
Exercise Lecture XIV

Diffusion Limited Aggregates,

fractal models of surface growth,

percolation

1. Diffusion Limited Aggregates (DLA)

(a) Write a program to generate DLA on a square lattice. See for instance the code dla2d.f90. Choose
each walker starting randomly at a distance R = Rmax + 2 from the center, where Rmax is the
maximum distance of the particles already aggregated in the cluster from its origin. To save time,
eliminate the walker that go too much far away, e.g. that reach a distance equal to 2Rmax from
the center (“killing circle”). Choose L=31. Try to color in a different way the sites according to the
order of aggregation (e.g. after 20 particles aggregated change color). Which are the last aggregated?
Which are the former?

(b) At t = 0 we have 4 perimetral sites with a probability pi=1/4 of being occupied. After having
occupied one of them, we have 6 perimetral sites which have different occupancy possibility: two of
them have pi=2/9 and the other 4 have pi = 5/36. Verify with a Monte carlo simulation.

(c) The efficiency of the algorithm can be improved considering displacements with variable length, the
longer the distance from the center, the longer is the step length. For instance, if the walker is at
distance R > Rmax, consider a length displacement R − Rmax − 1 (if it is > 1), whereas consider a
unitary displacement if the walker is close to the cluster already grown.

(d) Generate some DLA clusters and calculate their fractal dimension, which should be d = 1.66 (see:
Witter et al., Phys. Rev. Lett. 47, 1400 (1983)).

1

2. Fractal growth of surfaces

Conside the Eden model to generate a corrugated surface. The algorithm is:

(a) choose randomly a lattice site and occupy it. The nearest neighbor sites of the occupied site (i.e. 4
sites in case of a square lattice) are the perimetral sites.

(b) choose randomly a perimetral site and occupy it. When occupied, it is no longer a perimetral site:
update the list of perimetral sites with the new ones. Repeat from (1).

The code eden.f90 is proposed as a draft here (the suggestion is to modify it, it has several “print” for
checks. . .)

Consider a simple model where the surface is initially (at time t = 0) an horizontal line of L occupied
sites. The growth is along the vertical direction.

According to the Eden model, choose a perimetral site randomly and occupy it. For the initial configuration
of our surface, at time t = 0 the perimetral sites are the horizontal line of empty sites adjacent to the line
of occupied sites. The average height of the cluster is:

h̄ =
1

Ns

Ns∑
i=1

hi

where hi is the distance of the i surface site from the initial line, and the sum is over all the surface sites
Ns.

The deposition of a particle corresponds to the increment of time t by one. Study how the roughness w
of the surface change with time, where w is defined as:

w2 =
1

Ns

Ns∑
i=1

(hi − h̄)2,

(w=0 for a planar surface). w depends on L and t. Initially w increases with time:

w(L, t) ∼ tβ

β measures the increasing in time of the correlations in the vertical direction. Given a characteristic time,
the length for the correlation of the fluctuations is comparable with L, and the roughness w reaches a
limiting value depending only on L. We can write:

w(L, t >> 1) ∼ Lα,

where α measure the corrugation.

(a) Consider a 1D surface growing over a line of L=100 sites and apply the Eden model. Consider x
the horizontal index, i.e. the label of the columns, and hx the height (max. distance of a perimetral
site from the substrate). Use PBC in the horizontal direction. We call surface sites those perimetral
sites with maximum h for a given x. Try to visualize the growth in time, with the evidence of the
occupied, perimetral and surface sites.
a) is the surface well defined?
b) where are most of the perimetral sites?
c) if we choose all perimetral sites as surface sites, is something changing?

2

(b) Plot w(t) as a function of t for L=32, 64, 128 and estimate the exponents α e β.
a) Which kind of plot is it convenient to do?
b) Does w increase initially with a power law? If yes, estimate β.
c) Is there a characteristic time (depending on L) for w to reach an asymptotic value?
d) Can you estimate α? (you should find β = 1/3 and α = 1/2).

(c) The dependence of w on L and t can be summarized with the law:

w(L, t) ≈ Lαf(t/Lα/β)

where : f(x) ≈ xβ for x << 1 and f(x) = constant for x >> 1

a) Using for α and β the best estimates obtained in the previous point, verify the law plotting
w(L, t)/Lα as a function of t/Lα/β for the different values of L considered. b) Repeat using instead
the exact result, β = 1/3 and α = 1/2. You should find a universal curve (i.e. the same curve using
the scaled variables for different values of L)

(d) Random Deposition In the Eden model each perimetral site can be part of the cluster. In the random
deposition model, instead, a column is chosen randomly and a particle is deposited on top of it. No
horizontal correlations are therefore present.
a) Make a simulation with this model and visualize the surface.
b) Verify that the height of the colums follow a Poisson distribution and that h̄ ∼ t and w ∼ t1/2.
This structure does not depend on L and therefore α = 0.

