledge about reasoning process is useful for controlling inference
• Model of mental objects that are in someone’s head (or something’s 

knowledge base) and of mental processes that manipulate those 
objects
• Agent can have propositional attitudes towards mental objects: 

Believes, Knows, Wants, and Informs
• Behave differently from “normal” predicates 



Mental Objects and Modal Logic

• Ex.: Lois knows that Superman can fly: Knows(Lois, CanFly(Superman))
• We normally think of CanFly(Superman) as a sentence, but here it appears 

as a term à reifying CanFly(Superman); making it a fluent
• Problem: If it is true that Superman is Clark, then we must conclude that 

Lois knows that Clark can fly, which is wrong because Lois does not know 
that Carl is Superman
(Superman = Clark) ∧ Knows(Lois, CanFly(Superman)) 
⊨ Knows(Lois, CanFly(Clark))
• Referential transparency: it doesn’t matter that term a logic uses to refer 

to an object, what matters is the object that the term names
• For propositional attitudes we would like to have referential opacity: terms 

used do matter, because not all agents know which terms are co-referential



Mental Objects and Modal Logic

• Modal Logic includes special modal operators that take sentences (rather
than terms) as arguments
• „A knows P“ = KAP, K is modal operator for knowledge, A an agent, P a 

sentence
• More complicated model of semantics: consists of collection of possible 

worlds rather than just one true world
• Worlds are connected in a graph by accessibility relations, one relation for

each modal operator
• World w1 is accessible from world w0 wrt. modal operator KA if everything

in w1 is consistent with what A knows in w0
• KAP is true in world w if and only if P is true in every world accessible from

w



Mental Objects and Modal Logic

• Truth of more complex sentences is derived by recursive application
of this rule and the normal rules of first-order logic
• Modal logic can be used to reason about nested knowledge
sentences: what one agent knows about another agent‘s knowledge
• Axioms:
• Agents can draw conclusions: (KaP ∧ Ka (P ⇒ Q)) ⇒ KaQ 

• KA(P ∨ ¬P) is a tautology
• (KAP) ∨ (KA ¬P) is not a tautology

• If you know something, it must be true: KaP ⇒ P
• Agents can introspect on their own knowledge: KaP ⇒ Ka(KaP)



Mental Objects and Modal Logic

• Similar axioms for belief and other modalities
• Problem: assumes logical omniscience on the part of agents
• If an agent knows a set of axioms, then it knows all consequences of those

axioms
• Other modal logics
• Add operators for possibility and necessity
• Linear temporal logic: next, finally, globally, until
• Deriving additional operators from these makes the logic more complex, but 

allows to state certain facts in more succinct form



Reasoning System for Categories

• Semantic networks: 
• Graphical aids for visualizing a knowledge base 
• Efficient algorithms for inferring properties of an object on the basis of its 

category membership
• Description logics: 
• Formal language for constructing and combining category definitions
• Efficient algorithms for deciding subset and superset relationships between 

categories 



Semantic Networks

• Represent individual objects, categories of objects, and relations 
among objects 
• Network with 4 objects (John, Mary, 1, 2) and 4 categories:



Semantic Networks

• Convenient to perform inheritance reasoning à simplicity and 
efficiency
• Multiple inheritance more complicated: object can belong to more 

than one category or a category can be a subset of more than one 
other category 
• Algorithm might find 2 or more conflicting values answering the query
• Banned in some object-oriented programming languages



Semantic Networks

• Drawback: only binary relations between bubbles
• Obtain effect on n-ary assertions by reifying proposition as an event 

belonging to an appropriate event category 



Semantic Networks

• Negation, disjunction, nested function symbols, and existential 
quantification are still missing
• Possible to extend notion to make it equivalent to first-oder logic, but 

this negates one of main advantages of semantic networks –
simplicity and transparency of inference
• When expressive power proves to be too limiting, many semantic

network systems provide for procedural attachment to fill in the gaps
• A query about a certain relation results in a call to a special procedure

designed for that relation rather than a general inference algorithm



Semantic Networks

• Ability to represent default values for categories
• F.ex.: John has 1 leg, despite the fact he is a person and all persons have 2 legs
• Contradiction in a strictly logical KB

• Default semantics is enforced naturally by the inheritance algorithm, 
follows links upwards from the object itself and stops as soon as it
finds a value
• Default is overridden by the more specific value



Description Logics

• Notations to easily describe definitions and properties of categories
• Principial inference task:
• Subsumption: checking if one category is a subset of another by comparing 

their definitions
• Classification: checking whether an object belongs to a category
• Consistency: checking whether the membership criteria are logically 

satisfiable 



Description Logics

• CLASSIC Language
• Syntax of descriptions in a subset:

