INFORMATION RETRIEVAL

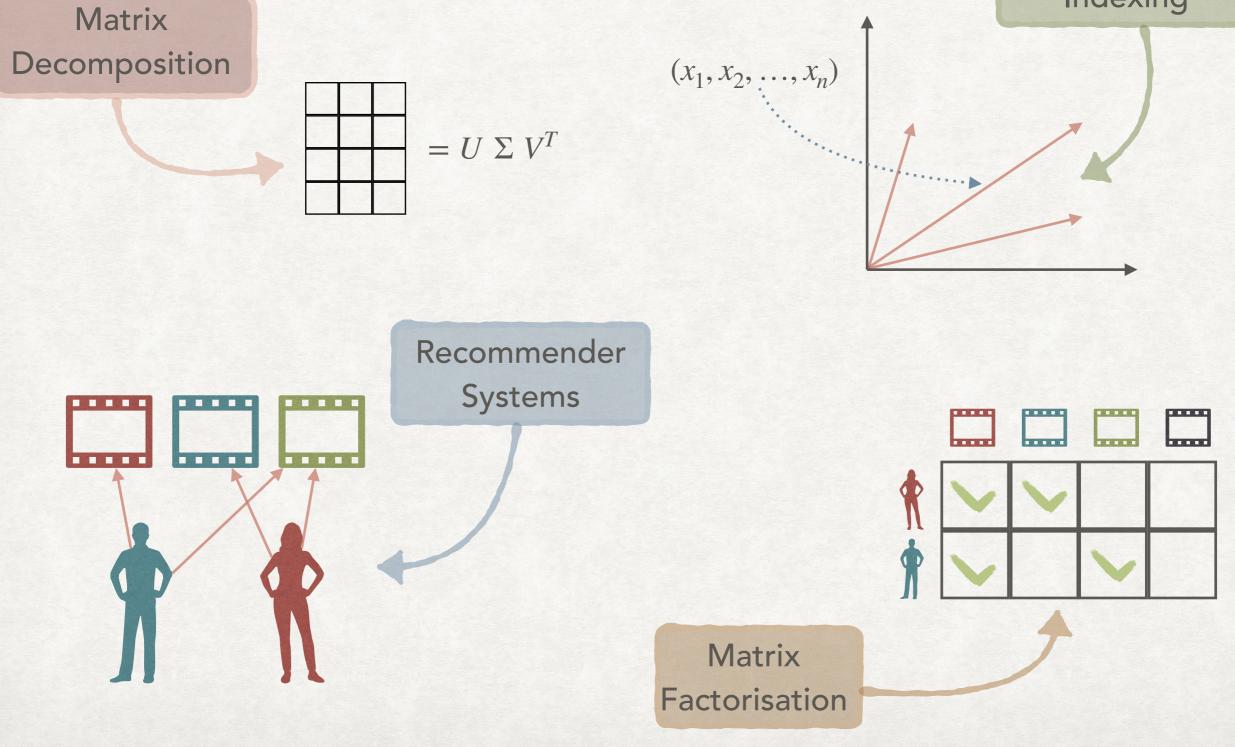
Laura Nenzi Inenzi@units.it

Lecture 11

LECTURE OUTLINE

TODAY WITH MATRICES

Latent Semantic Indexing



MATRIX DECOMPOSITION

A BRIEF RECAP

ASSUMING KNOWLEDGE OF EIGENVALUES

- We want to write a matrix as a product of other matrices...
- ...usually with some "interesting" properties.
- We will recall two matrix decompositions:
 - Symmetric diagonal decomposition
 - Singular value decomposition (SVD)
- We recall how SVD can be used to provide an approximation of the original matrix.

SYMMETRIC DIAGONAL DECOMPOSITION

Let S be a square $M \times M$ matrix which is:

- Real-valued
- Symmetric $S = S^T$
- With *M* linearly independent eigenvectors, full rank

Then there exists a symmetric diagonal decomposition:

 $S = Q \wedge Q^T$

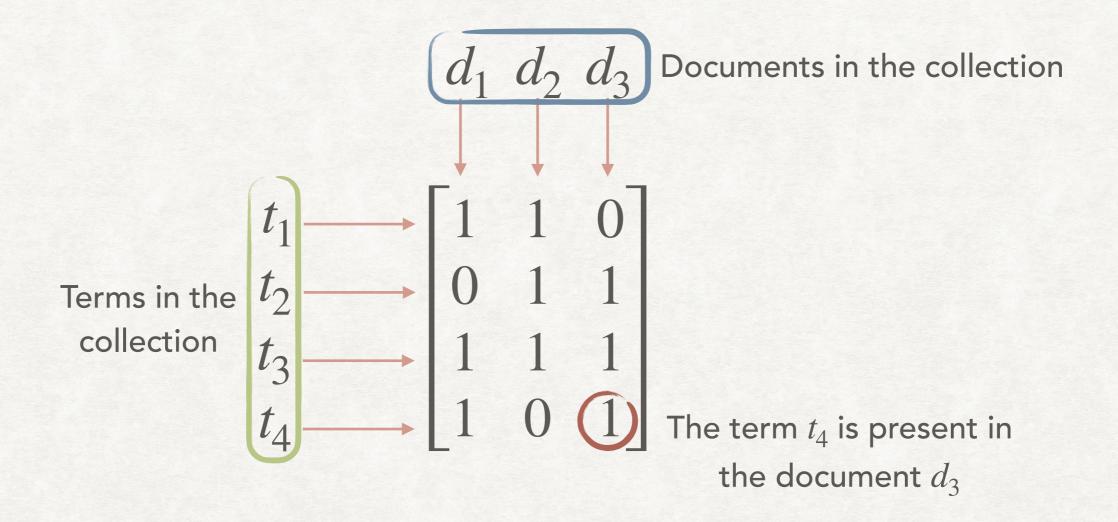
SYMMETRIC DIAGONAL DECOMPOSITION

$$S = Q \wedge Q^T$$

Where:

- The columns of Q are orthogonal eigenvectors of S
- All columns of Q are of vectors of unit length
- All entries of Q are real-valued
- Λ is the diagonal matrix containing the eigenvalues of Q in the diagonal (by convention in non-increasing order)

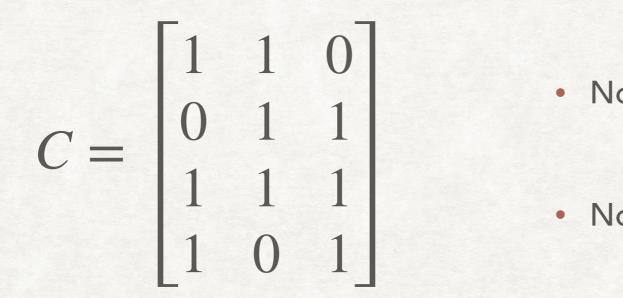
THE TERM-DOCUMENT MATRIX



Actually, the value in row *i* and column *j* can be any "weighting". For example the tf-idf for term t_i in the document d_i .

THE TERM-DOCUMENT MATRIX

Some issues with the term-document matrix:



- Not square
- Not symmetric

We will need another method to perform a matrix decomposition of *C*, since the symmetrical diagonal decomposition is not applicable

SINGULAR VALUE DECOMPOSITION

Given a real-valued matrix C with M rows and N columns of rank $r \le \min\{M, N\}$, and let:

- U be the $M \times r$ matrix with the orthonormal eigenvectors of CC^T as columns.
- V be the $N \times r$ matrix with the orthonormal eigenvectors of $C^T C$ as columns.

Then C can be written as:

 $C = U\Sigma V^T$

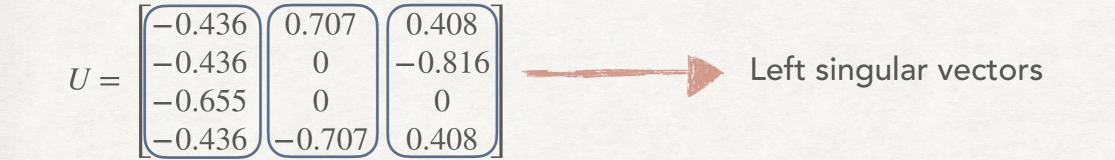
SINGULAR VALUE DECOMPOSITION

 $C = U\Sigma V^T$

where:

- The eigenvalues $\lambda_1, \lambda_2, ..., \lambda_r$ are the same for CC^T and C^TC .
- $\lambda_1, \lambda_2, ..., \lambda_r$ are in non-increasing order.
- The matrix Σ is a square $r \times r$ matrix containing in the diagonal all $\sqrt{\lambda_i}$, called the singular values of C.

SVD FOR THE TERM-DOCUMENT MATRIX

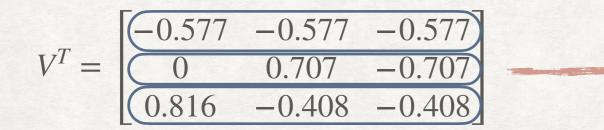


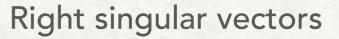
$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$

The values

[2.646 0.999 0.999]

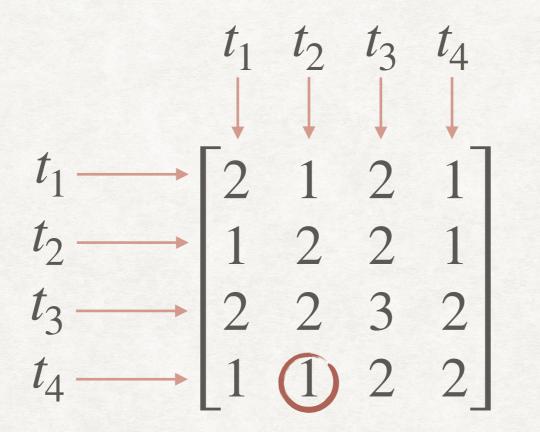
Are called the singular values of C





THE TERM-DOCUMENT MATRIX

We can consider the matrix CC^T :



Number of documents where t_4 and t_2 co-occur

Actually, the value in row *i* and column *j* is, depending on how *C* is constructed, some "measure" of co-occurrence of the terms t_i and t_j

SOME "STUFF" TO NOTICE

LINKING SVD WITH SYMMETRIC DIAGONAL DECOMPOSITION

Take CC^T

Rewrite C as $U\Sigma V^T$

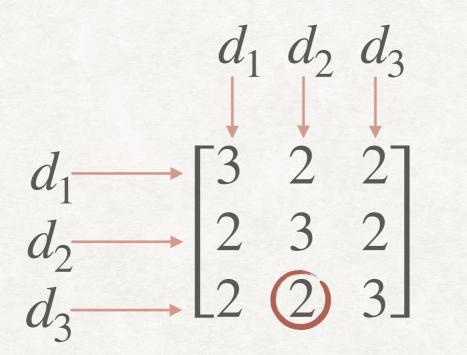
Rewrite C^T as $V\Sigma^T U^T$

You get $U\Sigma V^T V\Sigma^T U^T$ Which is $U\Sigma^2 U^T$

In some sense we can view looking at co-occurrence of terms can be interpreted as "working" in the space of terms (which we reach using U)

