The sensitivity of lichens to air pollution has been known for a long time.

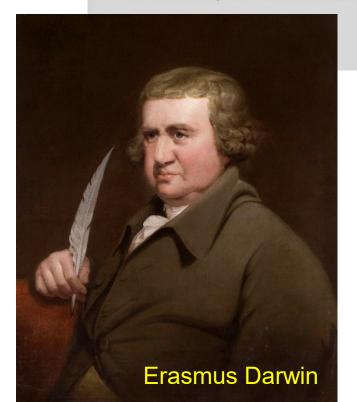
...we are sensitive beings, said the lichen...

This sensitiveness to specific pollutants (e.g. SO_2), and tolerance towards others (e.g. O_3) is linked to specific biological peculiarities of lichens:

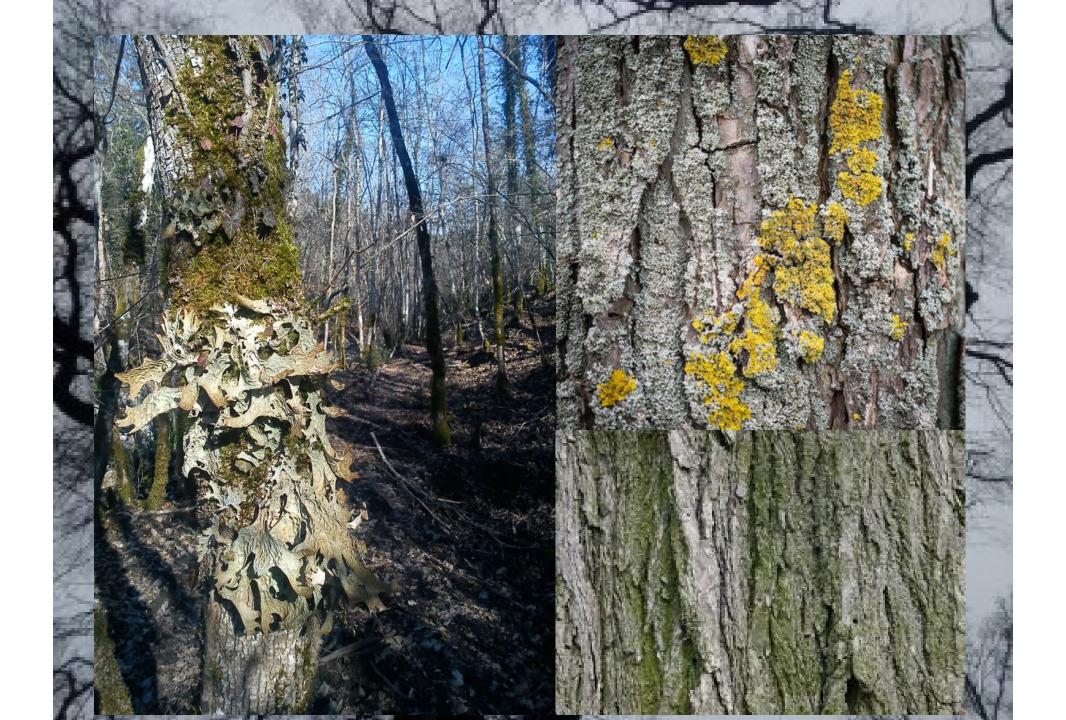
- their metabolism depends on dry and wet depositions from the atmosphere: the continuous change in hydration status implies a continuous bi-directional matter flux of water and dissolved substances;
- This flux occurs over the entire surface of the thallus, as they have no cuticle or stomatal openings;
- nutrient and pollutants can be absorbed in gaseous form, in solution and associated with particulate matter;
- there are no external selection mechanisms;
- there are no specific mechanisms for getting rid of contaminated parts;
- lichens are "long-living" organisms, with temporal integration of phenomena.

In epiphytic lichens the alterations induced by damaging pollutants can manifest themselves at three levels:

Alteration of some fundamental aspects of lichen symbiosis, e.g. impairment of photosynthetic activity, specific enzymatic activities, etc.


Discolouration, changes in the morphology of the thallus, reduction in growth




Modification in the coverage/frequency of single species, with alteration of competition among species, and change in the composition of the communities (eventually, with compromise of "lichen biodiversity") Extrait du Bulletin de la Société botanique de France. Séance du 13 juillet 1866, t. XIII, pp. 364 à 371.

LES LICHENS DU JARDIN DU LUXEMBOURG, par M. W. NYLANDER.

Les Lichens sont de tous les végétaux ceux qui sont le plus répandus dans la nature; ils vivent sur les écorces, le bois, les rochers, la pierre, la terre,

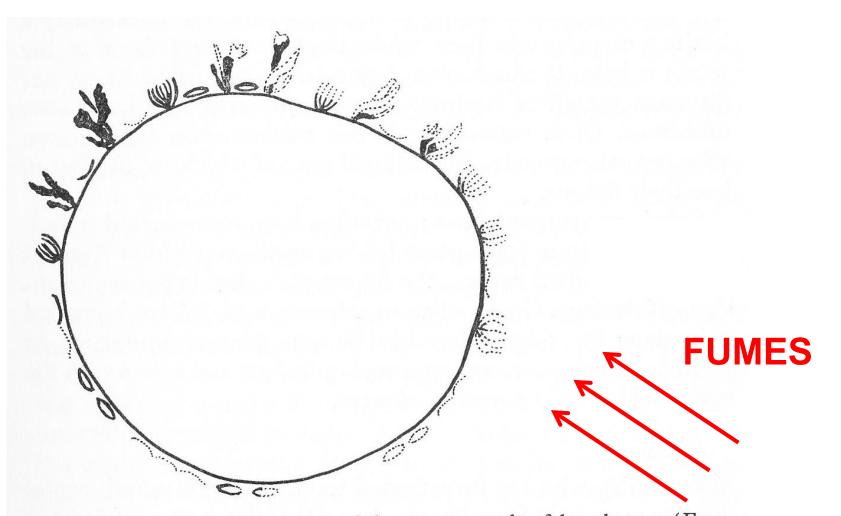
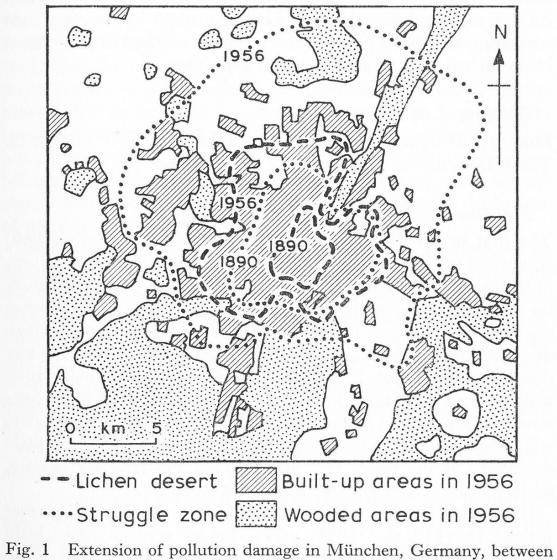
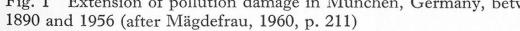




Fig. 2 Pattern of damage to epiphytes on trunk of beech tree (Fagus sylvatica) 400 m west of the newly opened smelter at Invergordon, Scotland. Black: living thallus; dotted lines: visibly damaged thallus. Ramalina farinacea (tufts), R. fraxinea (ribbons), Hypogymnia physodes (flattened ellipse), Parmelia subaurifera (arcs). Crustaceous lichens not shown

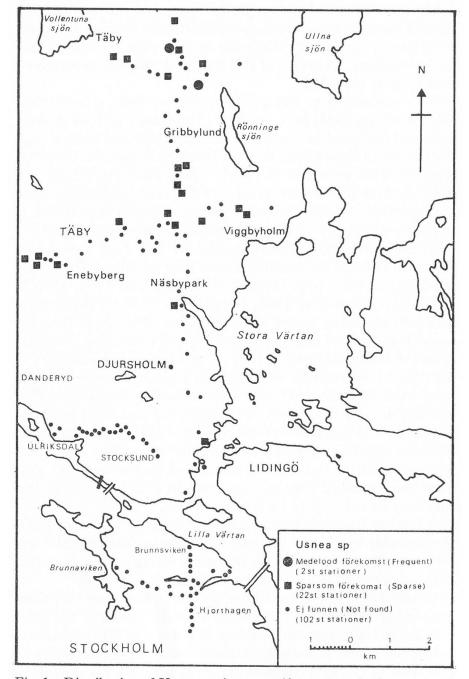
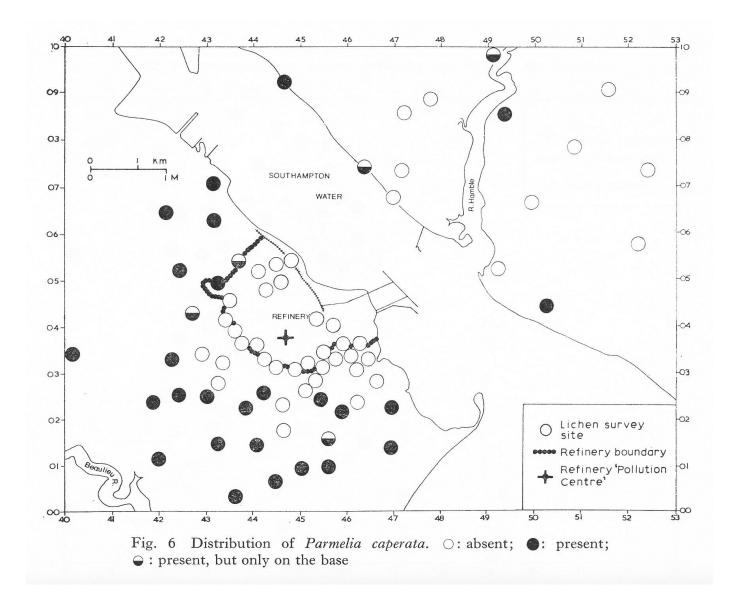



Fig. 1 Distribution of *Usnea* species on coniferous trees in the area north of Stockholm (after Lundström, 1968, p. 34)

