
Projet 1 : PacMan

March 15, 2023

In this project, your Pacman agent will find paths through his maze world,
both to reach a particular location and to collect food efficiently. You will build
general search algorithms and apply them to Pacman scenarios.

The code for this project consists of several Python files, some of which you
will need to read and understand in order to complete the assignment, and some
of which you can ignore. You can download all the code and supporting files on
moodle.

Files you’ll edit:

• search.py : Where all of your search algorithms will reside.

• searchAgents.py: Where all of your search-based agents will reside.

Note that pacman.py supports a number of options that can each be ex-
pressed in a long way (e.g., –layout) or a short way (e.g., -l). You can see the
list of all options and their default values via:

> python3 pacman.py -h
You can also find all the commands you need to test your code while solving

the different questions in the file commands.txt.
Make sure to work on the different questions in the given order, because

some of them build up on previous ones. Furthermore, you will notice that it is
crutial to focus on the depth first search implementation, as the following three
questions will be resolved in a similar manner, so it’s normal to take more time
for the first one.

Note that the course staff is always available for any questions you might
have. Don’t stay stuck for too long : If you cannot resolve a question, ask
questions for more specific guidance!

Question 1 (3 pts) : Finding a Fixed Food Dot using Depth
First Search
In searchAgents.py, you’ll find a fully implemented SearchAgent, which plans
out a path through Pacman’s world and then executes that path step-by-step.
The search algorithms for formulating a plan are not implemented – that’s your
job.

To test your search agent, you can start by this simple command :

1

Nicolás

Nicolás
November 1st, 2023



> python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch
The option tinymaze picks the maze that the agent will search through, and

fn=tinyMazeSearch will tell the code which search algorithm (implemented in
search.py) to use to naviguate the maze.

Remember that a search node must contain not only a state but also the
information necessary to reconstruct the path (plan) which gets to that state.

All of your search functions need to return a list of actions that will lead the
agent from the start to the goal. These actions all have to be legal moves (valid
directions, no moving through walls).

Make sure to use the Stack, Queue and PriorityQueue data structures pro-
vided to you in util.py! These data structure implementations have particular
properties which are required for compatibility with the autograder.

Implement the depth-first search (DFS) algorithm in the depthFirstSearch
function in search.py. To make your algorithm complete, write the graph search
version of DFS, which avoids expanding any already visited states.

Your code should quickly find a solution for:

• python pacman.py -l tinyMaze -p SearchAgent

• python pacman.py -l mediumMaze -p SearchAgent

• python pacman.py -l bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the
order in which they were explored (brighter red means earlier exploration). Is
the exploration order what you would have expected? Does Pacman actually
go to all the explored squares on his way to the goal?

Question 2 (3 pts) : Breadth First Search
Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch
function in search.py. Again, write a graph search algorithm that avoids ex-
panding any already visited states. Test your code the same way you did for
depth-first search.

• python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs

• python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5

Does BFS find a least cost solution? If not, check your implementation.
Note: If you’ve written your search code generically, your code should work

equally well for the eight-puzzle search problem without any changes. Try:
> python eightpuzzle.py

2



Question 3 (3 pts) : Varying the Cost Function
While BFS will find a fewest-actions path to the goal, we might want to find
paths that are “best” in other senses. Consider mediumDottedMaze and medi-
umScaryMaze.

By changing the cost function, we can encourage Pacman to find different
paths. For example, we can charge more for dangerous steps in ghost-ridden
areas or less for steps in food-rich areas, and a rational Pacman agent should
adjust its behavior in response.

Implement the uniform-cost graph search algorithm in the uniformCost-
Search function in search.py. We encourage you to look through util.py for
some data structures that may be useful in your implementation.

You should now observe successful behavior in all three of the following
layouts, where the agents below are all UCS agents that differ only in the cost
function they use (the agents and cost functions are written for you):

• python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs

• python pacman.py -l mediumDottedMaze -p StayEastSearchAgent

• python pacman.py -l mediumScaryMaze -p StayWestSearchAgent

Question 4 (3 pts) : A* search
Implement A* graph search in the empty function aStarSearch in search.py. A*
takes a heuristic function as an argument. Heuristics take two arguments: a
state in the search problem (the main argument), and the problem itself (for
reference information). The nullHeuristic heuristic function in search.py is a
trivial example.

You can test your A* implementation on the original problem of finding a
path through a maze to a fixed position using the Manhattan distance heuristic
(implemented already as manhattanHeuristic in searchAgents.py) by executing:

>python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar, heuris-
tic=manhattanHeuristic

You should see that A* finds the optimal solution slightly faster than uniform
cost search. What happens on openMaze for the various search strategies?

Question 5 (3 pts) : Finding All the Corners
The real power of A* will only be apparent with a more challenging search
problem. Now, it’s time to formulate a new problem and design a heuristic for
it.

In corner mazes, there are four dots, one in each corner. Our new search
problem is to find the shortest path through the maze that touches all four
corners (whether the maze actually has food there or not). Note that for some
mazes like tinyCorners, the shortest path does not always go to the closest food
first!