THE TERM-DOCUMENT MATRIX

We can also consider the matrix $C^T C$:



Number of terms in common between document d_3 and d_2

Actually, the value in row *i* and column *j* is, depending on how *C* is constructed, some "measure" of "overlap" between d_i and d_j

LOW-RANK APPROXIMATION BASICS

- The main idea is that we can reduce the "space occupied" by a matrix by reducing its rank...
- ...however we want to minimise the error introduced by the approximation.
- SVD provides a way to efficiently perform this approximation.
- At least with respect to the Frobenius norm:

$$\|X\|_F = \sum_{i=1}^M \sum_{j=1}^N X_{i,j}^2$$

LOW RANK APPROXIMATIONS WITH SVD ZEROING OUT SINGULAR VALUES

Given a real-valued matrix C, compute its SVD decomposition $U\Sigma V^T$

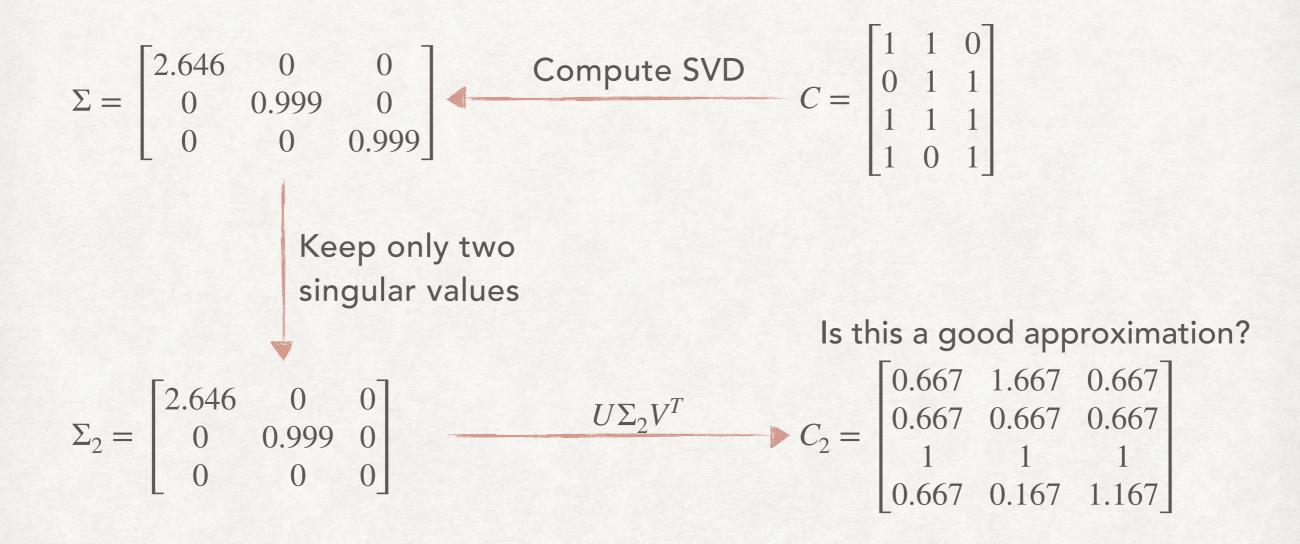
Let $\sqrt{\lambda_1}, ..., \sqrt{\lambda_r}$ be the *r* singular values of *C*

Fix $k \in \mathbb{N}$ as the rank of the approximation C_k that we want to compute.

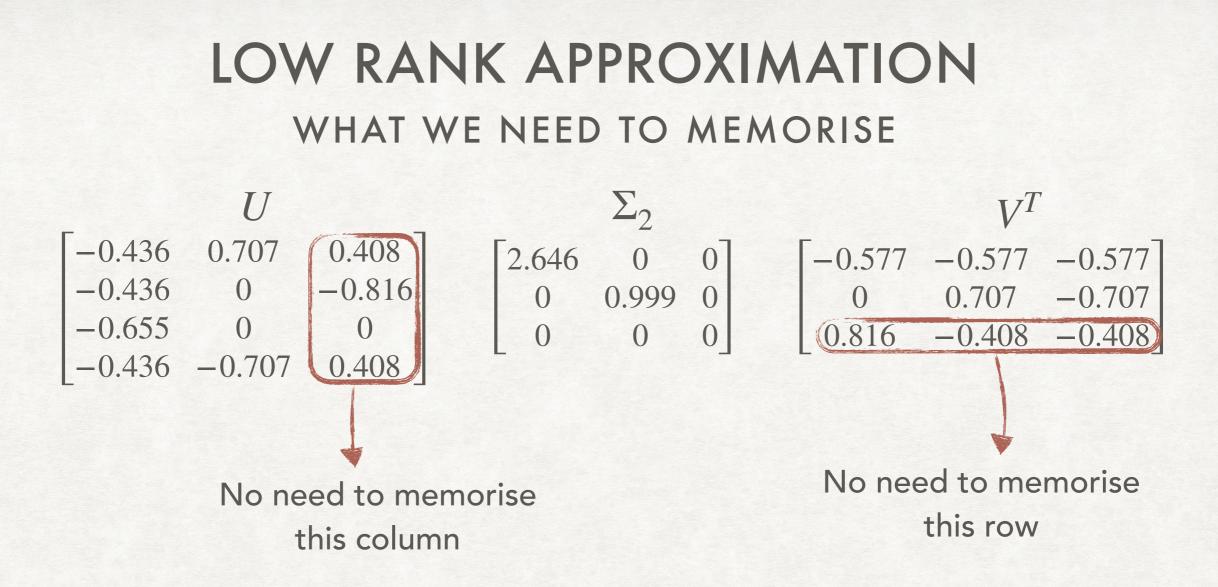
Build Σ_k starting from Σ by zeroing out the smallest r - k singular values (i.e., only $\sqrt{\lambda_1}, ..., \sqrt{\lambda_k}$ remains).

