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Given a model M and a property specification S, does M satisfy S?

M⊨S

That is the case if the model M does not reveal behaviour violating the specification S

i.e. if every behaviour of M is also behaviour of S

Model Checking



Model Checking



● All kinds of components (synchronous, asynchronous, timed, hybrid, continuous 
components) have an underlying transition system

● State in the transition system underlying a component captures any given 
runtime configuration of the component

● If a component has finite input/output types and a finite number of “states” in its 
ESM, then it has a finite-state transition system

● Continuous components, Timed Processes, Hybrid Processes in general, have 
infinite number of states

Transition Systems and state



(Label) Transition System
A Transition System TS is a tuple  <S, I, Act, ⟦T⟧, AP, L>
● �S: set of state, finite or countable infinite
● �I⊆S: set of initial state, finite or countable infinite
● �Act: Set of actions
● �⟦T⟧: is a set of transition relation S�Act�S, si➝

𝛼isi+1   
● �AP: set of atomic proposition on S
● �L:S →2AP   is a labeling function, where 2AP is the alphabet



Transition System

● A execution is an (infinite) alternating sequence of states si and actions 𝛼i 
s.t. Si➝

𝛼isi+1,     
e.g.  ρ= s0 as1b s2bs2bs2…�

● A path is a sequence of states in the TS, starting from an initial state and 
either ending in a terminal state, or infinite,   
e.g. σ = s0 s1 s2 s2 s2…�

● A trace is the corresponding sequence of labels over the alphabet 
e.g. L(s0)L(s1)L(s2)L(s2)L(s2)...=p{p,q}qqq�



Example of a TS
● S ={on, off}×int
● I = { off, x = 0 }
● ⟦T⟧ has an infinite number 

of transitions: 
E.g.  (off, 0)→(on,0)        
(on 0)→(on,1)



(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

TS describes all possible transitions

● Transitions indicated as dotted lines can’t really happen in the component
● But, the TS will describe then, as the states of the TS are over {on,off}×int!



Reachable states of a modified switch TS

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

Reachable states 
and transitions

A state s of a transition system is reachable if there is an execution starting in some 

initial state that ends in s.



Desirable behaviors of a TS

● Desirable behavior of a TS: defined in terms of acceptable (finite or 
infinite) sequences of states

● Safety property can be specified by partitioning the states S  into a 
safe/unsafe set
○ Safe⊆S, Unsafe⊆S, Safe∩Unsafe=∅
○ Any finite sequence that ends in a state q∈Unsafe is a witness to 

undesirable behavior, or if all (infinite) sequences starting from 
an initial state never include a state from Unsafe, then the TS is 
safe.

● Can we use a monitor to classify infinite behaviors into good or bad?



Can we use a monitor to classify infinite behaviors into good or bad?
Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi in 1960

Büchi automaton

Extension of finite state automata to accept infinite strings
A Büchi automaton is tuple A=<Q,I,δ,Σ,F>:
● Q  finite set of states (like a TS) –
● Q0 is a set of initial states (like a TS) –
● Σ is a finite alphabet (like a TS) –
● δ is a transition relation, δ: SｘΣ  →2S (like a TS)
● F ⊆ Q is a set of accepting states

An infinite sequence of states (a path/trace 𝜌 ) is accepted iff it contains accepting 
states (from F) infinitely often



Büchi automaton

Every LTL formula φ can be converted to a Büchi monitor/automaton Aφ

Example: What is the language of A1?



Büchi automaton Example 

Fun fact: there is no deterministic Büchi automaton that accepts this language as it was for Finite Automata

● Note that this is a nondeterministic 
Büchi automaton

● A2 accepts ρ if there exists a path 
along which a state in F appears 
infinitely often

● What is the language of A2?

● S: {q0,qf },  Σ: {0,1}, F: {qf}
● Transitions: (as shown)

○ LTL formula FG(x=1)



Büchi automaton Example 3

● S: {q0,q1 },  Σ: {0,1}, F: {q0}
● Transitions: (as shown)

What is the language of A3?
�LTL formula:

G((x=1)⇒F(y=1))
● I.e. always when (x=1), in some 

future step, (y=1)
● In other words, (x=1) must be 

followed by (y=1)



Model Checking Problem 

Given a model M, a state s, and a property P, the model checking problem is to 
determine if M, s |= P.

● If P is a LTL formula φ, then M, s |= φ if and only if σ |= φ for each σ trace of M 
such that σ[0] = s, i.e. if and only if  the language of (M, s) is contained in the 
language of φ: L(M, s) ⊆ L(φ).