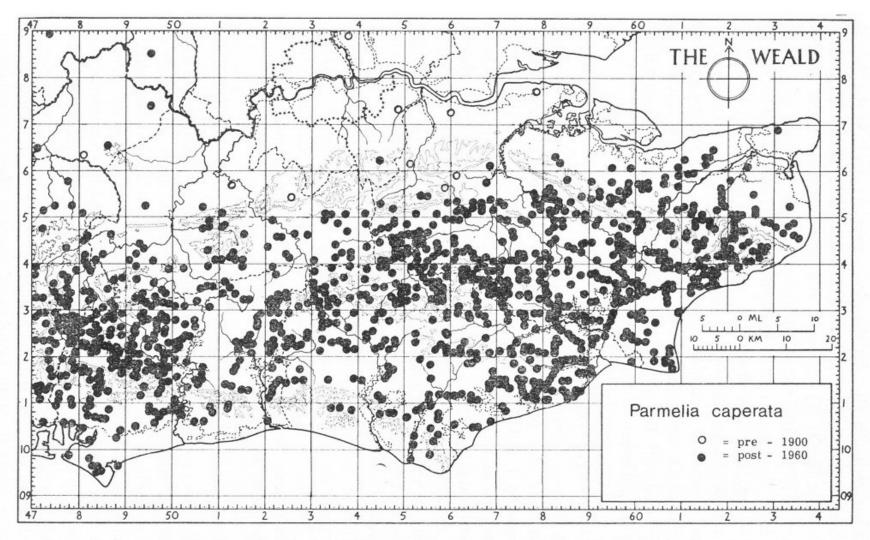


Fig. 1 Distribution of Parmelia caperata in south-east England

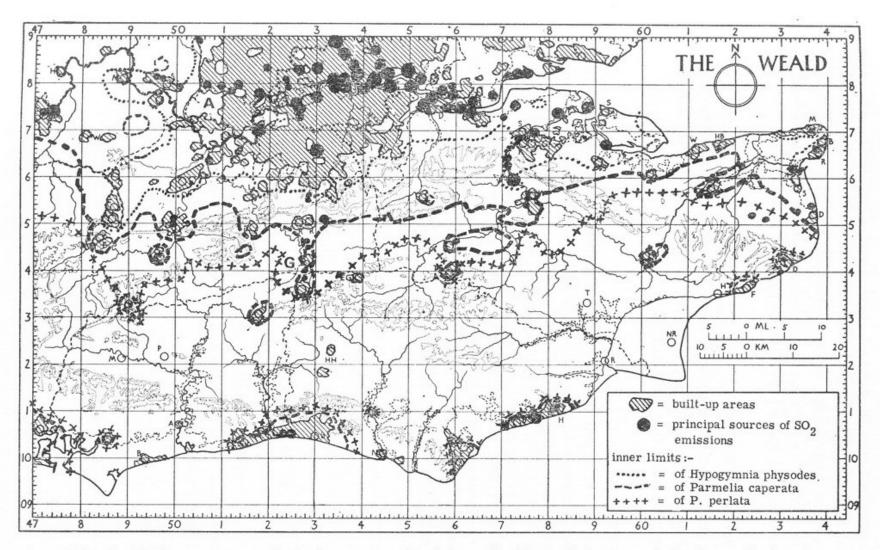


Fig. 6 Built-up areas, principal sources of sulphur dioxide emissions, and the inner limits of *Hypogymnia physodes*, *Parmelia caperata* and *P. perlata* in south-east England; the sizes of the dots indicating sulphur dioxide emission sources are proportional to the size of the source (after Rose, 1970)

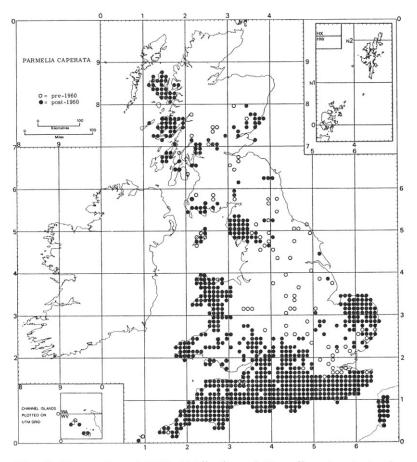


Fig. 6 Pre- and post-1960 distribution of *Parmelia caperata* in the British Isles (excluding Ireland)

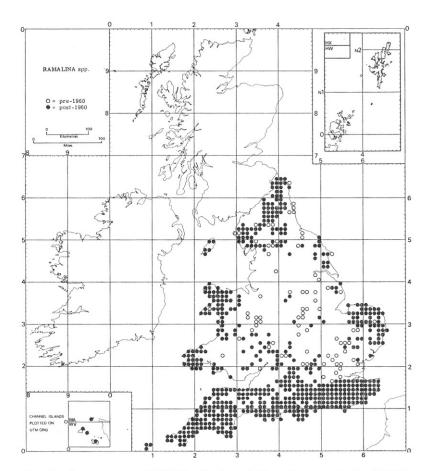


Fig. 7 Pre- and post-1960 distribution of *Ramalina* spp. in the British Isles (excluding Ireland and Scotland)

Table 2 Comparison	between mean	winter sulphur	dioxide read	lings of
volumetric gauges and	the adjacent li	chen vegetation	in sites in 1	England
and Wales according to	o the scale of H	awksworth and	Rose (1970)	

			Su			$(\mu g/m^3)^1$	
		Nat. grid	1967		1969		Licher
Site	С	ref.	-8	-9	-70	Mean	zone
Leicester 3	D1/E	43/586044	Ν	226	Ν	226	0
Leicester 14	D1/E	43/590045	Ν	180	170	175	0 - 1
Leicester 13	A1	43/599049	182	182	163	169	2
Belper 1	D2	43/349479	178	155	151	161	2
Kew 1	B2	51/172757	150	170	131	150	2-3
Buxton 2	B3	43/068738	186	66	N	126	3
Farnsfield 1	R	43/647566	104	N	N	104	3
Leicester 10	B1	43/583002	91	90	89	90	3
Sheffield 60	O1	43/268856	87	101	76	88	3
Dursley 5	01	31/761988	N	92	73	87	3-4
Hayfield 2	02	43/053881	84	N	N	84	3-4
Aspley Heath 1	R	42/923345	88	69	93	83	3
Plymouth 13	A1	20/483550	77	87	82	82	3-4
Kingsnorth 5	01	51/871646	76	N	69	72	4
Abbots Ripton 1	01	52/202798	58	63	64	61	5
Prestwood 1	R	42/872012	49	72	N	60	6
Didcot 9	01	42/562010	50	56	48	51	6
Didcot 4	O2	41/462927	48	58	42	49	6
Didcot 14	O2	41/583848	37	56	40	44	6-7
Plymouth 12	B3	20/478598	36	55	43	44	7
Balcombe 2	01	51/284310	N	N	43	43	7
Didcot 1	O2	41/493808	41	48	36	41	7
Sparsholt	O2	41/341847	41	N	N	41	7
Didcot 6	01	41/423995	40	44	35	39	7
Rogate 1	02	41/794241	N	N	34	34	8
Torquay 3	B1	20/922657	32	33	N	32	8
Camborne 1	01	10/628407	26	40	14	27	8
Llanberis 1	R	23/577601	24	28	28	27	9
Weymouth 1	01	30/703820	24	29	14	22	9
Pembroke 13	01	11/955990	N	8	N	8	9-10
			~ .	-		-	

C: site classification of Warren Spring Laboratory; A–E: urban and industrial; O: open country; R: rural community; 1–3: sub-classifications N: no data available ¹ mean winter sulphur dioxide values abstracted from Warren Spring Laboratory (1969–71)

Hawksworth, D.L., Rose, F. (**1970**) *Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens*. <u>Nature</u> 227: 145-148.

Table 1 Qualitative scale for the estimation of mean winter SO_2 air pollution in England and Wales using epiphytic lichens (after Hawksworth and Rose, 1970)

			SO ₂
on	e Non-eutrophiated bark	Eutrophiated bark	$(\mu g/m^3)$
	Epiphytes absent	Epiphytes absent	?
	Pleurococcus viridis s.l. present but confined to the base	Pleurococcus viridis s.l. extends up the trunk	>170
P	leurococcus viridis s.l. extends up the trunk; Lecanora conizaeoides present but confined to the bases	Lecanora conizaeoides abundant; L. expallens occurs ocasionally on the bases	About 15
	anora conizaeoides extends up the trunk; Lepraria incana becomes equent on the bases	Lecanora expallens and Buellia punctata abundant; B. canescens appears	About 12
on t	ymnia physodes and/or Parmelia saxatilis, or P. sulcata appear he bases but do not extend up the trunks. Lecidea scalaris, nora expallens and Chaenotheca ferruginea often present	Buellia canescens common; Physcia ascendens and Xanthoria parietina appear on the bases; Physcia tribacia appears in S	About 70
more Lecan Pertu pruna	mnia physodes or P. saxatalis extends up the trunk to 2.5 m or ; P. glabratula, P. subrudecta, Parmeliopsis ambigua and tora chlarotera appear; Calicium viride, Lepraria candelaris, saria amara may occur; Ramalina farinacea and Evernia astri if present largely confined to the bases; Platismatia glauca be present on horizontal branches	Physconia grisea, P. farrea, Buellia alboatra, Physcia orbicularis, P. tenella, Ramalina farinacea, Haematomma ochroleucum var. porphy- rium, Schismatomma decolorans, Xanthoria candelaria, Opegrapha varia and O. vulgata appear; Buellia canescens and X. parietina common; Parmelia acetabulum appears in E	About 60
(e.g. <i>P. a</i> in NE).	a present at least on the base; rich in species of Pertusaria ilbescens, P. hymenea) and Parmelia (e.g. P. revoluta (except P. tiliacea, P. exasperatula (in N)); Graphis elegans appear- nudevernia furfuracea and Alectoria fuscescens present in reas	Pertusaria albescens, Physconia pulverulenta, Physciopsis adglutinata, Arthopyrenia gemmata, Caloplaca luteoalba, Xanthoria polycarpa, and Lecania cyrtella appear; Physconia grisea, Physcia orbicularis, Opegrapha varia and O. vulgata become abundant	About 50
tula (in	aperata, P. revoluta (except in NE), P. tiliacea, P. exaspera- N) extend up the trunk; Usnea subfloridana, Pertusaria terica, Rinodina roboris (in S) and Arthonia impolita (in E)	Physcia aipolia, Anaptychia ciliaris (in E), Bacidia rubella, Ramalina fastigiata, Candelaria concolor and Arthopyrenia biformis appear	About 40
Rinod	ceratina, Parmelia perlata or P. reticulata (S and W) appear; lina roboris extends up the trunk (in S); Normandina pulchella U. rubiginea (in S) usually present	Physcia aipolia abundant; Anaptychia ciliaris occurs in fruit; Parmelia perlata, P. reticulata (in S and W), Gyalecta flotowii, Ramalina obtusata, R. pollinaria, and Desmazieria evernioides appear	About 35
lute	ia pulmonaria, L. amplissima, Pachyphiale cornea, Dimerella ca, or Usnea florida present; if these absent crustose flora well reloped with often more than 25 species on larger well-lit trees	Ramalina calicaris, R. fraxinea, R. subfarinacea, Physcia leptalea, Caloplaca aurantiaca, and C. cerina appear	Under 30
arti	nplissima, L. scrobiculata, Sticta limbata, Pannaria spp., Usnea iculata, U. filipendula or Teloschistes flavicans present to locally undant	As 9	'Pure'