Let the approximation C_k be $U\Sigma_k V^T$.

LOW RANK APPROXIMATIONS WITH SVD ZEROING OUT SINGULAR VALUES



Across all matrices of rank two, C_2 minimises $||C - C_2||_F$



We can rewrite everything as a "truncated" SVD $U'_k \Sigma'_k V'^I_k$:

$$\begin{bmatrix} -0.436 & 0.707 \\ -0.436 & 0 \\ -0.655 & 0 \\ -0.436 & -0.707 \end{bmatrix} \begin{bmatrix} 2.646 & 0 \\ 0 & 0.999 \end{bmatrix} \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 & -0.707 \end{bmatrix}$$

LATENT SEMANTIC INDEXING

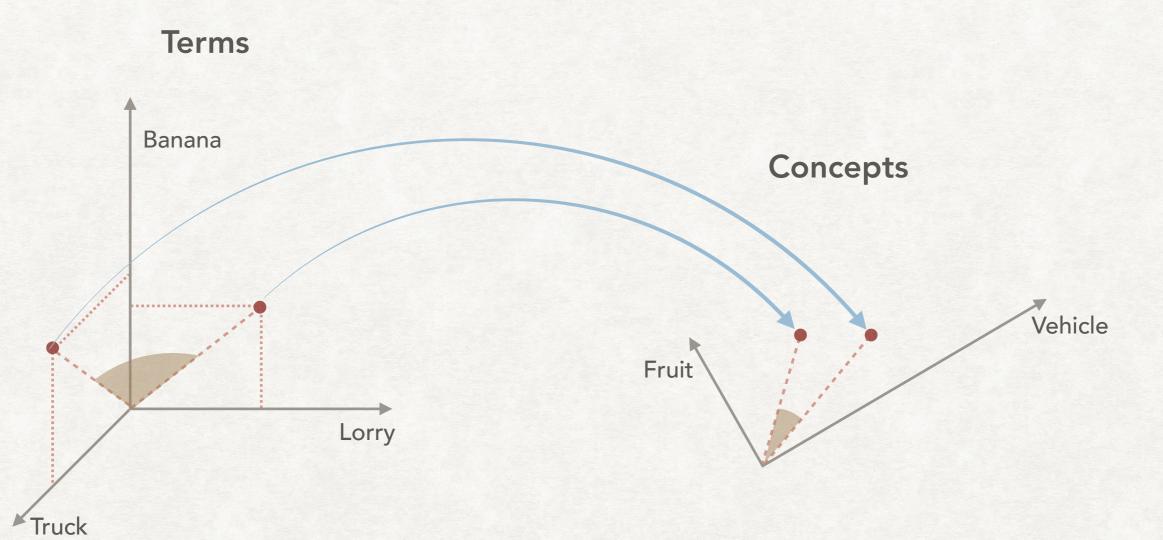
LATENT SEMANTIC INDEXING MAIN IDEAS

- Recall that the vector space representation does not address two issues:
 - Synonymy. E.g., when searching for "laptop" we do not find the documents that use "notebook"
 - Polysemy. When the same word is used with multiple meanings.
- We can potentially use a large thesaurus for the first problem...
- ...or we can use the co-occurrence of terms to try to solve the problems automatically.

HOW TO USE THE SVD TERMS, DOCUMENTS, AND CONCEPTS

- We use the SVD as a way to represent documents in a reduced space.
- Instead of using terms as the basis of out vector space, we will employ "pseudo-terms".
- Dimensionality reduction is used to provide a compact representation of the the documents and queries.
- The main idea is that we map terms to concepts (i.e., how much each term represents a certain concept)...
- ...and then concepts to documents (i.e., how much each document contains a certain concept).

MAIN IDEA (GRAPHICALLY)



Two documents use different terms for the same concept. If we remap everything in a space where the axes represent concepts the two documents will have a higher similarity.

LET'S GO BACK TO THE SVD

$$U = \begin{bmatrix} -0.436 & 0.707 & 0.408 \\ -0.436 & 0 & -0.816 \\ -0.655 & 0 & 0 \\ -0.436 & -0.707 & 0.408 \end{bmatrix}$$

U is the term-concept matrix Each column represents how much each term is represented by a certain concept

$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$

 Σ is the concept matrix Each value represents the "weight" of a concept

$$V^{T} = \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 & -0.707 \\ 0.816 & -0.408 & -0.408 \end{bmatrix}$$

V is the document-concept matrix Each row (column in V^T) represents how much a document contains a certain concept.

