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Modelling other random processes

® Fractals & Diffusion Limited Aggregates



Diffusion Limited Aggregation

Several examples of formation of natural patterns showing common features:

Electrodeposition:

cluster grown from a copper sulfate solution in an
electrodeposition cell

Dielectric breakdown:

High voltage dielectric breakdown within a block of
plexiglas

These common features that can be captured by very simple models:
4



D|foS|on Limited Aggregation

simple model of FRACTALS GROWTH, initially proposed for
irreversible colloidal aggregation, although it was quickly realized that the
model is very widely applicable.

® by LA Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

REAL IMAGE (Atomic Field
Microscopy) of a gold colloid
of about |5 nm over a gel
substrate

e §, SIMULATION




DLA: algorithm

* Start with an immobile seed on

the plane a walker
S

* A walker is then launched from a ™~
random position far away and is <
allowed to diffuse 0

seed
* If it touches the seed, it is
immobilized instantly and becomes
part of the aggregate R

¥ ¥

*We then launch similar walkers . é;’“’:i;, ¥, ‘
one-by-one and each of them & : ¢ %) 4 ,{ i
stops upon hitting the cluster e g i

B erie IS
* After launching a few hundred f ’“ kS ;
particles, a cluster with intricate A

branch structures results



DLA: algorithm - details

® We launch walkers from a “launching circle” which
inscribes the cluster

® They are discarded if they wander too far and go
beyond a “killing circle”

® The diffusion is simulated by successive displacements in
independent random directions

® At every step, the walker which would aggregate is
checked to detect any overlapping with the particles on
the cluster
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DLA: interesting quantities

® ina‘“normal” 2D object: /N 72

e FRACTAL DIMENSION: the number of
particles /V with respect to the maximum
distance r of a particle of the cluster from
its center of mass is N o< 72/, with

1<Df<2

&
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DLA: algorithm - details Il

® the simplest DLA models: diffusion on a

lattice. On a square lattice, 4 adjacent

sites are available for the diffusing particle to
stick

® modification: the particle will stick with
certain probability (the “sticking coefficient”)
- to simulate somehow the surface tension

® another modification: with a sort of
Brownian diffusion in the continuum



DLA: results

Sticking Coefficien

1<Df=16<2




DLA: results

Sticking Coefficient £ = 0.5

Sticking Coefficient £ = 0.1

Sticking Coefficient £ = 0.01

Sticking Coefficient £ = 0.001

D — 2

as the sticking coeff. — 0
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Models of
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see e.g. Barabasi & Stanley, Fractal concepts in surface growth, Cambridge University Press
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Models of surface growth

The Eden model - algorithm:

(a) choose randomly a lattice site and occupy it. The nearest neighbor sites of the occupied site (i.e. 4
sites in case of a square lattice) are the perimetral sites.

(b) choose randomly a perimetral site and occupy it. When occupied, it is no longer a perimetral site:
update the list of perimetral sites with the new ones. Repeat from (1).

Interesting quantities:

B
Average height: h = N z_: h;

N,
(h; — h
1=1

1
Rough : w? = —
oughness N



Modelling other random processes

® Percolation



Percolation

geometric connectivity in a stochastic system;
modeling threshold and transition phenomena

C

-

 CURRENT

: I
G 0.5 i
’ FRACTION OF UNCUT BONDS {p)

existence of a critical occupation fraction Pc above which spanning
clusters occur (in nature: mixtures of conducting/insulating spheres...;
resistor networks..) 6



Percolation

- metal/insulator threshold behavior in resistor networks
(discrete percolation) and in alloys (continuous percolation)

Other examples:

- fluid adsorption in a porous medium
- spreading of a disease in a population
- spreading of a forest fire...

- liquid/glass transition...

site percolation

uone|odaad puoq

By Rudolf A. Romer



B Percolation
Definitions:

p: occupation probability of each identity (site, bond)
Cluster: group of identities (sites, bonds,...) connected by
nearest neighboring bonds

Percolating clusters: connecting two boundaries

which is the critical percolation threshold p.?