(e) Balistic Deposition In this model the horizontal coordinate is chosen randomly and a particle falls
down up to reach the first available perimetral site which is a nearest neighbor of an occupied site.
This algorithm allows also a horizontal growth. Consider one particle falling down for each unit time.
Discuss the differences -in terms of algorithm and results- with respect to the previous models.

3. Site percolation on the square lattice

(a) Use the code perc.f90 or write your own code to generate random site configurations on a square
lattice, filling each site with a certain given probability p. Estimate the critical percolation threshold
pc(L) by finding the average value of p at which a spanning cluster is first attained. Choose L = 8
and begin at a value of p for which a spanning cluster is unlikely to be present. Then increase p in
increments of δp = 0.01 until you find a spanning cluster. Record the value of p at which spanning
first occurs for each spanning criteria. Repeat this process for a total of ten configurations and find
the average value of pc(L). (Remember that each configuration corresponds to a different set of
random numbers.) Are your results for pc(L) using the three spanning criteria consistent with your
expectations?

(b) Repeat part (a) for L = 16 and 32 or even larger. Is pc(L) better defined for larger L, that is, are
the values of pc(L) spread over a smaller range of values? How quickly can you visually determine
the existence of a spanning cluster? For a quantitative answer, you can consider the multiple cluster
labeling method of Hoshen and Kopelman (see slides, or Gould-Tobochnich, Ch. 13)

3

!ccc

! dla2d.f90

!

! simulates the growth of a 2D crystal that forms by DLA

!

! M.P. commented and adapted from G. Hart - NAU - March 2002

!ccc

program dla2d

implicit none

integer, parameter :: Nw = 200 ! Number of walkers (particles in the crystal)

logical, dimension(-Nw:Nw,-Nw:Nw) :: occupied ! Grid where the crystal grows

logical :: stuck ! Did the current walker get stuck yet?

integer :: mass ! number of particles in the cluster inside a given radius

integer, dimension(2) :: newpos, prevpos ! current and previous position of the current walker

integer :: i, j, idist ! general loop counters

real :: radius ! outer radius of the crystal plus a little

real :: distance ! distance of the walker from the origin

real :: theta, rndstep ! random numbers for starting and stepping the walkers, respectively

real :: twopi

radius = 5

twopi = 8*atan(1.0)

occupied(:,:) = .false.! Initialize the array

occupied(0,0) = .true. ! Make the origin occupied (this is the seed crystal)

do ! Start a walker at a random postion outside the crystal (on a circle of radius "radius")

call random_number(theta)

theta = theta * twopi

newpos = nint(radius*(/cos(theta),sin(theta)/)) ! Start a new walker

if(occupied(newpos(1),newpos(2)))cycle ! Already occupied, try again

! "cycle" means: continue with the start of the next loop (in this iteration jump to the "end do", without doing the instructions after this line)

prevpos = newpos

do

newpos = prevpos

call random_number(rndstep)

select case(int(rndstep*4)+1)

case(1)

newpos(1) = newpos(1) -1

case(2)

newpos(1) = newpos(1) +1

case(3)

newpos(2) = newpos(2) -1

case(4)

newpos(2) = newpos(2) +1

4

end select

if(any(abs(newpos) > Nw)) exit ! Walker stepped out of the box. Start a new one

if(occupied(newpos(1),newpos(2))) then ! walker gets stuck to the crystal

occupied(prevpos(1),prevpos(2)) = .true. ! Add the walker to the crystal

distance = sqrt(real(dot_product(prevpos,prevpos)))

if(distance > (radius-5)) radius = distance + 5 ! Make the starting circle larger if necessary

exit ! terminates the loop immediately

endif

prevpos = newpos ! Walker made a valid move (didn’t get stuck or wander away). Update and keep it moving

enddo

if(radius > Nw) exit ! terminates the loop immediately

enddo

! Write occupied sites to disk

open(10,file="dla2d.data",status="replace")

do i = -Nw, Nw

do j = -Nw, Nw

if(occupied(i,j)) write(10,*) i,j

enddo

enddo

close(10)