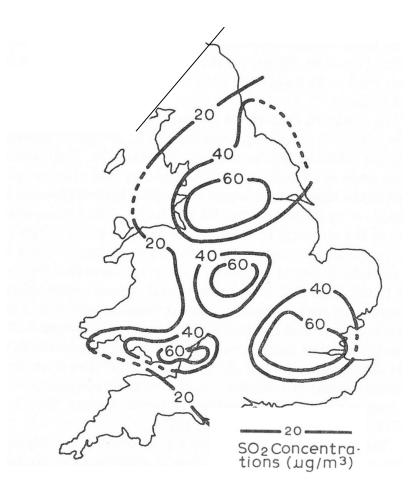


Fig. 2 Approximate annual mean sulphur dioxide concentration at sites remote from local pollution

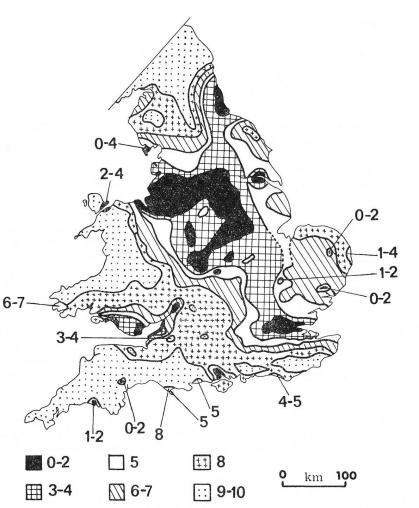
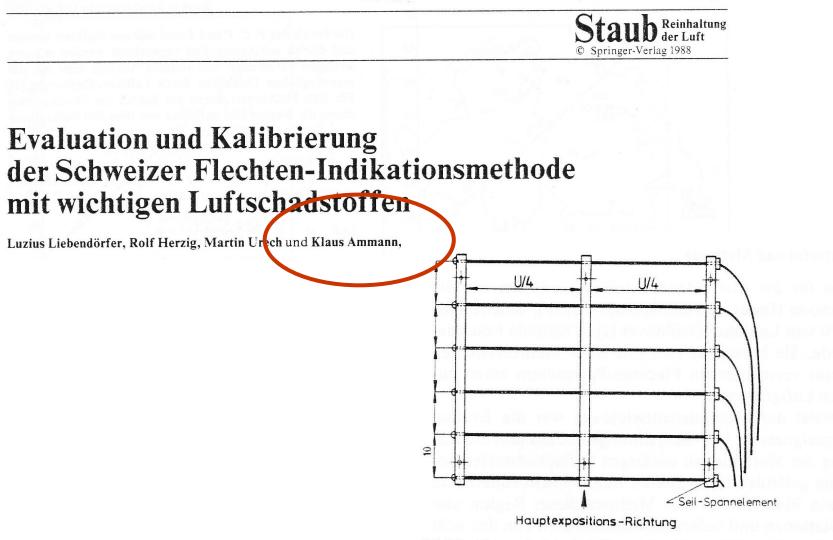


Fig. 2 Preliminary zone-map showing the extent of SO₂ air pollution in England and Wales based on the scales in Table 1 (after Hawksworth and Rose, 1970, p. 146)

IAP maps

The 'Index of Atmospheric Purity' (IAP) proposed by DeSloover

From the mid-1960s two researchers, De Sloover and Le Blanc, attempted to quantify the information provided by bioindicators by introducing a numerical index that should evaluate the level of air pollution, based on the number, frequency and tolerance of the different lichen species present in a given area (I.A.P., Index of Air Purity).


I.A.P.= $(n/100) \Sigma Qi * fi$

where: n= number of species within the relevé; Q = toxitolerance value of a certain species «i»; f = frequency of the same specie «i»

In a few years, there was a «florilegium» of new IAPs, because many authors proposed their own IAP formula, changing *e.g.* the poleotolerance values, the weight to the cover values of poleo-sensitive species, or of poleo-tolerant ones, introducing correction factors etc.

The born of the «Ammann» or «Swiss» method

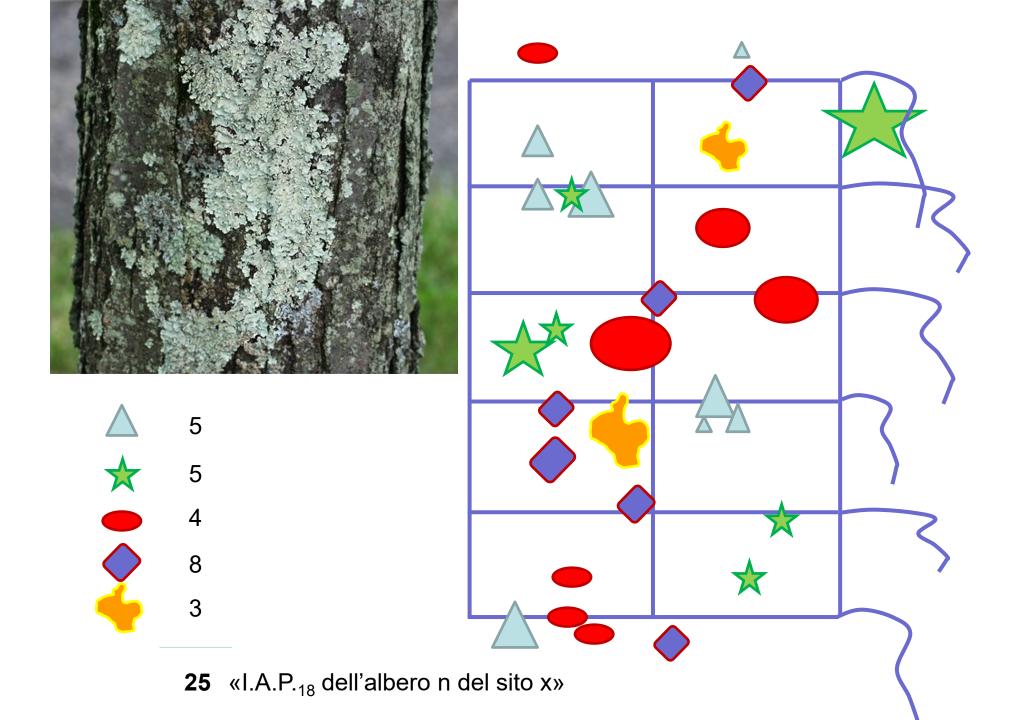
Staub - Reinhaltung der Luft 48 (1988) 233-238

Bild 2. Neu entwickeltes Frequenzgitter zur quantitativen Analyse der Flechtenvegetation

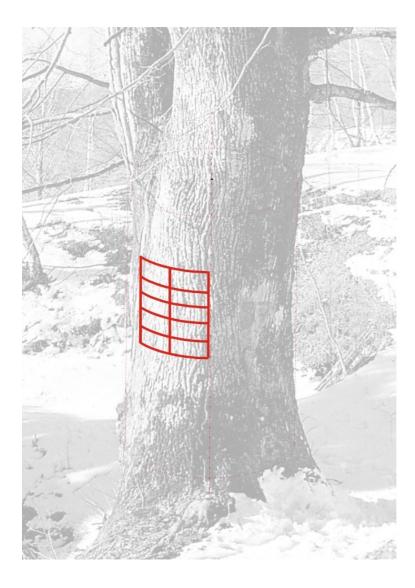
Where: Bern, CH

• <u>What they have at their disposal</u>: ten automated recording gauges, with data on the main generalist pollutants: SO_2 , NO_x , PM elemental content, Benzene.

• <u>What they do</u>: they select trees in the immediate vicinity of the automated recording gauges, on which they detect the lichen flora and vegetation: list of species present, coverage of individual species, n. of individuals and so on and so forth. Each relevé is taken within an extendable grid, covering half the circumference of the tree trunk, selected where the lichen cover is the highest.


• <u>Next steps</u>: different I.A.P.s are "invented", constructed in a different way each time. Just for fun, try to propose yours. Eventually, there will be 20 IAP, numbered IAP1 to IAP20.

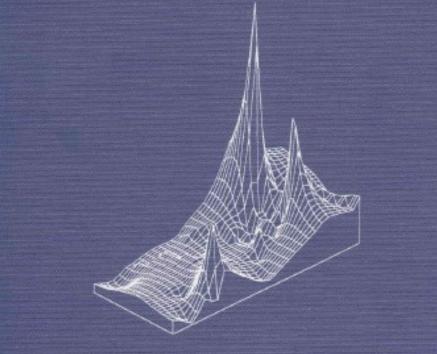
Then, they study the polynomial correlations between the chemical-physical descriptors of "air quality" and the IAPs calculated for all the sites hosting a automated recording gauge.


Some of these correlations are very bad, but one is highly significant, which is the one calculated based on the **IAP18**.

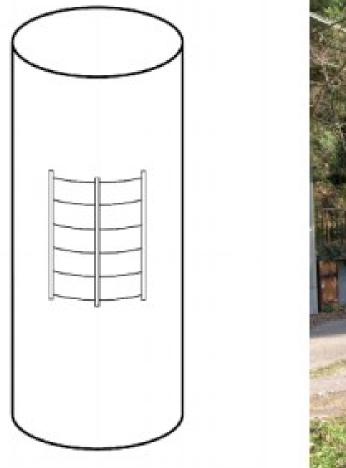
Another interesting observation: if the number of pollutants is reduced, the polynomial correlations are progressively less significant, but the most important contribution to the significance is given by SO2, subordinately by NOx, and then progressively by the trace elements, which bring a contribution very reduced.

How is IAP₁₈ calculated?