LET'S GO BACK TO THE SVD

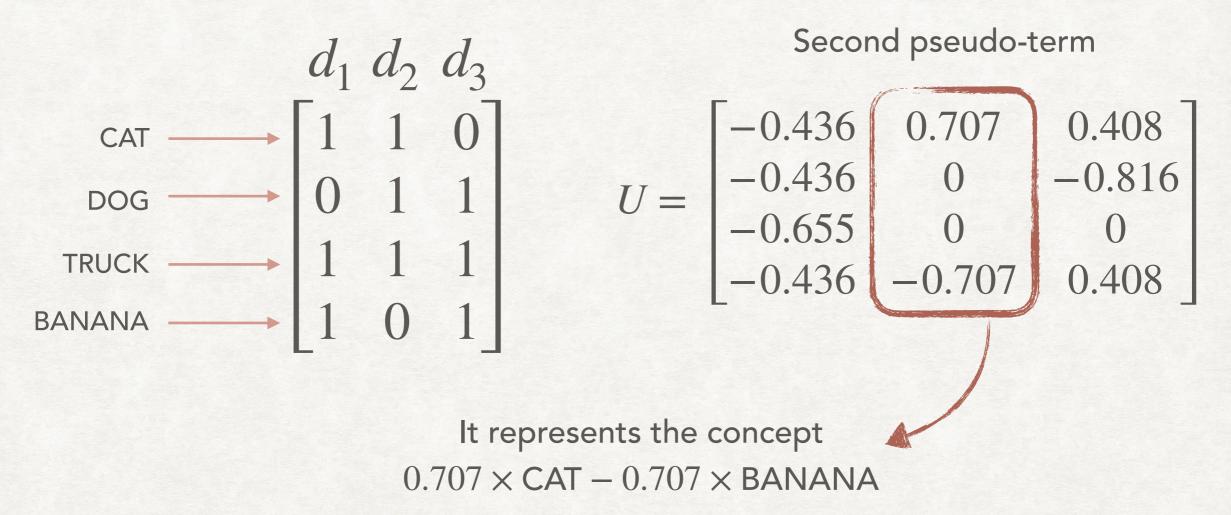
$$\Sigma = \begin{bmatrix} 2.646 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.999 \end{bmatrix}$$

 $V^{T} = \begin{bmatrix} -0.577 & -0.577 & -0.577 \\ 0 & 0.707 & -0.707 \\ 0.816 & -0.408 & -0.408 \end{bmatrix}$

The columns of V^T are a representation of the documents using the pseudo-terms

PSEUDOTERMS

AN EXAMPLE



While we might hope to obtain things like $0.75 \times \text{truck} + 0.25 \times \text{car to}$ represent concepts like "vehicle", the construction of the pseudo-terms totally depends on the term-document matrix, i.e., on the collection.

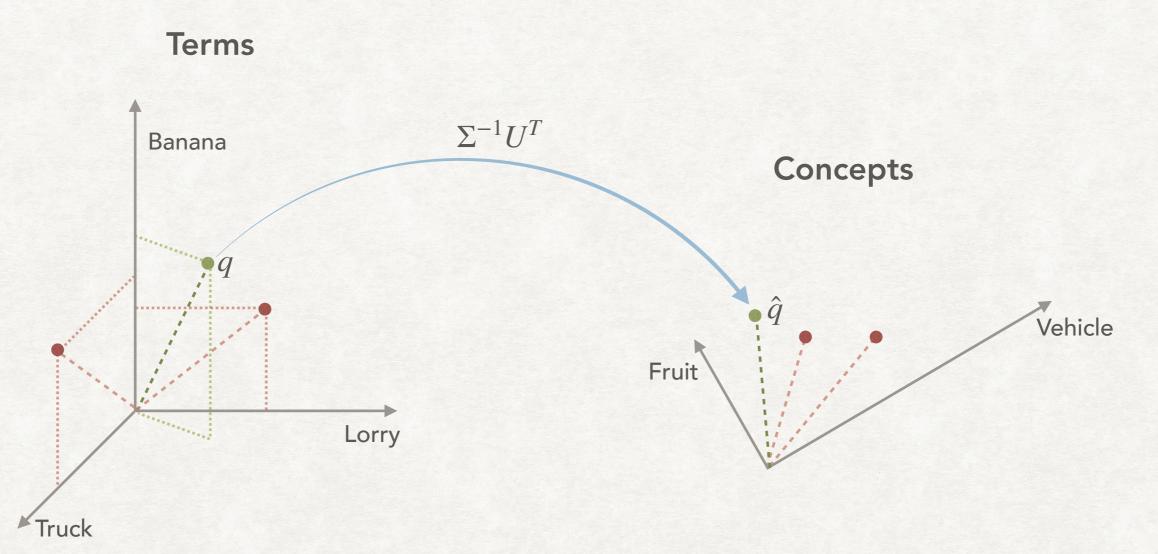
LATENT SEMANTIC INDEXING REMAPPING DOCUMENTS

- A remapped document \hat{d}_i is a column of the matrix V^T .
- To obtain the original document we perform $d_i = U\Sigma \hat{d}_i$.
- Which means that if we want to remap a document in its reduce form we have to compute:
 - $(U\Sigma)^{-1}d_i = (U\Sigma)^{-1}U\Sigma \hat{d}_i$ (multiply by the inverse of $U\Sigma$)
 - $\Sigma^{-1}U^{-1}d_i = \hat{d}_i$ (recall that $(AB)^{-1} = B^{-1}A^{-1}$)
 - $\hat{d}_i = \Sigma^{-1} U^T d_i$ (since the inverse of U is U^T)

LATENT SEMANTIC INDEXING REMAPPING DOCUMENTS

- We can now remap documents by multiplying them by $\Sigma^{-1}U^T$.
- We can reduce the dimensionality of the "concepts space" by selecting $k \in \mathbb{N}$ and using Σ'_k and U'_k
- k represents the number of "important concepts" to keep.
 Usually a few hundreds.
- How about queries? Like in the vector space model they are like documents.
- Given a query q, the remapped query is $\hat{q} = \Sigma^{-1} U^T q$.