• Algebra of operations on predicates
• Any description can be translated into an equivalent first-order sentence



Description Logics

• Emphasis on tractability of inference: problem instance is solved by
describing it and then asking if it is subsumed by one of several
possible solution categories
• Ensure that subsumption-testing can be solved in time polynomial in the size

of the descriptions
• Either hard problems cannot be stated at all, or they require

exponentially large descriptions
• Tractability results shed lights on what sorts of constructs cause problems

and helps user to understand how different representations behave



Reasoning with Default Information

• Reasoning processes can violate the monotonicity property of logic 
• Simple introspection suggests that these failures are widespread in 

commonsense reasoning
• Nonmonotonicity: if new evidence arrives, the default conclusion can be 

retracted
• Circumscription: more powerful and precise version of closed-world assumption

• Specify particular predicates that are assumed to be “as false as possible” – false for every 
object except those for which they are known to be true 
Bird(x) ∧ ¬Abnormal1(x) ⇒ Flies(x)

• Abnormal1 is to be circumscribed à circumscriptive reasoner assumes ¬Abnormal1(x) unless 
Abnormal1(x) is known to be true

• Example of model preference logic: sentence is entailed if it is true in all preferred models of 
the KB 

• Model is preferred if it has fewer abnormal objects 



Reasoning with Default Information

• Default logic: formalism in which default rules can be written to 
generate contingent, nonmonotic conclusions: Bird(x):Flies(x)/Flies(x)
• If Bird(x) is true, and if Flies(x) is consistent with knowledge base, then Flies(x) 

may be concluded by default
• Default rule: P : J1, …, Jn/C, where P is the prerequisite, C the conclusion and Ji

the justifications (if any of them can be proven false, the conclusion cannot be 
drawn) 
• Any variable that appears in Ji or C must also appear in P

• Extension of a default theory: maximal set of consequences of the theory
• Extension S consists of the original known facts and a set of conclusions from the default 

rules, such that no additional conclusions can be drawn from S, and the justifications of 
every default conclusion in S are consistent with S



Reasoning with Default Information

• Truth maintenance systems (TMS)
• Belief revision: inferred facts turn out to be wrong and will have to be

retracted in the face of new information
• Suppose KB contains a sentence P, perhaps a default conclusion recorded by

forward-chaining algorithm, and we want to execute TELL(KB, ¬P)
• To avoid creating a contradiction, first execute RETRACT(KB, P)
• Problems arise if any additional sentences were inferred from P and asserted in the KB

• P ⇒ Q might have been used to add Q
• Obvious solution: retract all sentences inferred from P à fails because such sentences may 

have other justifications besides P (if R and R ⇒ Q are also in KB, then Q does not have to be 
removed)

• TMS are designed to handle these kinds of complications



Reasoning with Default Information

• Approach: Keep track of the order in which sentences are told to KB by numbering them
from P1 to Pn
• When call RETRACT(KB, Pi) is made, the system reverts to the state just before Pi was added à

removing Pi and any inferences that were derived from Pi
• Sentences Pi+1 through Pn can then be added again
• Simple, guarantees KB will be consistent, but requires retracting and reasserting n-i sentences & 

undoing and redoing all inferences from these sentences à impractical
• More efficient: justification-based truth maintenance system (JTMS) 

• Each sentence in KB is annotated with justification consisting of set of sentences from which it
was inferred

• If KB already contains P ⇒ Q, then TELL(P) will cause Q to be added with the justification
{P, P ⇒ Q} 

• Justification makes retraction efficient
• Retract(P): JTMS will delete exactly those sentences for which P is a member of every justification
• When sentence loses all justifications, it is marked as being out of KB

• If subsequent assertion restores one of the justifications, it is marked as being back in
• Retains all inference chains



Reasoning with Default Information

• Assumption-based truth maintenance system (ATMS)
• Efficient context-switching between hypothetical worlds
• Represents all states that have ever been considered at the same time
• Keeps track, for each sentence, which assumptions would cause the sentence 

to be true à label that consists of a set of assumption sets, sentence is true 
only when all the assumptions in one of the assumption sets are true

• TMS provide mechanism for generating explanations: explanation of 
sentence P is a set of sentences E such that E entails P
• If sentences in E are already known to be true, then E simply provides a 

sufficient basis for proving that P must be the case
• Can also include assumptions: sentences that are not known to be true, but 

would suffice to prove P if they were true