! Do the m(r) analysis and write results to disk

open(11,file="dlamass.data")

do idist = 2, int(0.75*distance)

mass = 0

do i = -Nw, Nw

do j = -Nw, Nw

if(occupied(i,j)) then

if(idist**2 >= i**2 + j**2) mass = mass + 1

endif

enddo

enddo

write(11,’(2i10)’) idist, mass

enddo

close(11)

end program dla2d

5

!ccc

! eden.f90

!ccc

module common

implicit none

public::load, init, edengen

integer, parameter, public :: d=2

integer, public :: Lx, Ly, nmcs, posx, c, xmax

real,public :: rnd

integer, public, dimension(1)::seed

contains

!grid parameters

subroutine load()

print*, "L>"

read*, Lx

print*, "nmcs>"

read*, nmcs

Ly=nmcs

print*, "seed>"

read*, seed

end subroutine load

!Initialize the lattice

subroutine init(grid, Lx,Ly,s, v)

integer,intent(inout) :: Lx,Ly,v

integer :: i

integer, dimension(Lx,Ly), intent(inout) :: grid

integer, dimension(2,v), intent(inout) :: s

grid = 0

s = 0

do i=1,Lx

grid(i,1) = 1

s(1,i)=i

s(2,i)=2

end do

6

!do i= 1, nmcs

! w(i) = 0.0_d

! hmed(i) = 0.0_d

!end do

end subroutine init

!eden model

subroutine edengen(grid,Lx,Ly,v,s)

integer,intent(inout) :: v,Lx,Ly

integer :: i,ccp,j

integer, dimension(Lx,Ly), intent(inout) :: grid

integer, dimension(2,v), intent(inout) :: s

integer, dimension(2) :: loc

call random_seed (put = seed)

loc = minloc(s)

xmax = loc(2) - 1

print*,"xmax = ",xmax

call random_number(rnd)

posx=int(rnd*xmax)+1

c=0

print*,"posx=",posx, "s(1:2,pox)=",s(:,posx)

grid(s(1,posx),s(2,posx))=1

if (s(1,posx)==1) then

ccp=Lx

else

ccp=s(1,posx)-1

end if

if (grid(ccp,s(2,posx))==0) then

do i=1,xmax

if ((s(1,i)/=ccp) .and. (s(2,i)/=s(2,posx))) then

s(1,posx)=ccp

s(2,posx)=s(2,posx)

c=1

7

end if

end do

end if

if (s(1,posx)==Lx) then

ccp=1

else

ccp=s(1,posx)+1

end if

if (grid(ccp,s(2,posx))==0) then

do i=1,xmax

if ((s(1,i)/=ccp) .and. (s(2,i)/=s(2,posx))) then

if (c==0) then

s(1,posx)=ccp

s(2,posx)=s(2,posx)

c=1

else

s(1,xmax+1)=ccp

s(2,xmax+1)=s(2,posx)

xmax=xmax+1

end if

end if

end do

end if

if (s(2,posx)==Ly) then

ccp=1

else

ccp=s(2,posx)+1

end if

if (grid(s(1,posx),ccp)==0) then

print*,"s(1,posx)=",s(1,posx)

print*,"ccp=",ccp

do i=1,xmax

if ((s(1,i)/=s(1,posx)) .and. (s(2,i)/=ccp)) then

print*,"si"

if (c==0) then

s(1,posx)=s(1,posx)

s(2,posx)=ccp

c=1

else

s(1,xmax+1)=s(1,posx)

s(2,xmax+1)=ccp

8

xmax=xmax+1

end if

end if

end do

end if

! do i=1,2

! print*,(s(i,j), j=1,v)

! end do

! do i=1,Ly

! print*,(grid(j,i), j=1,Lx)

! end do

if (grid(s(1,posx),s(2,posx)-1)==0) then

print*,"s4"

do i=1,xmax

if ((s(1,i)/=s(1,posx)) .and. (s(2,i)/=s(2,posx)-1)) then

if (c==0) then

s(1,posx)=s(1,posx)

s(2,posx)=s(2,posx)-1

c=1

else

s(1,xmax+1)=s(1,posx)

s(2,xmax+1)=s(2,posx)-1

xmax=xmax+1

end if

end if

end do

end if

end subroutine edengen

end module common

program eden

use common

implicit none

integer::i,v,j

integer, dimension(:,:), allocatable :: grid

real, dimension (:), allocatable :: w, hmed

integer, dimension(:,:), allocatable :: s

open (unit=1, file="eden1.dat", status= "replace", action="write")

call load ()

9

v=lx*ly

allocate(grid(Lx,Ly))

allocate(w(nmcs))

allocate(hmed(nmcs))

allocate(s(2,v))

call init(grid,Lx,Ly, s, v)

print*,"v=lx*ly=",v

print*,"nmcs=",nmcs

do i=1, nmcs

! print*," imcs=",i," grid:"

! do j=ly,1,-1

! print*,grid(1:lx,j)