QUERIES (GRAPHICALLY)



We remap the query and compute the similarity in the reduced space (for example with cosine similarity)

ADDING DOCUMENTS NOT AS EASY

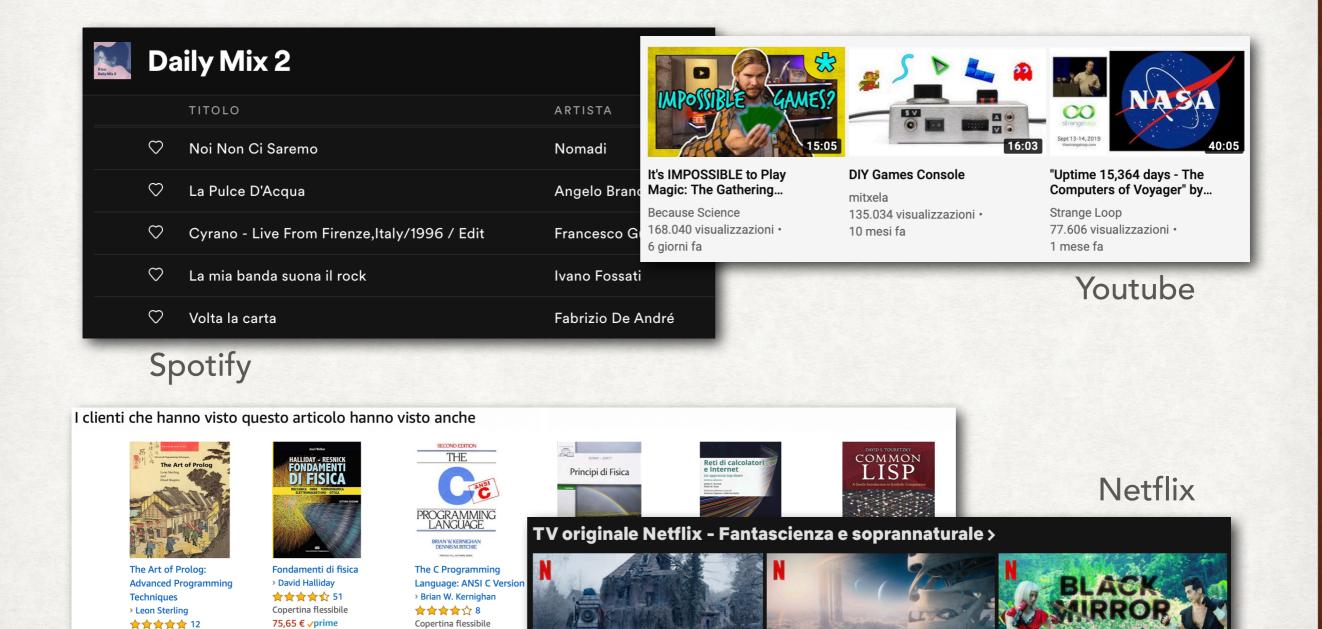
- To add a document d in the standard vector space model is easy.
- To store it in this remapped/reduced representation we must remap it first: $\hat{d} = \Sigma^{-1} U^T d$.
- However, the space of concept has been generated starting from the initial collection.
- While we add documents the concepts can change, thus we might see a degradation of the quality of the retrieval as more documents are added.
- In that case we might need to create a new mapping.

THE GOOD, THE BAD, AND THE UGLY

- Using the latent semantic indexing we can address the problems of synonymity and polysemy.
- By using "concepts" instead of terms we can improve the quality of the retrieval.
- However, computing the SVD is expensive and re-computing it when sufficiently new documents arrive is necessary.
- We can use the same mapping for other tasks: finding synonyms, clustering documents according to topics (e.g., with k-means), expand a query by adding similar terms, etc.

RECOMMENDER SYSTEMS

EXAMPLE OF USES OF RECOMMENDER SYSTEMS YOU PROBABLY KNOW THEM



ALTERED (8)

51,24 € **√**prime

Copertina flessibile

Amazon

72,41 € **√**prime

RECOMMENDER SYSTEMS DONEC QUIS NUNC

- Objective: to create personalised recommendations specific to the user to assist them in their choices. Creating, for each user, a profile as detailed as possible.
- Tastes evolve and groups change, so it's important to know how recent the data we have is and to frequently update the predictions.
- This is an area where large AI companies are pushing a lot, but why? There are few objective risks and a lot of economic gain.
- The dangers associated with these applications are more difficult to perceive:
 - protection of privacy
 - reinforcement of cognitive biases (such as confirmation bias).

BASIC CHARACTERISTICS WHAT PROBLEMS NEED SOLVING

- We do not have a "normal" query, only the previous choices of the user and of similar users.
- We have to provide the user with a collection of suggested items/ documents that he/she might like.
- This is an important feature: according to Google "60% of watch time on YouTube comes from recommendations."
- Recommendation systems are a kind of information filtering systems: we already have all the information, but we need to filter the relevant information.

BASIC CHARACTERISTICS WHAT IS A QUERY

- A "query" for a recommender system is also called a context.
- It is a combination of information about the user, like:
 - An identifier of the user.
 - The history of interaction by the user (e.g. liked video, music listened, watched items).
 - Some additional information, like the time of the day.
- e.g. the user is Mario, she watches 3 music videos of Iron Maiden at 3 a.m.