Example of site percolation on a lattice:

L=8 p=0.25 L=8 p=0.50 L=8 p=0.60
18



Percolation threshold

Pc depends on the criteria (different possibilities):

Connection along one Connection along one Connection
fixed direction (any, horizontal or vertical) in all directions
direction
. Percolazione . Percolazione . Percolazione . Percolazione in
verticale verticale orizzontale entrambe le direzioni




Percolation threshold

Pc depends on the criteria (different possible):

1.0

2

So.8

[

o

(] 4

9_0.6 50%

=2

€0.4

5°
Pc(1): S0 P(2):
fraction of & ! P.(2) fraction of
occupied sites L-0.0 , ; : -+ occupied sites
when the first percolating 0.40 045 050 0.55 0.60 0.65 when 50% of the clusters
cluster is established Frazione di siti occupati are percolating

PM)=P(2) for Lo
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Monte Carlo approach

fix L => Lattice ﬁ
description .ﬁ do =1L

. r(i,j))=random(seed)
fix p => Site (or bond) if 1(ij) < p then index (i) = -1

filling accordingly .q difdr(i,j) > p then index (i,j) = 0
cn o

|dentification and

use some algorithm
characterization of the # of cluster labelling to identify
clusters the different clusters

/

generation of many
configurations for each p

S

data analysis;
account for size effect (vary L)!

21



Results

for different percolation criteria and different size

Connection along one Connection along one .
. . . . ) Connection
fixed direction (any, horizontal or vertical) . . .
: . in all directions
direction
. Percolazione . Percolazione . Percolazione . Percolazione in
verticale verticale orizzontale entrambe le direzioni
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Results

for different percolation criteria and different size

1.0T
0.8 T

—&— oriz. o vert.
0.6 + —HE— verticale

| —% oriz. e vert. L=190

L=70

L=30

R

1 1
0.45 0.5 0.55 0.60 0.65

Frazione di siti occupati
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Results

for different percolation criteria and different size
Eoss | o
g | T ftfineare extrapolate the behavior for
s _ L— o
%0.54 - PC(-I) .
Hom b /L0

1/L '

'¢_§0.58 PC(Z) i I)Coo(l) — })Coo(z) — 059 i 005
2 0.56 —@— dati 1
3 — fit lineare

1/L
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Results

other interesting quantities

=55 | probability Prob(p) for a site to be included
| in a percolating cluster

o
o

o
o

Frazione siti percolanti
o
N

0.2
5__
0.0 -yem e 1
0.45 0.50 0.55 0.60 0.65 0.70 % 4T
Frazione di siti occupati 2
. . .5
average size S.lze(p) of a : et
non-percolating cluster g

040 045 050 0.55 0.60 0.65
Frazione di siti occupati

0.20 T

o
.
wv

o
o
o]

Raggio di girazione
o
)

Radius(p)

of gyration Radius(p) = JZN(? T’

0.40 0.45 0.50 0.55 0.60 0.65

Frazione di siti occupati 25



Cluster labelling

L=8 p=025

%

L=8 p=0.50 L=8 p=0.60

The (non trivial) part of the model:
choose a smart algorithm to identify and label the clusters
made of adjacent occupied sites

26



Cluster labelling

> 5 6
s
4
3| 7? 3|2 2 | 2
1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2
(1): span all the cells
(here: left => right (2): attribute the minimum cluster label (3): refine labeling
and bottom => up) to cells neighboring to different clusters

and start labeling

Hoshen- Kopelman algorithm for clusters labelling

27



Example of application
in solid state physics

Dynamical Percolation Model of Conductance Fluctuations in Hydrogenated Amorphous Silicon