! end do

call edengen(grid,Lx,Ly,v,s)

end do

write(unit=1,fmt=*) s

close(unit=1)

deallocate(grid,w,hmed,s)

end program eden

10

!ccc

! perc.f90

!ccc

! from:

! http://www.physics.nau.edu/~hart/classes/550_spring_2004/hw_schedule/solutions/perc.f90

module perc

implicit none

private

public perccheck, cluster_update

contains

function perccheck(grid)

integer, intent(out) :: perccheck

integer, intent(in) :: grid(:,:)

integer i, N

perccheck = 0

N = size(grid,1)

do i = 1, maxval(grid)

if(any(grid(2,2:N-1)==i) .and. &

any(grid(N-1,2:N-1)==i) .and. &

any(grid(2:N-1,2)==i) .and. &

any(grid(2:N-1,:N-1)==i)) then ! ith cluster touches all sides--it percolates

perccheck = i

exit

endif

enddo

end function perccheck

subroutine cluster_update(x,y,grid)

integer, intent(in) :: x, y

integer, intent(inout) :: grid(:,:)

integer :: label, i, j

i = x + 1 ! offset the x and y values to compensate for the fact

j = y + 1 ! that there is an extra site on each edge

! Check each of the four neighbors of the given point to see if

! clusters need to be combined and relabeled

if(grid(i+1,j)/=0)then ! neighboring site is occupied

label = min(grid(i,j),grid(i+1,j)) ! select the smaller cluster number

where(grid == max(grid(i,j),grid(i+1,j))) ! relabel all the sites with the

grid = label ! higher cluster number

endwhere

endif

if(grid(i-1,j)/=0)then ! neighboring site is occupied

11

label = min(grid(i,j),grid(i-1,j)) ! select the smaller cluster number

where(grid == max(grid(i,j),grid(i-1,j))) ! relabel all the sites with the

grid = label ! higher cluster number

endwhere

endif

if(grid(i,j+1)/=0)then ! neighboring site is occupied

label = min(grid(i,j),grid(i,j+1)) ! select the smaller cluster number

where(grid == max(grid(i,j),grid(i,j+1))) ! relabel all the sites with the

grid = label ! higher cluster number

endwhere

endif

if(grid(i,j-1)/=0)then ! neighboring site is occupied

label = min(grid(i,j),grid(i,j-1)) ! select the smaller cluster number

where(grid == max(grid(i,j),grid(i,j-1))) ! relabel all the sites with the

grid = label ! higher cluster number

endwhere

endif

end subroutine cluster_update

end module perc

program percolation

use perc

use random_stuff

implicit none

integer, parameter :: L=22 ! size of grid

integer, dimension(0:L+1,0:L+1) :: site = 0 ! grid of sites

real :: p ! occupation ratio

real :: ratio ! ratio of sites in percolating cluster vs. number of total occupied sites

real :: rnd(2) ! 2 random numbers for generating random x, y positions

real :: invL ! inverse box edge length

integer :: i, j, loop ! general loop counters

integer :: x, y ! x, y positions (integer)

integer :: nsites = 0 ! number of occupied sites

integer :: iclust = 1 ! current cluster number

integer :: PercClusLab ! Cluster number (label) of the percolated cluster

call set_random_seed(0) ! "Randomly" set the random seed

invL = 1/real(L)

open(11, file="percavg.data", status = "old", position = "append")

do loop = 1, 20

site = 0

nsites = 0

12

iclust = 1

do ! Loop until percolation happens

call random_number(rnd) ! Select two random numbers

x = int(rnd(1)*L)+1 ! Change to random numbers between 1 and L (x, y positions)

y = int(rnd(2)*L)+1

if(site(x,y)==0) then ! it’s unoccupied

site(x,y) = iclust ! mark the site as occupied

nsites = nsites + 1 ! keep track of the number of occupied sites

! check to see if this new site is already part of a cluster

call cluster_update(x,y,site) ! relabel any clusters as necessary

iclust = iclust + 1

if(perccheck(site)/=0) exit ! Stop adding sites if a cluster has percolated

endif

enddo

p = real(nsites)/L**2

ratio = count(site==perccheck(site))/real(nsites)

print *, "occupancy: ", p

print *, "ratio in percolating cluster: ", ratio

write(11,*) invL, p, ratio

enddo

close(11)

! Write cluster data to file

PercClusLab = site(x,y)

open(10,file="perc.data"); open(11,file="spanningcluster.data")

do i=1,L; do j=1,L

if(site(i,j)/=0) write(10,’2i10’) j,i

if(site(i,j)==site(x,y)) write(11,’2i10’) j,i ! write sites for spanning cluster only

enddo;enddo

close(10); close(11)

end program percolation

13

