272SM: Introduction to Artificial Intelligence Homework Assignment 3: CSP's, Games, MDP's

Monday 27th November, 2023 - Tuesday 12th December, 2023

Instructions

Report your answers to the following exercises and submit them. Submitting homework solutions is highly recommended; Correct solutions will be counted as bonus points towards the final grade. You can team up with your colleagues into groups of max. 5 people.

CSPs

Exercise 1: Formulating a CSP

Suppose you have a state-space search problem defined by the usual stuff:

- a set of states s;
- an initial state s0;
- a set of actions A including the NoOp action that has no effect;
- a transition model Result(s, a);
- a set of goal states G.

Unfortunately, you have no search algorithms! All you have is a CSP solver. How could you reformulate this as a CSP? You may assume that you are given the maximum number of steps, T that any plan can have. Make sure that your formulation makes it easy to see what the plan is.

Exercise 2: Algorithmic map coloring - Performance analysis

Generate random instances of map-coloring problems as follows: scatter n points on the unit square; select a point X at random, connect X by a straight line to the nearest point Y such that X is not already connected to Y and the line crosses no other line; repeat the previous step until no more connections are possible. The points represent regions on the map and the lines connect neighbors. Now try to find k-colorings of each map, for both k=3 and k=4, using min-conflicts, backtracking, backtracking with forward checking, and backtracking with arc consistency. Construct a table of average run times for each algorithm for values of n up to the largest you can manage. Comment on your results.

Exercise 3: Critical ratio

Using a CSP solver program and another program to generate random problem instances of CSPs, report on the time to solve the problem as a function of the ratio of the number of constraints to the number of variables.

Games

Exercise 1: Minimax tree pruning

In a full-depth minimax search of a tree with depth D and branching factor B, with alpha-beta pruning, what is the minimum number of leaves that must be explored to compute the best move?

Exercise 2: Simulating tic-tac-toe

Describe

- state descriptions
- move generators
- terminal tests
- utility functions
- evaluation functions

for tic-tac-toe game. Look at the implementation available at https://github.com/aimacode/aima-python/blob/master/games4e.ipynb. Illustrate the average score of games between a player who is using alpha-beta pruning, a player using minmax search, and a random player.

Multi-agent Decision Making

Exercise 1: Gridworld navigation

For the 4x3 world shown in Figure 1, calculate which squares can be reached from (1,1) by the action sequence [Right, Right, Right, Up, Up] and with what probabilities.

 $\mathit{Hint:}$ compute the occupancy probabilities at each step by filling in Table .

		τŦ	
•	١	Ξ	
٢		4	

Figure 1: Gridworld

		Right	Right	Right	Up	Up
(1, 1)	1	.1	.02			
(1, 2)		.1	.09			
(1, 3)						
(2, 1)		.8				
(2, 3)						
(3, 1)						
(3, 2)						
(3, 3)						
(4, 1)						
(4, 2)						
(4, 3)						

tableAn example table

Exercise 2: Threshold Policy Optimization

For the environment shown in Figure 1, find all the threshold values for R(s) such that the optimal policy changes when the threshold is crossed. You will need a way to calculate the *optimal policy* and its value for fixed R(s).

Hint: Prove that the value of any fixed policy varies linearly with R(s).