The first pilot project in Italy: a case-study in North-eastern Veneto



DIPARTIMENTO DI BIOLOGIA UNIVERSITÀ DI TRIESTE


REGIONE DEL VENETO SEGRETERIA PER IL TERRITORIO DIPARTIMENTO ECOLOGIA E TUTELA DELL AMBIENTE

I LICHENI COME BIOINDICATORI DI INQUINAMENTO ATMOSFERICO NELL'AREA DI SCHIO - THIENE - BREGANZE (VI)

PIER LUIGI NIMIS, ARTANA CICCARELLI, GIULIANO LAZZARIN, ROBERTO BARGAGLI, ANTONELLA BENEDET, MIRIS CASTELLO, DARIO GASPARO, DUILIO LAUSI, SIMONETTA OLIVIERI, MAURO TRETIACH

Entratto de "Bellettino del Museo Civico di Storia Naturale di Verona" - Vol. 16 - 1989 CO GE V. S.R.L., VERONA. ECOTHEMA S.R.L., TRIESTE The empirical decision of using a standard sampling area of 30x50 cm (10 sampling units, 15x10 cm each) actually determined the passage from a I.A.P.₁₈ value to a true biodiversity value.

15 cm

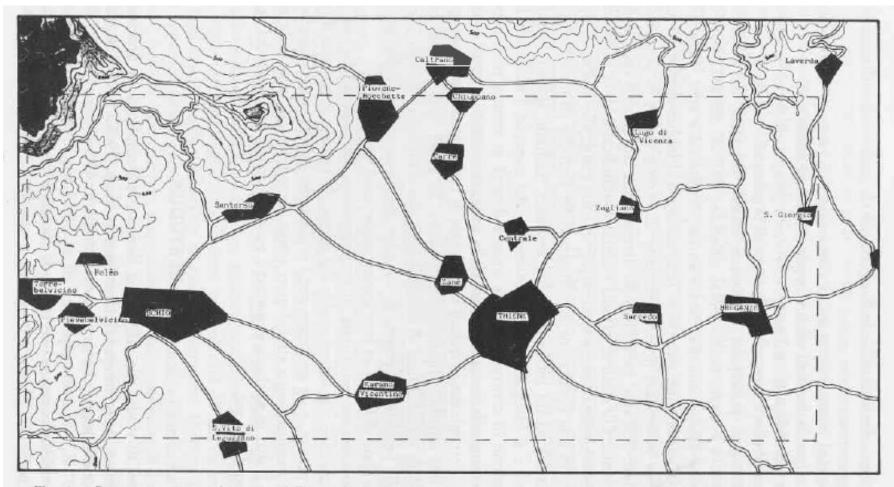
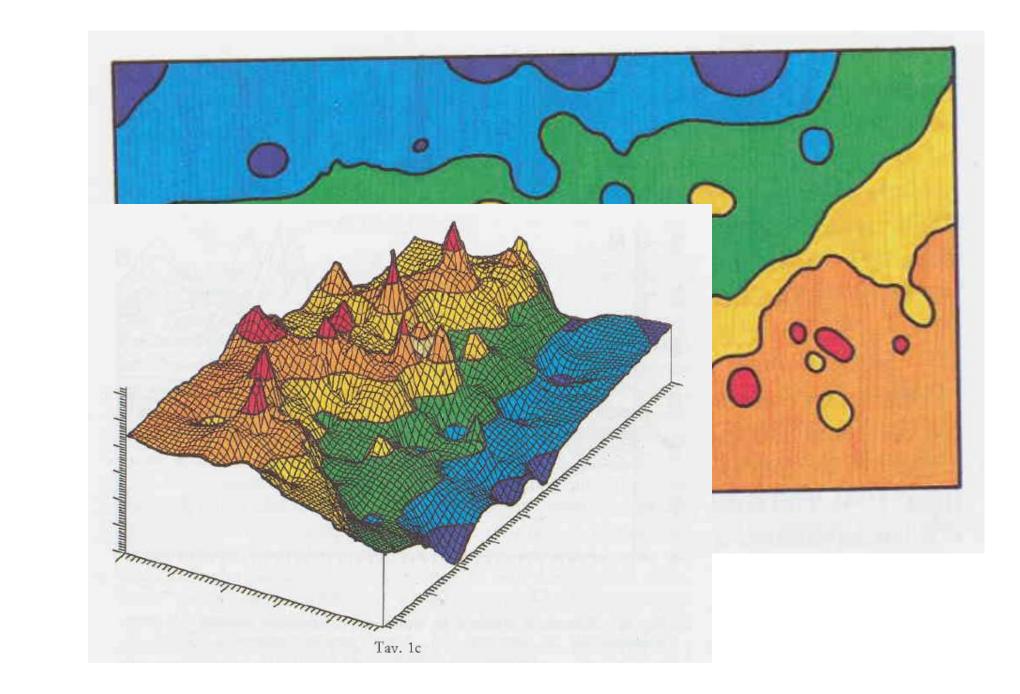
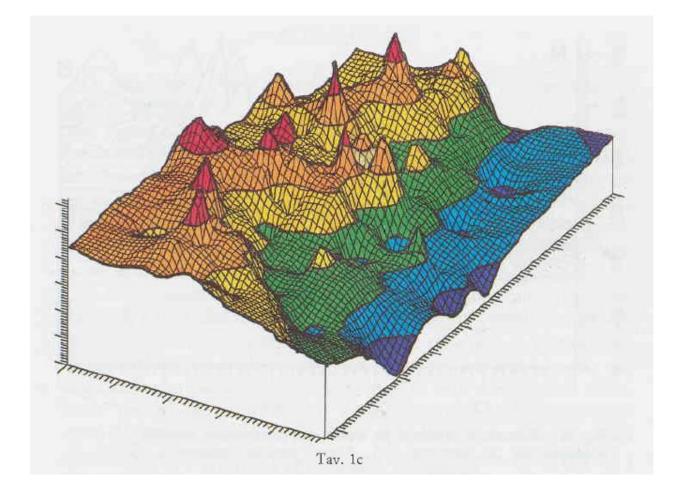




Fig. 1 : Rappresentazione schematica dell'area di studio. Il rettangolo tratteggiato interno indica i limiti dell'area interessata al campionamento dei metalli (v. figg. 35-44).

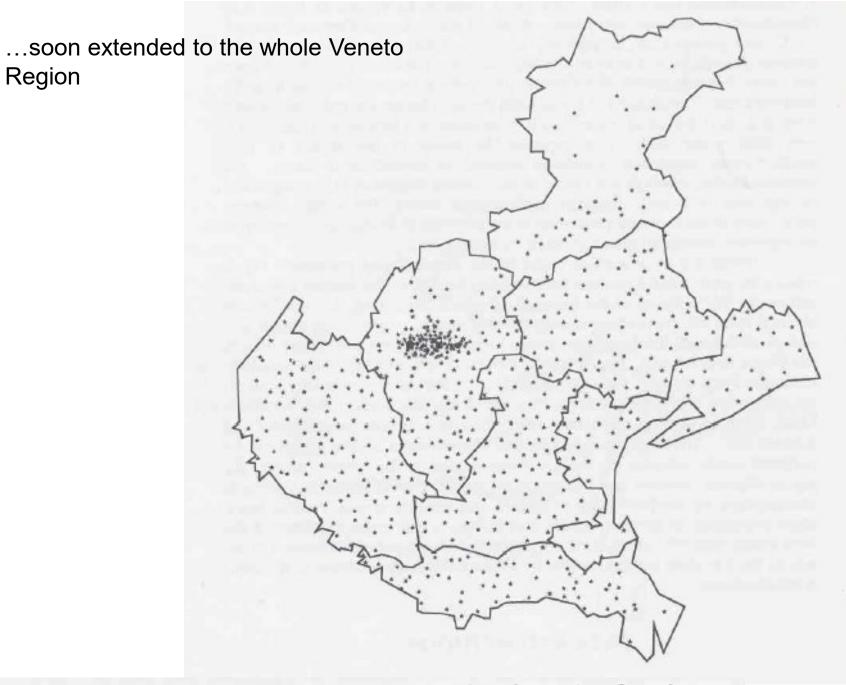
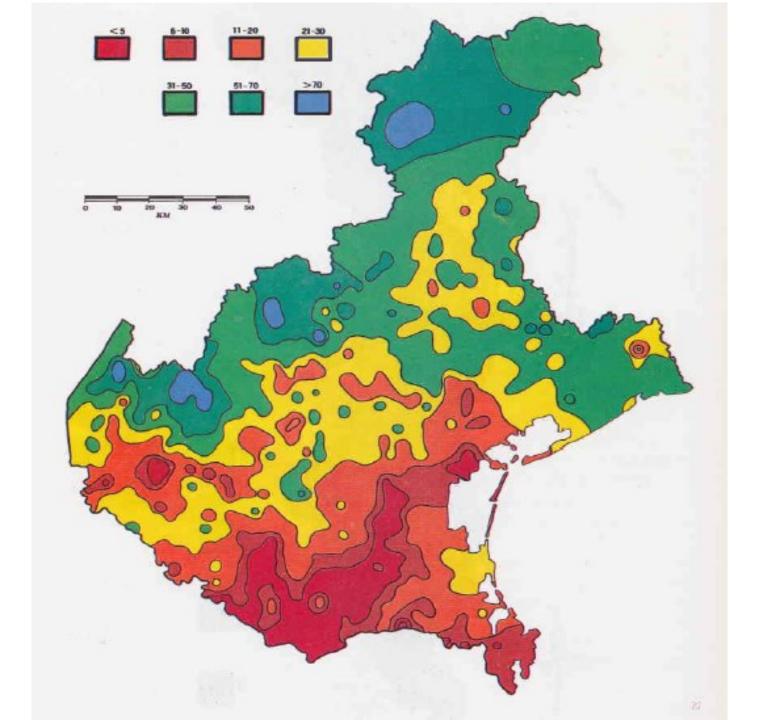



Fig. 3: location of the 662 sampling stations within the regional territory.

Region

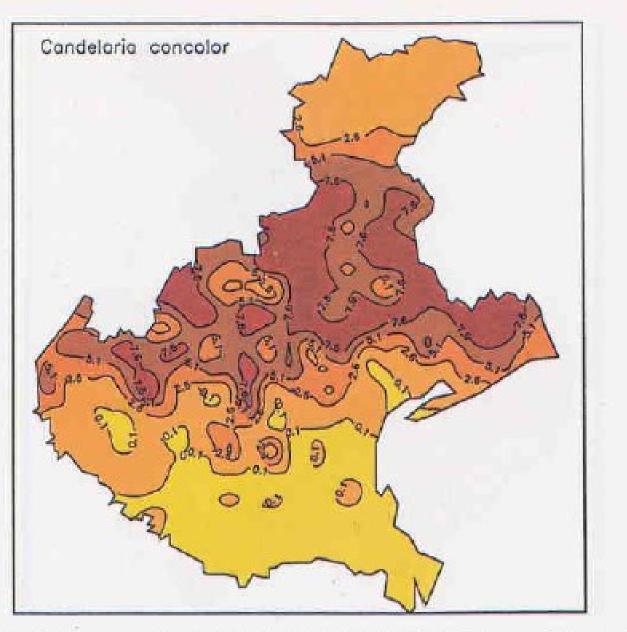


Fig. 22: distribution map of *Candelaria concolor* in the Region of Veneto, obtained by automatic processing of its frequency data in the 662 stations.