TYPES OF RECOMMENDER SYSTEMS CONTENT-BASED AND COLLABORATIVE

Content-based filtering

Based on the similarity between **items**

The user likes cat videos... ...we will suggest more cat video Many real-world systems Collaborative filtering

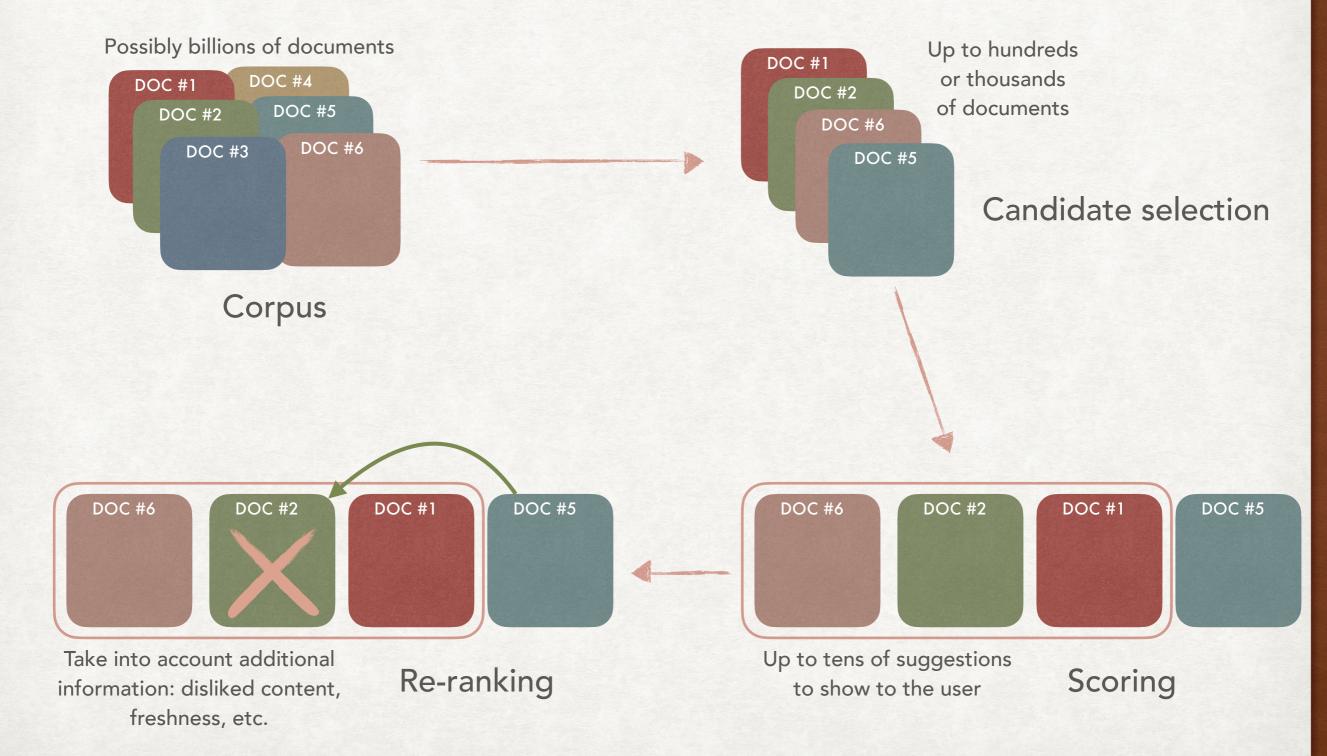
Based on the similarity between **queries** and **items** *simultaneously*

User A is similar to user B... ...user B likes the video "cute cat #37"... ...we will propose it to user A

PROBLEMS FOR RECOMMENDER SYSTEMS

- There are multiple issues that a recommender system must address:
 - Cold start. New documents have no ratings/watching/etc., and new users haven't rated/watched/listened anything.
 - Sparsity. Most users rate/watch/listen only a small subset of the entire collection.
 - Scalability. The collection can be very large, and the time available to make a recommendation quite small.

STRUCTURE OF A RECOMMENDER SYSTEM AN EXAMPLE FROM GOOGLE (YOUTUBE)



CANDIDATE SELECTION WHY A SEPARATE STEP

- We need to provide a subset of the corpus for the next step
- The corpus can be enormous, thus the retrieval must be fast
- There can be multiple candidate selection methods:
 - Based on similar items and queries
 - Based on popularity
 - Based on specific user preferences, etc.
- We can run all of them, it will be the scoring function the one performing the actual choice.

SCORING RANKING THE CANDIDATES

- The same method used for candidate selection can be used for scoring...
- ...but we might have multiple candidate selection methods...
- ...and a separate scoring function can also take additional features into account, since it operates on fewer documents.
- For the scoring we can take into account the user history, the time of the day, the feature of the document, etc.

RE-RANKING A SECOND TIME

- Sometimes it is useful to "arrange" the ranking to ensure additional properties, like:
 - Freshness. Take into account new documents, maybe adding the "age" of a document as a feature.
 - Diversity. If a user likes "cute cat video #37", maybe showing only "cute cat video #n" for all n is not the best choice.

MATRIX FACTORISATION

WHAT IS MATRIX FACTORISATION IN RECOMMENDATION SYSTEMS

- This is a particular technique to map users and documents to a space of features where similarity can be computed.
- This might seem familiar...and it is.
- There are however some important differences.
- First of all, we only have partial information:
 - We know which documents the user likes/dislikes but this is only a small fraction of the documents

USERS AND DOCUMENTS A REPRESENTATION

We have a matrix C (feedback matrix) of users (rows) and of documents (columns). The position $C_{i,j}$ contains if a user liked a document or not.

	d_1	<i>d</i> ₂	<i>d</i> ₃	d_4
Ju ₁	?		?	
u ₂		?	?	?
Ju ₃	?	?	?	