L.M. Lust e J. Kakalios, Phys. Rev. Lett. 75, 11 (1995)

v e Fluttuazioni di conduttivita nel silicio amorfo idrogenato (a-Si:H) sono simulate utilizzando

; un modello dinamico di diffusione di resistenze in un reticolo in condizioni di soglia di
N . . percolazione. Una frazione di siti di reticolo ¢ designata come una trappola tale per cui quando
' un resistore diffonde in una di esse, rimane localizzato per un periodo finito di tempo.

qa €

X T 7 Film di silicio

‘; . - ‘ CI I)
- . ; ' ‘

Fluttuazioni di tipo “telegrafico”

A model of a-Si:H from
https://doi.ore/10.1016/j.commatsci.2018.08.027

A . -

0.1 0.11 0.13 0.14 0.16 0.17
Time (sec.)
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0.13 0.14
Time (sec.)

0.16

0.17

Rete casuale di resistenze
con P ~ P¢ (fisso)

Configurazione dopo
un riarrangiamento
casuale dei legami
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Risultato simulato
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Percolation on different lattices

:

NN/
"<
><

<
><
[ P<
><

vV V V V
TRIANGULAR SQUARE KAGOMFE’ HONEYCOMB
zZ=6 ’ =4 z=4 =3
pEONb -(0.3473 p:°”° =0.5000 pz""‘” =0.45 pz°”°= 0.6527
P E=0,5000 P t=0,503 Bt (0.6527 pE=0.70

c c c "
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Modelling other random processes

® Monte Carlo approach for classical fluids

31



Classical fluids

- Interactions

- Measurable and interesting physical quantities
- Metropolis Monte Carlo approach (mainly)

- Molecular dynamics

(here: several slides; but today only few basic concepts will be discussed)

32



Interactions

33



A very simple interaction

The lattice gas model :

u(r)}

no double site occupancy
(=no overlap)

but in general: ...

34



Interactions

assume that the force between any pair of r%aole:-[cule)s depends only on the distance
or atoms

(u(rij) depends only on the magnitude of the distance r;; between particles ¢ and j)

the total potential energy U is a sum of two-particle interactions:

U=u(ri) +u(riz) +- - +u(rss) + Y S‘ u(ri;)

1=1 jg=1+1

REMARK:
this 1s an effective interaction, a simple phenomenological form for u(7)
(it 1s an approximation, since in general, 3-, 4- ... many-body terms are present)

35
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A typical 2-body effective potential

general form
u
repulgion
5 el ;-
‘ attraction
minimuim

a strong repulsion for small r and a weak attraction at large r

'4 N\

consequence of the Pauli exclusion principle mutual polarization of each molecule

core repulsion 3 van der Waals




Phase diagram

supercritical fluid
fusion
curve >
solid critical
point
vapor pressure
S curve
su(lz)&lrr?:tlon triple
\ point gas

T

A sketch of the phase diagram for a simple material.

A first goal in the study of fluids:

to gain insight into qualitative differences

between different phases

38



Measurable and
interesting
physical quantities




Measurable and
Interesting quantities

® pair correlation function g(r)
® cnergy E

® pressure P



Measurable and
Interesting quantities

concepts and qualitative features
® Palr correlatlon functlon g(f){ mathematical formulation and
n

expressions useful for computatio

® cnergy E

® pressure P

41



Radial distribution function

Definition N

g(r) .l

g( Vv ) dr (dr = infinitesimal volume of the shell)

N
is a conditional probability (dimensionless)
of finding a particle in the shell r = r + dr
\given one at the origin
J

Consider one reference particle at the origin and count the others; then, average
over the reference particles

(Here: spherically symmetric interactions assumed; g depends only on r=Irl)
4



Radial distribution function

Normalization
N particles, volume V': density p = N/V

The mean number of particles in the
shell with radius between r and r+dr 1s:

pg(r)dr

(Reminder: spherically symmetric interactions
assumed; g depends only on r=lrl )

volume element dr = 47r?dr (d = 3), 2nrdr (d = 2), or 2dr (d = 1)

0 0]

normalization condition P / g (7“) dr = N —1~ N

0 43



Radial distribution function

Physical meaning ]

E:E:E:E:E:h- b
L @
R,

Nt

...........