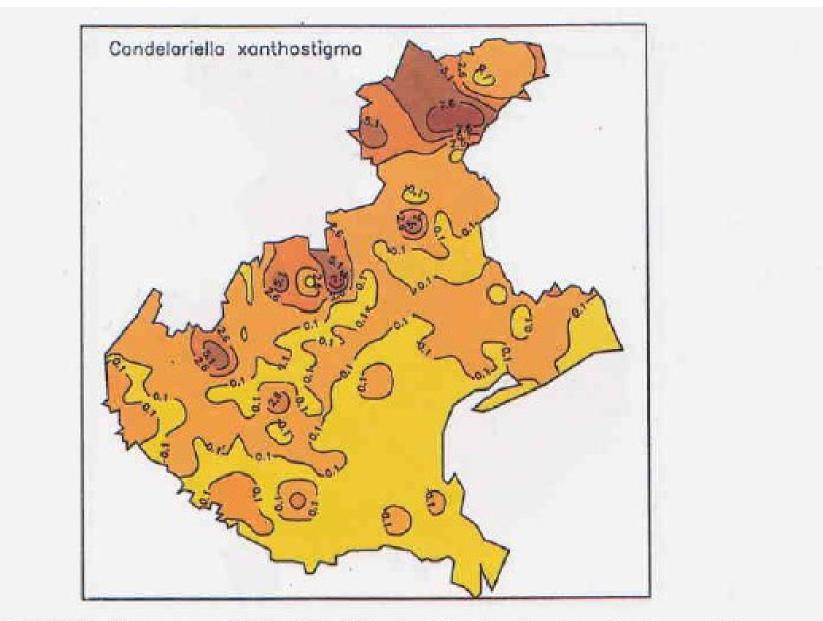


Fig. 23: distribution map of *Candelariella xanthostigma* in the Region of Veneto, obtained by automatic processing of its frequency data in the 662 stations.

scientific correspondence

Lichens, air pollution and lung cancer

29 May 1997

Lichens, air pollution and lung cancer Cesare Cislaghi & Pier Luigi Nimis Nature 387, 463-464 doi:10.1038/387463a0



Figure 2 Scatter diagram relating lichen biodiversity (100-sum of frequencies) and lung cancer mortality (observed/expected cases × 100; males aged under 55 years) in all municipalities of the Veneto region (r=0.82, F=845.9, P<0.0001). Cislaghi, C., Nimis, P.L. (1997). *Lichens, air pollution and lung cancer*. Nature 387, 463-464.

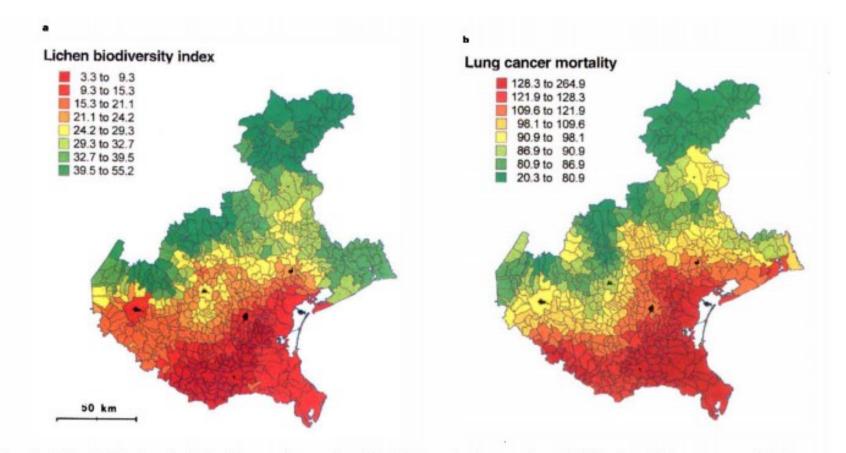
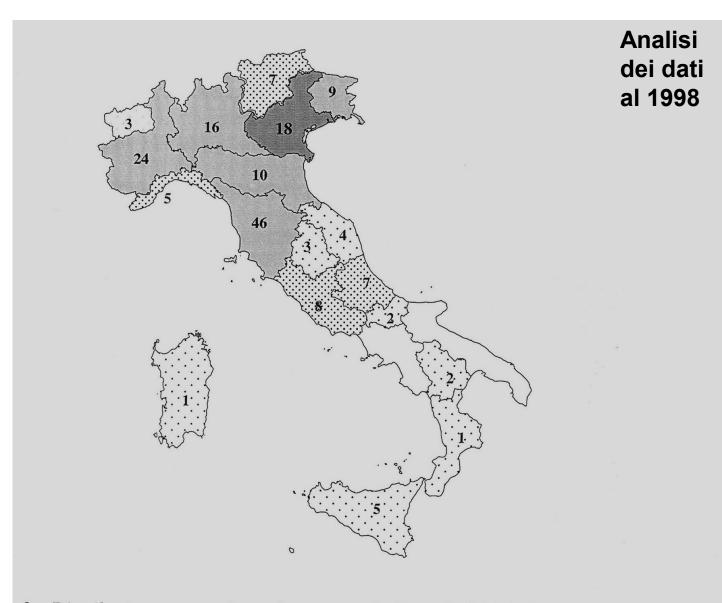


Figure 1 a, Lichen biodiversity, calculated as the sum of frequencies of all epiphytic species in a sampling grid of 10 units; and b, lung cancer mortality in young male residents (expressed as observed/expected cases × 100), in the region of Veneto. Scale intervals are based on percentiles of values distribution.

NATURE | VOL 387 | 29 MAY 1997


Atti del Workshop "Biomonitoraggio della qualità dell'aria sul territorio nazionale" Roma, 26-27 novembre 1998

LICHENI COME BIOINDICATORI DELLA QUALITÀ DELL'ARIA: STATO DELL'ARTE IN ITALIA¹

Rosanna Piervittori Dipartimento di Biologia Vegetale, Università di Torino Viale P.A. Mattioli 25, 10125 Torino

Riassunto

Viene presentata una sintesi delle ricerche sinora svolte in Italia utilizzando i licheni come bioindicatori di inquinamento atmosferico, comprensiva delle principali metodologie adottate e delle principali aree del Paese investigate. Viene fornito un elenco bibliografico esaustivo che riporta 227 lavori, la maggior parte dei quali pubblicati dopo il 1987.

2. Distribuzione geografica e frequenza degli studi di bioindicazione in Italia. I numeri si riferiscono alle pubblicazioni reperibili per regione, le tonalità di grigio alla superficie di territorio esaminato.

Towards the standardization

A central aspect of the development of bioindication methods with epiphytic lichen communities has concerned the standardization of procedures.

Piccini C., Salvati S. (Eds.): Atti Workshop Biomonitoraggio Qualità dell'aria sul territorio Nazionale. ANPA, Ser. Atti, 2.

Nimis, P.L. (1999). *Linee guida per la bioindicazione degli effetti dell'inquinamento tramite la biodiversità dei licheni epifiti*. Ibid., pp. 267-277.

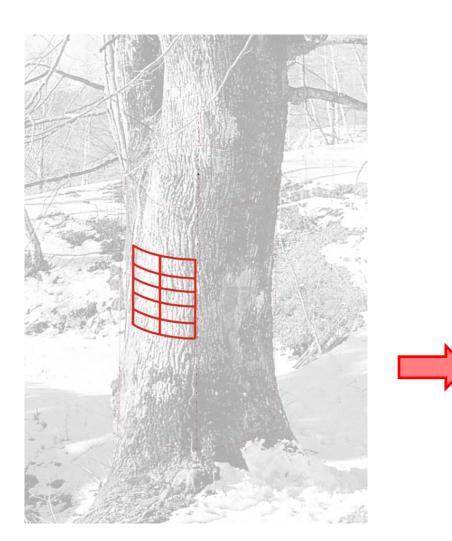
ICS 13.040.20	VDI-RICHTLINIEN	Dezember 2005 December 2005	
VEREIN DEUTSCHER	Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen	VDI 3957	
INGENIEURE	mit Flechten (Bioindikation) Kartierung der Diversität epiphytischer Flechten als Indikator für Luftgüte	Blatt 13 / Part 13	
	Biological measurement procedures for determining and evaluating the effects of ambient air pollutions by means of lichens (bioindication) Mapping the diversity of epiphytic lichens		
	as an indicator of air quality	Ausg. deutsch/englisch Issue German/English	

Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P.L., Purvis, O.W., Pirintsos, S., Scheidegger, C., van Haluwyn, C., Wirth, V. (**2002**). *Mapping lichen diversity as an indicator of environmental quality*. In: Nimis P.L., Scheidegger C., Wolseley P. (Eds.). Monitoring with lichens – Monitoring lichens. NATO Science Series, IV, vol. 7. Kluwer, Dordrecht, pp. 273 -279.

Towards the standardization

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM	FINAL DRAFT FprEN 16413
	September 2013
ICS 13.040.20	
English	Version
Ambient air - Biomonitoring wit lichen d	• • • •
Air ambiant - Biosurveillance à l'aide de lichens - Evaluation de la diversité de lichens épiphytes	Außenluft - Biomonitoring mit Flechten - Kartierung der Diversität epiphytischer Flechten
This draft European Standard is submitted to CEN members for forma 264.	Il vote. It has been drawn up by the Technical Committee CEN/TC Ecological Indicators 45 (2014) 63
	- 山山朝朝後後後後後の Contacts lists quailable at Sains

Towards the adoption of an international standard for biomonitoring with lichens—Consistency of assessment performed by experts from six European countries


F. Cristofolini^{a,*}, G. Brunialti^b, P. Giordani^c, J. Nascimbene^d, A. Cristofori^a, E. Gottardini^a, L. Frati^b, P. Matos^e, F. Batič^f, S. Caporale^g, M.F. Fornasier^h, L. Marmorⁱ, S. Merinero^j, J. Nuñez Zapata^k, T. Tõrraⁱ, P. Wolseley¹, M. Ferretti^b ...some confusion caused by terminological changes:

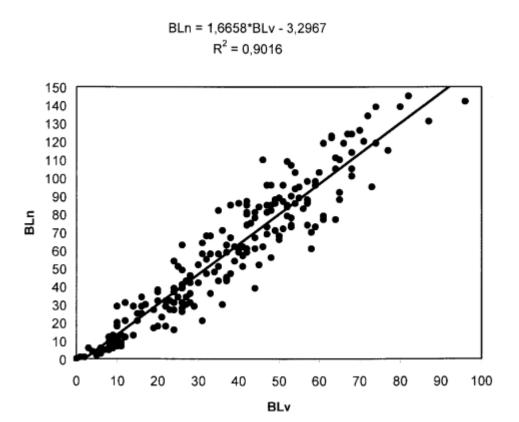
IAP _{«Ammann»} or IAP₁₈ became:

LBI o IBL («Lichen Biodiversity Index»), then:

VBL o **LBV** («Lichen Biodiversity Value»), then:

LDV («Lichen Diversity Value»)

ۘٛٛٛٛ 50 100


On the area of maximum coverage of the lichen community on the trunk, defined based on the operator's experience At the four cardinal points, adopting a smaller grid (5 square areas of 10x10 cm) There is a correlation between the values provided by the old grid (10 meshes of 10x15 cm), corresponding to the "old" IAP₁₈ and those of the new grid (5 meshes of 10x10 cm, moved to the four cardinal points of the trunk), corresponding to the new LDV?