"YOU KNOW NOTHING JON SNOW"

- We can have information about the documents that the user has liked, rated, etc.
- Sometimes we can even obtain information indirectly: e.g., watching an entire video maybe it is an implicit way of "liking" it.
- But for most document we know nothing: the user never accessed them. For example: videos on Youtube.
- Depending on the assumptions that we make about the missing values we can end un with different results.

WHAT WE WANT TO DO MATRIX FACTORISATION

Given a $M \times N$ feedback matrix C, we want to find two matrices U and V such that:

- U has M rows and k columns.
- V has N rows and k columns.
- UV^T is an approximation of C according to some criteria.

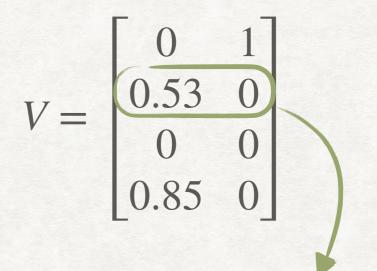
Where the criteria depends on how we treat missing/not observed entries, and k is the number of *latent factors*.

WHAT THEY ARE

User embedding

$$U = \begin{bmatrix} 0.37 & 0 \\ 0 & 1 \\ 0.85 & 0 \end{bmatrix}$$

This is the representation for the first user as a vector of two *latent factors* Item embedding



This is the representation for the second item as a vector of two *latent factors*

The value k (number of latent factors) represents the size of the space in which we are mapping users and items.

AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C_k be the approximation of C built using k latent factors. Let Obs be the set of observed positions and Nobs be the set of unobserved ones

	ГО	1	0	07		
	1	0	0 0 0	0		
	LO	0	0	1		
All unobserved values are 0						

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ All unobserved values are 0, but we weight them with w_0

[?	1	?	?]
1	?	?	?
L?	?	?	1

We do not count unobserved values

We want to minimise $||C - C'||_F$

This actually means that we are performing SVD.

Usually not a good choice since we do not want to force to zero the unknown values!

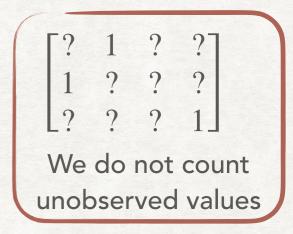
DIFFERENT OBJECTIVE FUNCTIONS AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C_k be the approximation of C built using k latent factors. Let Obs be the set of observed positions and Nobs be the set of unobserved ones

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ All unobserved values are 0

All unobserved values are 0,

but we weight them with w_0

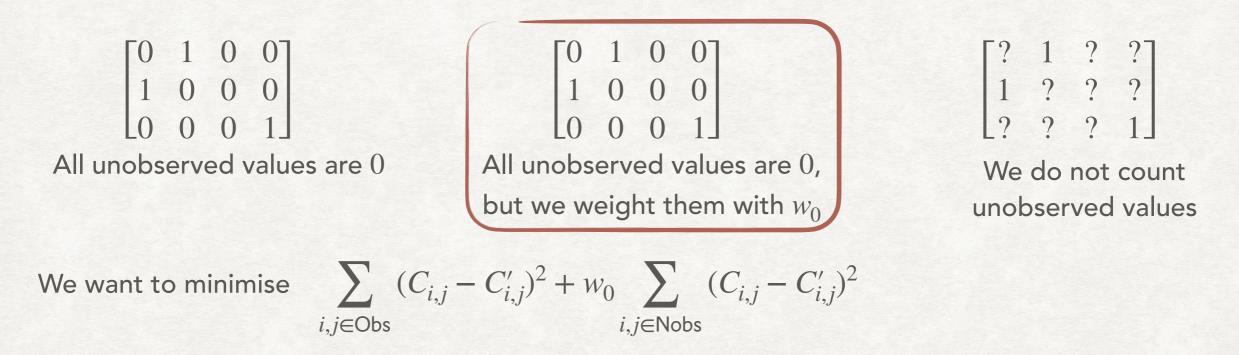


We want to minimise $\sum (C_{i,j} - C'_{i,j})^2$ *i*.*i*∈Obs

This is called Observed-only Matrix Factorisation

AND ASSUMPTIONS ON UNOBSERVED VALUES

Let C' be the approximation of C built using k latent factors. Let Obs be the set of observed positions and Nobs be the set of unobserved ones



The factor w_0 decides how important it is to set the unknown weights to 0

This is called Weighted Matrix Factorisation (weighted MF)

WEIGHTED MF SOME OBSERVATIONS

- We will focus on the Weighted MF, since by changing the parameter w_0 it also includes the other two cases.
- The choice of the parameter w₀ is important, but in practice you might also want to weight the observed values:
- We optimise the function:

$$\sum_{i,j\in Obs} w_{i,j} (C_{i,j} - C'_{i,j})^2 + w_0 \sum_{i,j\in Nobs} (C_{i,j} - C'_{i,j})^2$$

WEIGHTED MF SOME OBSERVATIONS

- How can we perform the optimisation?
- Start with two matrices U and V and iteratively change them. How?
 - Stochastic Gradient Descend (SGD)
 - Weighted Alternating Least Squares (WALS)
- The last one is specific to this task.

WEIGHTED ALTERNATING LEAST SQUARES GENERAL IDEA

The main idea of the algorithm is the following:

- Start with U and V randomly generated.
- Fix U and find, by solving a linear system, the best V.
- Fix V and find, by solving a linear system, the best U.
- Repeat as needed.

The algorithm is guaranteed to converge and can be parallelised.