Gives insight into the structure of a many-body system.
General behavior at short and long distances:
repulsive interactions on short-range scale: g(r — 0) — 0

in general: g(r) — 1 for r — oo

44



Radial distribution function

Typical features:

gas: almost structureless
(ideal gas: no interactions or correlations, g(r) = 1 for r large enough)

liquid: some structure with broad peaks
solid: evidence of well separated coordination shells,
zero in between; broadening of the peaks depending on T

5 5
gaseous Ar
4r (90 K) ar
solid argon

= 3t Ii?gucibd}(?r gaseous Ar . 3t
— ¢ K =
> | (300 K) > ol

1l 1l liquid argon

Yooz 0z o8 o8 % 02 04 06 08

distance/nm distance/nm

(credit to: Thomas/Penfold Group, http://rkt.chem.ox.ac.uk/ )
45



another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

o] —IL|

T ] T T I I I T T T I T T T

12 13

Graphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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https://pubs.rsc.org/en/results?searchtext=Author%3AEric%20Ganz
https://pubs.rsc.org/image/article/2017/cp/c6cp06940a/c6cp06940a-f1_hi-res.gif

another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

T ] T T I I I T T T I T T T

A 12 13

Graphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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https://pubs.rsc.org/en/results?searchtext=Author%3AEric%20Ganz
https://pubs.rsc.org/image/article/2017/cp/c6cp06940a/c6cp06940a-f1_hi-res.gif

another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

o] —IL|

T ] T T I I I T T T I T T T

12 13

Giaphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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https://pubs.rsc.org/en/results?searchtext=Author%3AEric%20Ganz
https://pubs.rsc.org/image/article/2017/cp/c6cp06940a/c6cp06940a-f1_hi-res.gif

another example (2D):

Temperature
— 6000 K
5000 K
5+ 4500K ——>
30 4000 K
5 — 0K

Pair correlation function

o] —IL|

T ] T ] I I I T T T I T T T

10 11 12 13

Grgphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756
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https://pubs.rsc.org/en/results?searchtext=Author%3AEric%20Ganz
https://pubs.rsc.org/image/article/2017/cp/c6cp06940a/c6cp06940a-f1_hi-res.gif

Radial distribution function

Relevance of g(r) for other physical quantities

pg(r): local density about a given particle

g(r) gives structural information, but
it 1s relevant to calculate also other ensemble averages of quantities
depending on pair interactions, €.g., energy:

potential energy between this particle and others
in a volume dr around r: u(r)pg(r)dr

¥ =5 [ar)urdr

average potential energy per particle:

50



Pressure

From the virialeer:4 and equipartition theoremes:

PV 1
NaT L anaT 2"

1<J

(average over particles pairs and time)
Note the additional term due to interactions with respect
to the eq. of state of the ideal gas

If only two-body forces are present, the virial eq. of state can
be rewritten using the radial distribution function:

pP _ . Bp v (r)
p—IZi/g(r)r = dr

dimensionality



Virial theorem

If <Ewin> is the time average of the total kinetic energy and Fiis the force
acting on the particle k at the position Fi, the virial theorem states:

2(Ekin) = — Z<Fk - Tk)
k=1

If the force between any two particles of the system results from a
potential energy V(r) = ar” where r is the inter-particle distance,
the virial theorem is simply:

2<Ek/m,> — n<‘/;50t>

(average
also over time)

52


http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Mean_inter-particle_distance

Hard disks

A particular form of interacting potential
(similar to the simplest lattice gas model with no double site occupancy,
but here in a continuum)

o u(r) 4

I ————

+00, r<o

u(r) =
(r) 0, r> o

No minimum; check overlap!
No attractive part => no transition from gas to liquid