Castello M., Skert N. (**2005**). *Evaluation of lichen diversity as an indicator of environmental quality in the North Adriatic submediterranean region*. Science of the Total Environment 336: 201-214.

The survey was carried out in **61** sampling sites of two areas of the Friuli Venezia Giulia region (Italy) and Slovenia, characterized by similar climatic conditions and a wide range of anthropic pressure.

Biodiversity values obtained with the two sampling methods are highly statistically correlated;

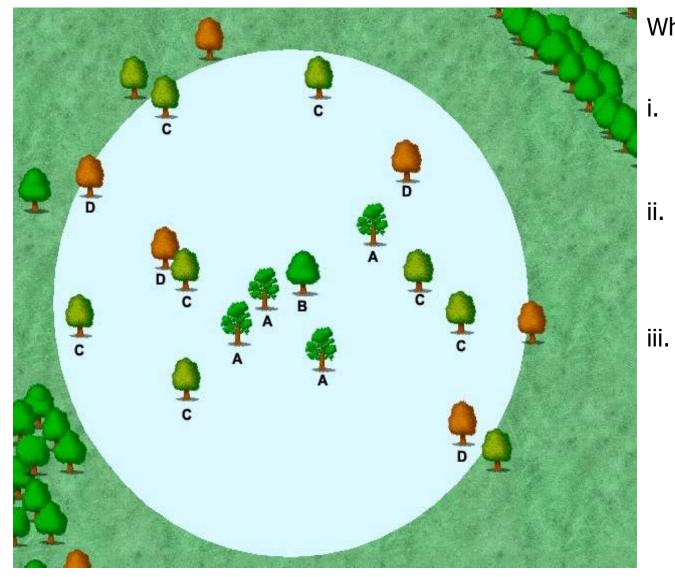
this suggests an interpretative continuity of lichen diversity data for biomonitoring purposes.

In biomonitoring studies it is necessary to respect a protocol when choosing trees, in order to avoid anomalies that could negatively affect the data.

Avoid trunks with an inclination greater than 20° or with large knots...

Avoid trunks with bryophyte or climbing plant coverage greater than 20%...

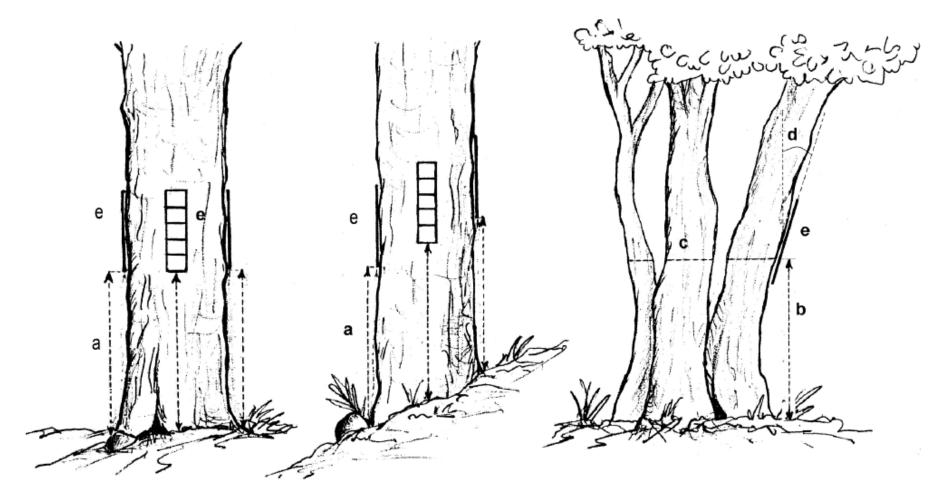
Feature	Description
Suitable tree species	The sampling tree belongs to one of the groups with similar bark physicochemical properties (EN 16413 2014; Asta et al. 2002). Indicatively, species belonging to the same group can be used interchangeably
Trunk circumference	The sampling tree has a trunk circumference (at 130 cm from the ground level) between 50 and 250 cm
Trunk inclination	Each exposition (N, E, S, W) has an inclination (at the center of each grid) <20°
Bark damage	The area of the trunk that is unsuitable for recording (damage, decortication, branching, knots and/or other epiphytes or climbing plants such as ivy, preventing growth of lichens) within each of the 4 grids when summed <20 $\%$


Table 2.1List of features to of a standard tree (see EN 16413 2014; Asta et al. 2002)

Elements of variability: the tree species

Group I	Group II	Group III	Group IV	Group V	To be tested	Excluded
Acer spp.	Olea spp.	Abies alba	Alnus glutinosa	Fagus spp.	Robinia Araucaria s pseudoacacia	
Ceratonia siliqua	Prunus spp.	Larix decidua	Betula pendula	Carpinus spp.	Ailanthus altissima	Platanus spp.
Fraxinus spp.	Quercus spp.	microthermic Pinus spp.			Celtis spp. Taxus baccat	
Juglans spp.	Castanea sativa	Picea abies			Salix spp.	Cycas spp.
Pyrus comn	nunis ^a			Ostrya carpinifolia	"Palms"	
Tilia spp. ^a				Cupressus sempervirens	mediterranean Pinus spp.	
Ulmus spp.	Malus spp.				Alnus cordata	
Populus spp.	Ostrya carpinifolia				Ginkgo biloba	
Ficus spp.	Sorbus spp.				Magnolia spp.	
					Citrus spp.	
					Crataegus spp.	
					Pseudotsuga menziesii	
					"other exotic cultivated plants"	
					Any other species not explicitly reported in Table C.1	

Table C.1 — Suitable tree species


Elements of variability: the tree species

When choosing tree species (in preference order):

- A single tree species within the whole study area (e.g. A).
- Different tree species, within the same barktype group (e.g. A and B).
- Different tree species within different barktype groups (e.g. A, B and C), excluding unsuitable taxa, e.g. some Conifers, *Platanus* - D).

Elements of variability: the individual trees

XXVII Convegno Annuale Montecatini Terme, 15-17/10/2014 Iscrizione

Invio abstract

Date da ricordare:

- 31 Maggio 2014: scadenza invio riassunti poster/comunicazioni
 orali
- 20 Giugno 2014: comunicazione accettazione contributi
- 30 Giugno 2014: scadenza registrazione e pagamento quota iscrizione
- 30 Giugno 2014: pubblicazione programma definitivo

La Società Lichenologica Italiana

La Società Lichenologica Italiana (S.L.I.) è dedicata alla diffusione e al progresso degli studi lichenologici in Italia. La S.L.I. ogni anno organizza un convegno, corsi introduttivi e di specializzazione, riunioni scientifiche, escursioni e pubblica un Notiziario.

La S.L.I. collabora con altre società scientifiche aventi finalità analoghe, sia in Italia che all'estero.

The Italian Lichen Society (S.L.I.) is devoted to the diffusion and progress of lichenological studies in Italy. The S.L.I. every year organizes a congress, introductive and specialization courses, scientific meetings, field excursions and publishes a bulletin.

The S.L.I. cooperates with other scientific societies having similar aims, both in Italy and abroad.

http://www.lichenologia.eu/

News

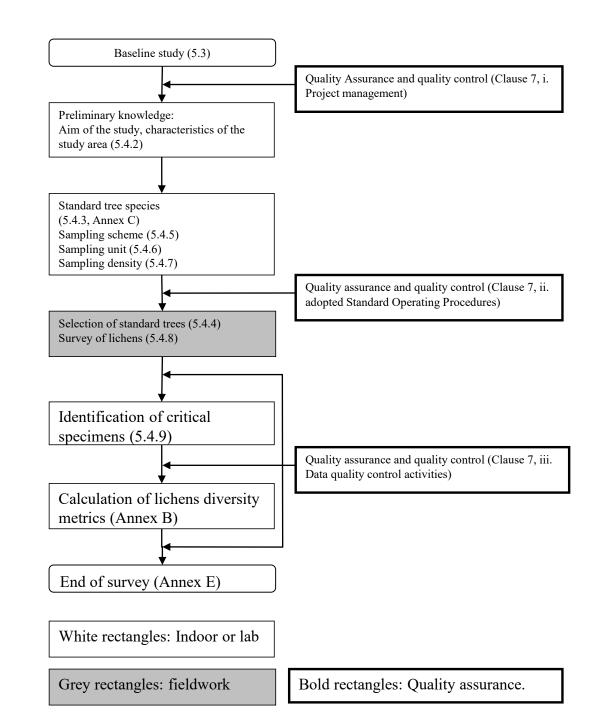
2014-04-29

Disponibile la locandina definitiva del Workshop "PROBLEMATICHE DI DETERIORAMENTO LICHENICO: PERCEZIONE E ASPETTATIVE DA PARTE DELLE ISTITUZIONI", che si terrà a Brescia nei giorni 8 e 9 maggio 2014. http://www.lichenologia.eu/pdeffi/locandina_Brescia_def.pdf La SLI Attività Bandi Gruppi di Lavoro Pubblicazioni Home page soci Personalia Comunicare con la SLI Sezione riservata