● If P is a CTL formula φ, then the satisfaction M, s |= φ has the usual meaning.
● Analogously, if φ is given by an automaton A, then M, s |= A if and only if L(M, 

s) ⊆ L(A)



MC for LTL 
To solve the model checking problem for LTL for a model Ms (fixing the 
initial state s), the idea is:
● negate the LTL formula φ
● covert the LTL formula ¬φ into an equivalent Büchi automaton A¬φ
● construct the product between the original model and the automaton 

A¬φ, obtaining another Büchi automaton Ms ⊗ A¬φ
● Apply a graph algorithm (identification of strongly connected 

components) to the product automaton to test for language emptiness.



MC for LTL 

LTL model checking is reduced to checking whether an accept state is visited in TS ⊗ A¬φ infinitely often 



Synchronous  Product 

LTL model checking is reduced to checking whether an accept state is visited in TS ⊗ A¬φ infinitely often 

For a transition system TS=<S, I, Act, ⟦T⟧, AP, L> and a automata A=<Q,I,δ,2AP,F>:

TS ⊗ A = (S’, Act, ⟦T⟧’, I’, AP’,L’)

● �S’=S�Q
● �I’ = { ⟨ s0 , q ⟩ | s0 ∈ I ∧ ∃ q0 ∈ Q0 . q0→

L(s0) q }
● �Act: Set of actions
● �AP’=Q
● �L’=(<s,q>={q})
● �⟦T⟧’: 



Synchronous  Product 
Example: Simple Traffic Light with 2 modes: red and green. 

  LTL formula to check 

TS T for the traffic light. NBA A¬φ for

=⇒ Blackboard construction of T ⊗ A¬φ.



Synchronous  Product 
Example: Simple Traffic Light with 2 modes: red and green. 

  LTL formula to check 

Yes! State <s1, q2> can be seen at most once, and state <s2,q2> is not reachable. 
=⇒ There is no common trace between T and A¬φ
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CTL



● CTL is a branching time logic, i.e. reasoning over the tree of executions, i.e.
 one “time instant” may have several possible successor “time instants”

● Its models usually representing computations, in which the branching structure is 
used to describe uncertainty/ ignorance in a non-deterministic way

● We care about CTL because:
○ There are some properties that cannot be expressed in LTL, but can be expressed in CTL (and 

viceversa) 
From every system state, there is a system execution that takes it back to the initial state (also known 
as the reset property)

○ Can express interesting properties for multi-agent systems

Computation Tree Logic



► Basically a tree that 
considers “all 
possibilities” in a 
reactive program

Computation Tree

Process

Finite State machine



CTL Syntax

State Formulae
φ ∷= p | ¬φ | φ∧φ | E𝜓 | A𝜓 

Path Formulae
𝜓 ∷= φ | Xφ | φUφ 



CTL Syntax
Syntax of CTL

φ ∷= p | ¬φ |  φ∧φ | Prop. in 𝐴𝑃, negation, conjunction
𝐄𝐗𝜑 | Exists NeXt Step
𝐄F𝜑 | Exists a Future Step
𝐄G𝜑 | Exists an execution where  Globally in all steps

𝐄𝜑U𝜑 | Exists an execution where in all steps Until in some step

A𝐗𝜑 | In All NeXt Steps
AF𝜑 | In All possible future paths, there is a future step
AG𝜑 | In All possible future paths, Globally in all steps

A𝜑U𝜑 | In All possible future executions, in all steps Until in some step



CTL semantics
● Path properties: properties of any given path or execution in 

the program

● Path Quantification: 
○ Eψ, existential quantification: there exists a path (out of a given state) 

for which ψ holds

○ Aψ, universal quantification: for every path (out of a given state), ψ 
holds. 



CTL semantics

For All executions Eventually/In Some Future step

● Example CTL operator:

 A F  p



CTL semantics through examples

 

    

 

 

   

 

 

  
 

 

 

 



CTL semantics through examples

  

 

 

  

 

 

 



CTL semantics through examples
 

 

 

 

  

 

 

  

 

 

 

 



 

CTL Operator fun



 

CTL advantages and limitations



Timed Automata
Finite-state timed automaton: a machine where all state variables other than clock variables have finite 
types (e.g. Boolean, enums)

State-space of timed automata is infinite (clocks can become arbitrarily large!)

An automata with:

● A set of clock C
● A set of clock constraints on the transition 



Timed Computation Tree Logic TCTL

State Formulae
φ ∷= p | ¬φ | φ∧φ | E𝜓 | A𝜓 

Path Formulae
𝜓 ∷= φ  | φUIφ 



TCTL Example

● A[offU[0,15]on]

● EF(0,2] b