53



Hard disks

O: diameter of the disks

Solid phase: close-packed
structure (hex lattice);
position of the peaks:

NN shell: 2NN shell: 3NN shell:
V30 20

. . number of particl N
particle (or number) density : p = - Partiees _

area A

max particle (o ber) densit .
X | r number) density : Py = ——
V302

reduced density :  p* = po®  (non-dimensional quantity)

2
max reduced density : p;. ... = — = 1.1547

max packing fraction: ¢ areaﬁpied n 0.907 f="p
are€lauvailable 2\/§
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Radial distribution function

Radial Distribution Function

of hard disks in 2D ; at different reduced densities
d — o8] <= liquid
F .04
61— —— 066
i 068 __ .
5 072 <= transition ?
o [ 0.74
S ‘B <= solid
3 =
2 = _ T
N . J=5r
ol T S |
1 3 4 5
r/O

the appearance of a double structure in the peak around 20
is a fingerprint of the liquid-solid transition
(high density solid: peaks at ~1.7 0 and 2 0)

2
max reduced density: p;. ... = 7 = 1.1547
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PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Structural precursor to freezing in the hard-disk and hard-sphere systems

Thomas M. Tru_skett,l Salvatore Torquat0,2’3’* Srikanth Sastry,l Pablo G. Debenedetti,! and Frank H. Stillinger“‘2

6.0 -

2.0 +

0.0

0.5

FIG. 1. Radial distribution function g(r) for hard disks plotted
versus distance r (in units of diameters). Curves represent the fluid
phase with 7=0.65, 0.67, 0.68, and 0.69 (freezing point).

(here :n = p*)
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Pressure

case of Hard Disks (Spheres):

Virial eq. of state

pF =1 - @/g(’r)frdv(r) dr

0 2d dr
becomes:
GP 2
dr = 47ridr 7 =1+ §7TPU39(U)
P 1
dr = 27r dr % =1+ §7Tp029(0)
6P

dr = 2 dr 7:1—|—pag(0)
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Lennard-Jones potential

utr) =4e| (5= (%)

repul*sion

|

"\l_—" attraction

minimum




Lennard-Jones potential

u(r) = 4e

(2)

A

12

€

liquid argon: € = 1.65 x 10721 ]

59

o .6
T

u(r) =0atr =o

o\l/
3
———————-— g

. depth of u(r) at the minimum

r

o=34A



Units

To reduce the possibility of roundoff error, it is useful to choose units so that the computed
quantities are neither too small nor too large.

quantity unit value for argon

— | length o 3.4x 107" m

—_—) | tnergy € 1.65 x 10721 J
mass m 6.69 x 1070 kg
time o(m/e)/? 217 x 10725
velocity (e/m)/?  1.57 x 10>m/s
force €/o 4.85 x 10712 N
pressure €/o? 1.43 x 1072N-m™!
temperature €/k 120K

Table 8.1: The system of units used in the molecular dynamics simulations of particles interacting
via the Lennard-Jones potential. The numerical values of o, €, and m are for argon. The quantity
k is Boltzmann’s constant and has the value k = 1.38 x 10723 J/K. The unit of pressure is for a
two-dimensional system.

Unit of time is derived: e.g., for Ar: At = 0.01 = 2.17 x 10~ %5
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Generalities in
many-body simulations

® periodic boundary conditions

® minimum image



Periodic Boundary Conditions

for the positions

(here: in the continuum;
before: only in discretized conditions - Ising and lattice models)

function pbc(pos,L) result (f_pbc)

if (pos < 0.0) then

f pbc=pos +L (OK
else if (pos > L) then in the hypothesis that
f pbc =pos-L -L < pos <2L)
else
f pbc = pos
end if

end function pbc
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.. Minimum Image convention

for the interactions

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2)