😏 Tweet

Gruppo di Lavoro per il Biomonitoraggio		La SLI
		Attività
Coordinatore: Paolo Giordani - email: biomonitoraggio@lichenologia.eu		Bandi
URL:		Gruppi di Lavoro
Il gruppo di lavoro nasce per condividere e promuovere attività di biomonitoraggio i gruppo è aperto a tutti i soci che manifestino interessi in tale ambito. Attraverso le attività del GdL ci si propone di:	mediante i licheni. Il	Biologia
• far conoscere le potenzialità dei licheni negli studi di biomonitoraggio (bioindicazion		Biomonitoraggio
 sviluppare e testare procedure operative standard di bioindicazione e bioaccumu attraverso la partecipazione attiva a processi di normazione presso enti di certificaz AENOR) a internazionali (CENUSO); 		Didattica e Divulgazione Scientifica
 AFNOR) e internazionali (CEN, ISO); promuovere corsi nazionali e internazionali di formazione e aggiornamento. 		Sistematica ed Ecologia
		Pubblicazioni
	2013-09-11	Home page soci
Relazione annuale delle attività del Gruppo di Lavoro: 2013		Personalia
Documenti relativi a questa attività (pdf)		Comunicare con la SLI
		Sezione riservata
	2012-09-10	Mi piace Piace a 2 persone.
Relazione annuale delle attività del Gruppo di Lavoro Documenti relativi a questa attività (pdf)		😏 Tweet

Biomonitoring in environmental litigation Research to support standardization


- Greater objectivity, with the verification of some sampling methods on a probabilistic basis.
- Study of the between-site spatial variability of lichen diversity for the optimization of sample size.
- Investigation of within-site variability for the definition of natural background noise, to obtain a better interpretation of the data.
- Definition of Quality Assurance procedures to evaluate and minimize non-sampling errors due to operators.
- Interpretation of data

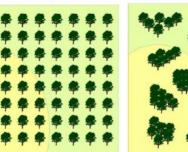
• Cline, S.P., Burkman, W.G. (1989). *The role of quality assurance in ecological programs*. In: Bucher, J.B., Bucher-Wallin, J. (Eds.): Air pollution and forest decline. IUFRO, Birmensdorf, 361 pp.

• EPA (2002). Guidance for Quality Assurance Project Plans. EPA QA/G-5.

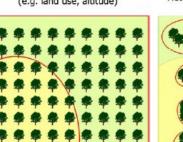
 Brunialti, G., Giordani, P., Ferretti, M. (2004).
 Discriminating between the good and the bad: quality assurance is central in biomonitoring studies. In: Wiersma, B. (Ed.): Environmental Monitoring. CRC Press LLC, pp. 443-464.

 Brunialti, G., Giordani, P., Isocrono, D., Loppi, S. (2002). Evaluation of data quality in lichen biomonitoring studies: the Italian experience. Environmental Monitoring and Assessment 75, 271-280.

Sampling schemes in ecologically heterogeneous areas

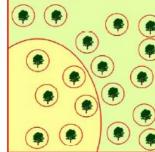

Standard trees abundant and homogeneously distributed over the study domain

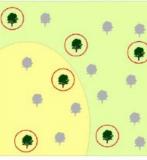
Standard trees abundant and scattered over the study domain


Clusters identified based on:

maximum distance between trees

Standard trees infrequent and scattered over the study domain


Strata identified based on heterogeneous ecological variable (e.g. land use, altitude)


Heterogeneous ecological variable (e.g. land use, altitude)

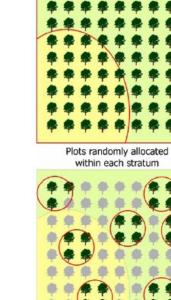
Strata identified based on minimum distance between clusters

heterogeneous ecological variable (e.g. land use, altitude) Each tree represent a Sampling Unit

Trees randomly selected within each stratum

Trees selected in proportion to the strata dimension

Cluster or two stage design Tree-based sampling


within each cluster:

all standard trees (n<11)

10 randomly selected trees (n>10)

Stratified random design Tree-based sampling

environmental litigation designs sample of **Standardization** Biomonitoring in

Plots allocated in proportion to the strata dimension

Stratified random design Plot sampling

From preferential to probabilistic sampling

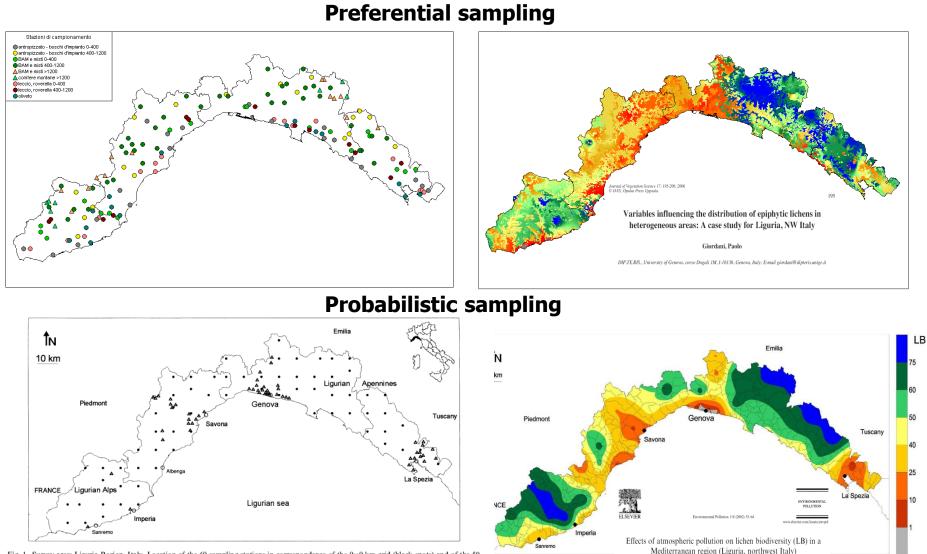
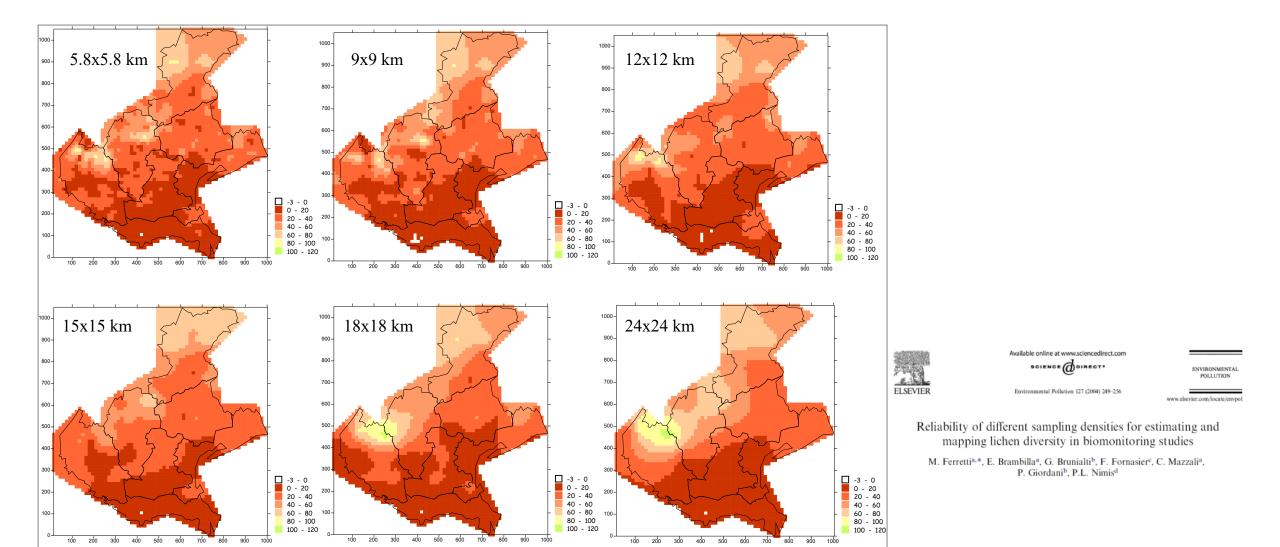



Fig. 1. Survey area: Liguria Region, Italy. Location of the 69 sampling stations in correspondence of the 9×9 km grid (black spots) and of the 50 automatic gauges (triangles).

Paolo Giordani^{a,#}, Giorgio Brunialti^a, Dario Alleteo^b Diparimento per lo Sundo del Territorio e delle sue Risorre-Sede di Botanico. Corso Dogali 11, 16136 Genora, Italy Diparimento di Suona-Agocia Regionale per la Protesiumo dell'Andonne Lipice, Va Zania, 117100 Sanona, Italy

Biomonitoring in environmental litigation Spatial variability 'between sites'

The application of the bioindication method with lichens in its first forms (IAP18, IBL) immediately met with great success.

Since the early days, values (in themselves continuous) were represented on the basis of an attribution to scales divided into classes, originally defined empirically, and associated with different colors (and definitions) to allow an effective graphic representation.

In their original interpretation, these scales had a certain reference in the "zero" value represented by the so-called "lichen desert", while the highest class, particularly large, remained undetermined in its absolute maximum value.

For a decade, each operator proposed the most varied classes, associating them with non-standardised colours, creating quite a bit of confusion when comparisons were made between the various studies, also because not all of them reported the values for individual stations.

Workshop "Biomonitoraggio della qualità dell'aria sul territorio nazionale" Roma, 26-27 novembre 1998

With the publication of the proceedings of this workshop it is proposed to standardize:

- CLASS SIZE (n=7)
- DEFINITIONS OF THE SAME CLASSES in terms of NATURALITY/ALTERATION
- ASSOCIATED COLORS FOR THE CARTOGRAPHIC REPORT
- DEFINITION OF RANGES DEFINED ON A STATISTICAL BASIS

6. Interpretazione e presentazione dei risultati

- 6.1 Nella valutazione dei valori di BLs a fini di biomonitoraggio, si propone la seguente scala, ricavata da numerosi studi precedenti svolti in Italia, divisa in sette classi che esprimono il grado di deviazione da condizioni "naturali" (non inquinate):
 - 1) naturalità molto alta: valori di BLs maggiori di 50.
 - 2) naturalità alta: valori compresi tra 41 e 50.
 - 3) naturalità media: valori compresi tra 31 e 40.
 - 4 naturalità bassa/alterazione bassa: valori compresi tra 21 e 30.
 - 5) alterazione media: valori compresi tra 11 e 20.
 - 6) alterazione alta: valori compresi tra 1 e 10.
 - 7) alterazione molto alta: BLs pari a 0 (deserto lichenico).

Questa scala è valida per aree site nella fascia submediterranea (vegetazione potenziale: boschi con querce decidue). Scale relative alla fascia mediterranea, a quella montana (vegetazione potenziale: boschi di faggio), o a eventuali ulteriori suddivisioni fitoclimatiche del Paese verranno introdotte non appena sufficientemente calibrate sulla base dei progressi della ricerca.