3



Implement the CornersProblem search problem in searchAgents.py. You will
need to choose a state representation that encodes all the information necessary
to detect whether all four corners have been reached.

Now, your search agent should solve:

• python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs, prob=CornersProblem

• python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs, prob=CornersProblem

To receive full credit, you need to define an abstract state representation
that does not encode irrelevant information (like the position of ghosts, where
extra food is, etc.). In particular, do not use a Pacman GameState as a search
state. Your code will be very, very slow if you do (and also wrong).

An instance of the CornersProblem class represents an entire search problem,
not a particular state. Particular states are returned by the functions you write,
and your functions return a data structure of your choosing (e.g. tuple, set, etc.)
that represents a state.

Furthermore, while a program is running, remember that many states si-
multaneously exist, all on the queue of the search algorithm, and they should
be independent of each other. In other words, you should not have only one
state for the entire CornersProblem object; your class should be able to generate
many different states to provide to the search algorithm.

Question 6 (3 pts) : Corners Problem: Heuristic
Implement a non-trivial, consistent heuristic for the CornersProblem in corner-
sHeuristic.

> python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5
Note: AStarCornersAgent is a shortcut for :
> -p SearchAgent -a fn=aStarSearch, prob=CornersProblem, heuristic=cornersHeuristic

Copy
Admissibility vs. Consistency: Remember, heuristics are just functions that

take search states and return numbers that estimate the cost to a nearest goal.
More effective heuristics will return values closer to the actual goal costs. To
be admissible, the heuristic values must be lower bounds on the actual shortest
path cost to the nearest goal (and non-negative). To be consistent, it must
additionally hold that if an action has cost c, then taking that action can only
cause a drop in heuristic of at most c.

Remember that admissibility isn’t enough to guarantee correctness in graph
search – you need the stronger condition of consistency. However, admissible
heuristics are usually also consistent, especially if they are derived from prob-
lem relaxations. Therefore it is usually easiest to start out by brainstorming
admissible heuristics. Once you have an admissible heuristic that works well,
you can check whether it is indeed consistent, too. The only way to guarantee
consistency is with a proof. However, inconsistency can often be detected by
verifying that for each node you expand, its successor nodes are equal or higher

4



in in f-value. Moreover, if UCS and A* ever return paths of different lengths,
your heuristic is inconsistent. This stuff is tricky!

Non-Trivial Heuristics: The trivial heuristics are the ones that return zero
everywhere (UCS) and the heuristic which computes the true completion cost.
The former won’t save you any time, while the latter will timeout the auto-
grader. You want a heuristic which reduces total compute time, though for this
assignment the autograder will only check node counts (aside from enforcing a
reasonable time limit).

Grading: Your heuristic must be a non-trivial non-negative consistent heuris-
tic to receive any points. Make sure that your heuristic returns 0 at every goal
state and never returns a negative value.

Remember: If your heuristic is inconsistent, you will receive no credit, so be
careful!

Question 7 (3 pts) : Eating All The Dots
Now we’ll solve a hard search problem: eating all the Pacman food in as few
steps as possible. For this, we’ll need a new search problem definition which
formalizes the food-clearing problem: FoodSearchProblem in searchAgents.py
(implemented for you). A solution is defined to be a path that collects all
of the food in the Pacman world. For the present project, solutions do not
take into account any ghosts or power pellets; solutions only depend on the
placement of walls, regular food and Pacman. (Of course ghosts can ruin the
execution of a solution! We’ll get to that in the next project.) If you have written
your general search methods correctly, A* with a null heuristic (equivalent to
uniform-cost search) should quickly find an optimal solution to testSearch with
no code change on your part (total cost of 7).

> python pacman.py -l testSearch -p AStarFoodSearchAgent
Note: AStarFoodSearchAgent is a shortcut for :
> -p SearchAgent -a fn=astar, prob=FoodSearchProblem, heuristic=foodHeuristic
You should find that UCS starts to slow down even for the seemingly simple

tinySearch.
Fill in foodHeuristic in searchAgents.py with a consistent heuristic for the

FoodSearchProblem. Try your agent on the trickySearch board:
> python pacman.py -l trickySearch -p AStarFoodSearchAgent
Any non-trivial non-negative consistent heuristic will receive 1 point. Make

sure that your heuristic returns 0 at every goal state and never returns a negative
value.

Question 8 (3 pts) : Suboptimal Search
Sometimes, even with A* and a good heuristic, finding the optimal path through
all the dots is hard. In these cases, we’d still like to find a reasonably good path,
quickly. In this section, you’ll write an agent that always greedily eats the closest
dot. ClosestDotSearchAgent is implemented for you in searchAgents.py, but it’s
missing a key function that finds a path to the closest dot.

5



Implement the function findPathToClosestDot in searchAgents.py.
Test it with :
> python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5
Your ClosestDotSearchAgent won’t always find the shortest possible path

through the maze. Make sure you understand why and try to come up with
a small example where repeatedly going to the closest dot does not result in
finding the shortest path for eating all the dots.

1 Submission
In order to submit your project upload the Python files you edited.

6