0 ® ®
o ® 0

o @1 o
0 0

0 o ®
0 0 o

63

Only the interactions with the nearest images are considered




Minimum Image convention

for the interactions

L
ds L-ds
€ernernnrnsrns s saneens S >
2@ 0220 (2)-

64



Minimum Image convention

for the interactions

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2)

function separation(ds,L) result (separation_result)

if (ds > 0.5*L) then
separation_result =ds - L

else if (ds < -0.5*L) then (OK if distances do not
separation_result = ds + L exceed L)

else
separation_result = ds

end if (then, consider the

end function separation absolute value)
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Radial distribution function

subroutine correl()

do i=I,N-|

dolmhN implementation of
x = x() - x(i) , ,
dy = y(i) - ¥()) the counting algorithm

call separation(dx,dy)

r2 = dx*dx + dy*dy

ibin = int(sqrt(r2)/dr)+1

if (ibin<=nbin) then
gcum(ibin) = gcum(ibin) + |

end if 8(r) = 27rrA'r nIN Z Zd = Iri]))

end do im1 j>i
end do /
xnorm = 2./(rho*nmcs*N) ! rho :average density = N/V
r  =irdr + 0.5%dr ! r in the middle of the circular shell
area = 2.0%pi*r*dr ! area of the shell

g = gcum(ir)*xnorm/area
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Two approaches to simulate
the evolution of the system

(to sample the configuration space)

® stochastic (Metropolis Monte Carlo)

® deterministic (integration of the eq. of motion)



Programs:

on moodle?2

hd-MC.f90
hd-MD.f90
LJ-MD.f90

68



Classical fluids:

Metropolis Monte Carlo method
canonical ensemble (NVT)

- calculate E:ot

i> - displace an individual particle by a small amount: calculate AE
(variation of the interaction of that particle with all the others)

- accept/reject the new position with the usual Metropolis factor:
w = min [|, exp (-AE/kT)]

<« - iterate

- accumulate distances to calculate g(r)

69



Metropolis Monte Carlo method
for Hard Disks (Spheres)

displace an individual particle by a small amount:
if overlap with another particle: REJECTED
if no overlap with any other particle: ACCEPTED

-Metropolis algorithm with AE=0 or oo

-ergodicity: obvious at low densities;
complicated at high densities

70



Maximum package

® ® e e S |

® ® [ Q\\ ® ® ®
--@ o

® ®
e ®

hexagonal lattice

take the linear dimensions of the cell to be L, and L, = V3L,/2  (here: N=16)
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Initializing the positions

Convenient to start from maximum packing

: |) choose
and then reduce the density: 2; Determipl)we the new Lxand L, by scaling:
|) choose Nx (even or odd); Lymin=N, Lx=KLxmin and Ly=KL,min, where k2= pmax/p
2) choose Ny even (and not too different 3) Rescale individual positions
from Ny in order to have a cell not too @
elongated) (here = 4); L,min=N,*(v/3)/2

3) This gives the maximum packing and the
maximum density pmax

4) Calculate the individual positions:
x(i)=integer/semi-integer for even/odd rows; ‘ ‘ ‘ ‘
y(i)=multiple of (V3)/2

o & 0o ¢
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some useful gnuplot commands:

set size ratio {Ly/Lx}
unset key  (to avoid the label)

p [0:Lx][0:Ly] 'file_of_positions' u 1:2:(0.5) w circles

(the radius could be given in the 3rd column; here it is set
to 0.5)
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Molecular dynamics

a deterministic approach to the dynamics of a system

MD generates the dynamical trajectories of a
system of N particles by integrating Newton's
equations of motion

- with suitable initial and boundary conditions

- proper interatomic potentials
- while satisfying thermodynamical (macroscopic) constraints

- and with a ‘smart’ algorithm for numerical integration
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Molecular dynamics

and Newton’s equations of motion

F=ma
But not always easy to solve... In general:
d’x F(x,t,...)
— =ax,t,...) =
dt? m