Nimis P.L., Linee-guida per la bioindicazione degli effetti dell'inquinamento tramite la biodiversità dei licheni epifiti. In: Atti del Workshop... AMPA, Atti 2, 1999 La presentazione cartografica dei risultati ha due scopi principali:
1) fornire una suddivisione del territorio in aree con biodiversità lichenica diversa, ove le differenze tra fasce devono essere statisticamente significative;
2) visualizzare la struttura dei dati, evidenziando eventuali patterns geografici.

Per il primo scopo, il più rilevante a fini applicativi, non è sempre possibile suddividere il territorio in fasce corrispondenti esattamente alle classi riportate al punto precedente. L'ampiezza delle fasce dipende infatti dalla variazione della BLs nella specifica area di studio dal numero di alberi esaminati per ogni stazione. Per fornire un prodotto affidabile, l'ampiezza delle fasce deve essere tale che fasce non contigue siano statisticamente diverse. Un esempio di definizione corretta dell'ampiezza delle fasce è proposto da Wirth (1995):

· L'ampiezza delle fasce va determinata sulla base della deviazione standard media di tutte le stazioni, e si ricava dalla seguente formula:

$$t_p \frac{S_p}{\sqrt{n_p}}$$

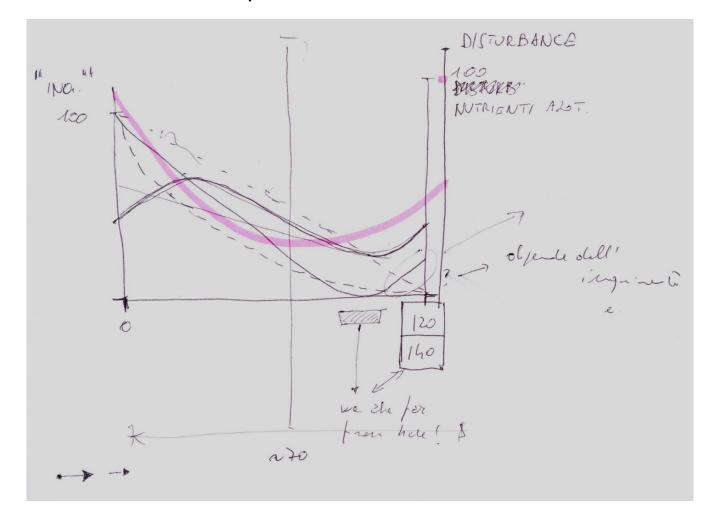
dove:

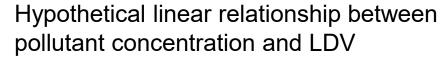
Sp è la deviazione standard media di tutte le stazioni *np* è il numero medio di rilievi per stazione *tp* è il valore critico della distribuzione di Student per *np*-1 gradi di libertà.

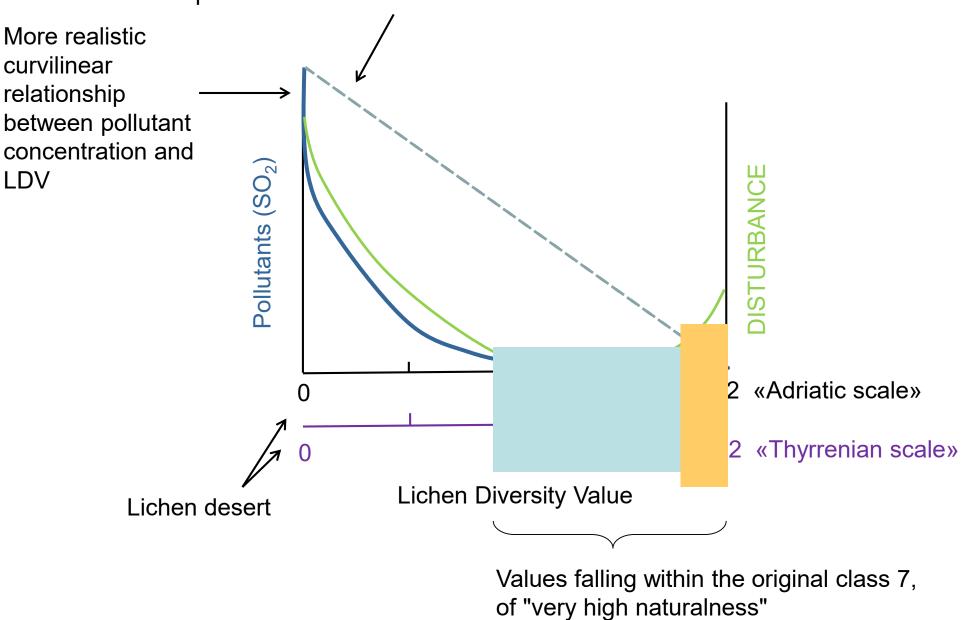
Una carta che suddivida il territorio in fasce la cui ampiezza è stata determinata con questa procedura va sempre allegata ai risultati.

BL	CLASSI
>50	1 nat. molto alta
46-50	2 nat. alta
41-45	2 nat. alta
36-40	2 nat.alta
31-35	3 nat. media
26-30	3 nat. media
21-25	4 nat./alter.bassa
16-20	4 nat./alter.bassa
11-15	5 alter.media
6-10	6 alter.alta
1-5	6 alter.alta
0	7 alter.molto alta

Inevitably, with the increase in the number of investigations also extended to non-urban environments, we realized that:


 in relatively remote areas, particularly in forest environments, the values were often "surprisingly" low (the environmental typology is very different, many ecological factors can intervene to limit the development of lichen vegetation...).




- 2) However, there are substantial differences in the maximum values that can be recorded in the different areas of the country ("who finds the highest value? And where?"). Strong differences in the maximum values were reported from different areas of our country, because also the climate has its own effect on the LDVs.
- 3) The maximum values are typical of a rural landscape with relatively isolated trees or trees present in poorly closed (therefore bright) forest consortia, characterized by a slight anthropic disturbance; an inevitable consequence was the extension of the scale to higher values, previously included in the definition of "high naturalness" because they were higher than 50 (>50).

.....but is it correct to consider the highest LDV values found in a territory as those that describe the "maximum" naturalness?

In other words, are we sure that the maximum LDV is necessarily associated with the total absence of anthropic disturbance?

IBL	Classi
>120	Alterazione trascura
80-120	Alterazione bassa
41-80	Alterazione modera
1-40	Alterazione alta
0	Alterazione molto a

	Valori BL	Colore
alta	> 75	Blu
	61 - 75	Verde scuro
	46 - 60	Verde chiaro
er. Bassa	31 - 45	Giallo
a	16 - 30	Arancione
	1 - 15	Rosso
o alta	0	Cremisi

80-120	Alterazione bassa					er. Bassa	31 - 45	Giallo	
				-	i a	a	16 - 30 1 - 15	Arancione Rosso	
41-80	Alterazione modera		10			alta	0	Cremisi	
1-40	Alterazione alta		-			aturalità/altei	azione in relazione :	ai valori di BL	
0	Alterazione molto a								
			-						
			-						
						Giordai	ni, 2004		
						Classe	,	С	olore
Classi	Sottoclassi		/			Natural	ità molto alta		
1. Naturalità	1.Naturalità		•			Natural	ità alta		
2 Semi -naturalità	2a.Naturalità media					Natural	ità media		
3.Semi -alterazione	2b.Naturalità bassa 3a.Atterazione bassa		-					1	
5.5em-aleadore	3b.Alterazione media						ità/alterazione	Dassa	
4. Alterazione	4a.Aterazione alta	16-40	Rosso chiaro		63-93	Alteraz	ione media		
	4b.Aterazione molto alta	1-15	Rosso scuro		32-62	Alteraz	ione alta		
5.Deserto lichenico	5. Desertolichenico	0	Grigio		0-31	Alteraz	ione molto alta		
					0.31	Thuraz	ione mono ana		

But what does the CEN standard say?

CEN/TC 264 Date: 2012-03 prEN 16413:2012 CEN/TC 264 Secretariat: DIN

Air quality — Biomonitoring with lichens — Assessing epiphytic lichen diversity

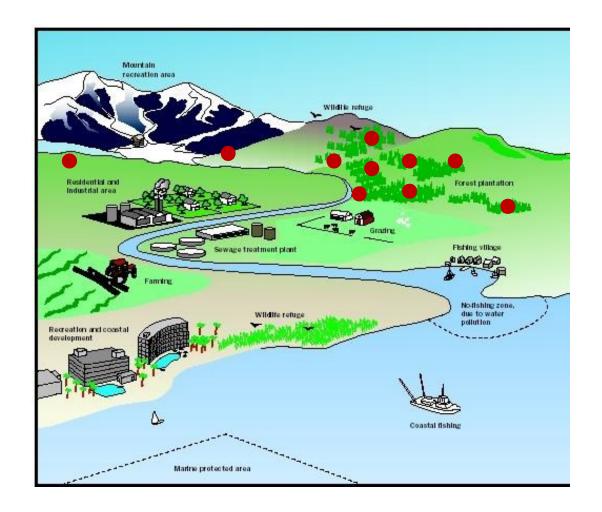
Luftqualität — Biomonitoring mit Flechten — Kartierung der Diversität epiphytischer Flechten Qualité de l'air — Biosurveillance à l'aide de lichens — Evaluation de la diversité de lichens épiphytes

Document type: European Standard

This document (prEN 16413:2012) has been prepared by Technical Committee CEN/TC 264 "Air quality", the secretariat of which is held by DIN.

Contents

Page
3
4
7
7
8
8
17
18
20
22 23
24
25


,		
Annex E (informative)	Information needed at the end of the survey2	26
Annex F (informative)	Main phases of application of this European Standard	27
Bibliography		28

Unfortunately, the CEN document says nothing about the interpretation of the results, simply because this topic was removed when no convergence was found between the participants at the technical discussion table.

Rather than proceed with a vote by strict majority, it was decided to postpone the production of an *ad hoc* document to a later date, which never arrived.

How to establish the level of "naturalness"?

It would seem logical to calculate an average value of n surveys carried out within a specific biogeographical area in remote, presumed near-natural areas.

The interpretation scale could be developed based on the percentage deviation from the level of naturalness.

The **current proposal**, not yet shared by everyone, is the following: taking into account the variability of biological data, the influence of the operator in data collection, the condition of naturalness would be included in a range of 25 percentage points, i.e. 0-25% deviation from average value of values higher than the 98th percentile of values observed in a large climatically homogeneous area.

In this way a scale of 4 or 5 classes would be obtained which in turn could be divided into smaller intervals

% deviation from natural conditions	Interpretation
100	Lichen desert
75–99	Alteration
50-75	Semi-alteration
25-50	Semi-naturality
0-25	Naturality

TABLE 1. Scale of deviation from naturality.