Analytical solution for constant forces;
but in general not always possible

=> different possible algorithms for
numerical integration
of the eqs. of motion
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Basic idea: discretization - e.g. consider uniformly acc. motion

r(t+ At) = x(t) +v(t) - At + %a(t) - At

x(0) v(0) F(O)  x(1) v(1) F(1)  x(2) v(2) F(2)
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Uniformly accelerated motion in each time interval
t+~t+ At

then iterate!

iterate

r(t) = z(t + At) = z(t + 2At) = x(t + 3Al) = ...
v(t) = v(t + At) = v(t + 2At) = v(t + 3At) = ...

EULER algorithm

—

v(t

S

At)
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r(t+ At) = z(t) + v(t) At + %a(t)At2

v(t) + a(t)At




DO BETTER: instead of choosing the value of the acceleration
at the beginning of each time interval, take its average value in

the interval ¢ — { + /\{ for the update of the velocity

Velocity-VERLET algorithm

P

r(t + At) = 2(t) + v(t) At + %a(t)AtQ
v(t + At) = v(t) + %(a(t) + a(t + At)) At
5 ¥

iterate

Remark: the new acceleration can be calculated as soon as the new
position is calculated, so that the algorithm is explicit!
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Choice of an integration algorithm

Accuracy - does it give an accurate description of the motion!?

Stability - does it conserve the system energy and temperature (in case of
conservative forces)? (*)

Simplicity - is it easy to implement it in a computer code!?

Speed - does it require only few or a lot of operations!?

Economy - how much memory does it require?

\/
Velocity- Verlet algorithm

a second-order algorithm allows a good energy conservation
if forces are NOT dependent on velocities (*)
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Thermodynamical ensemble

IF POTENTIAL ENERGY does not depend on velocities

(conservative potentials), the TOTAL ENERGY of the system
should be conserved!

Therefore, since Verlet's integration of the Newton's equations will:

Conserve total energy (E=const.)

Keep number of particles constant (N=const.)
Keep volume constant (V=const.)

Thus: Yields an NVE ensemble (“microcanonical ensemble”)
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Energy
in MD - NVE simulations

the TOTAL ENERGY of the system should be conserved!

TO BE CHECKED during simulations
(it may not be conserved because

of a bad integration algorithm)

It is common practice to compute it at each time step in order to check that it is indeed

constant with time.
During the run energy flows back and forth between kinetic and potential: they fluctuate while

their sum remains fixed.

In practice there could be small fluctuations in the total energy, tolerance ~ 1%
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Temperature
in MD - NVE simulations

T is related to (and therefore can be estimated from)
the kinetic energy:

- 2 Fpir
EkmzimZv? » 1 = SNl;{:B

It is not a constant !

Pressure

It can also be calculated at each time step from kinetic energy,

forces and positions (Virial theorem)
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Choices of:

- Initial conditions
- time step

A good integration algorithm is not enough:

INITIAL CONDITIONS: Important in case of deterministic evolutions

TIME STEP:

too short => phase space is sampled inefficiently,

too long => energy will fluctuate wildly and simulation may become
catastrophically unstable (“blow up”).

Instabilities are caused e.g. by the motion of particles (atoms, planets...) being
extrapolated into regions where the potential energy is prohibitively high (e.g.
overlapping or too much close particles).

E.g. in atomic fluids simulations: choose time step comparable to the mean time
between ionic collisions (about 5 fs for Ar at 298K) (a good rule of thumb)
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MD vs MC simulations

MD has a kinetic energy contribution to the total energy,
whereas in MC the total energy is determined
solely by the potential energy function.

MD samples naturally from the microcanonical (NVE)
ensemble, whereas Metropolis MC samples from the

canonical (NVT) ensemble.

However, both MC and MD can be modified to sample from
different ensembles.
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