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BASIC CONCEPTS

= Artificial Intelligence:

Programs that aim at solving tasks commonly
associated with human intelligence.

Artificial Intelligence

Output

= Machine Learning:

Algorithms that solve tasks without being
programmed explicitly, improving with
experience (data).

= Neural Networks:

A specific set of machine learning algorithms.



NEURAL NETWORKS

= Logistic Regression: classification = ~ | neuron neural network

Linear Sigmoid
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NEURAL NETWORKS

= Deep learning

input layer hidden layer 1 hidden layer 2 hidden layer 3
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HOW TO FIND THEWEIGHTS? GRADIENT DESCENT

= Define a cost function (error in A
classification/prediction) nitial ' Gradient
o Weight ,/
(0} /]
" Find set of weights that give the minimum error \ :'I
(minimization problem) '"C“S?me“tal /
tep
= Optimize through gradient descent \ ‘; ':'
/i
!
8J / / .
Change in error with respect » f_f/wnimum Cost
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Learning rate



BACKPROPAGATION

=  Backward pass through the network

®  Chain rule of calculus
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DIFFERENT TYPES OF NEURAL NETWORK ARCHITECTURES
= Fully connected = Recurrent NN
2
- |_,_°__\C = Autoencoder

Input layer Hidden layer Output layer

Input Layer Hidden Layers Output Layer Recurrent Neural Network

“bottleneck”

= Convolutional Neural Networks Lt s

Fully-C cted Fully-C cted
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—A-\
(5 x 5) kernel Max-Pooling (5 x5) kernel Max-Pooling

valid padding 2x2) valid padding (2x2)
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OUTPUT

n2 channels n2 channels

INPUT v nl channels nl channels 2 ch
(28x28x1) (24 x24 x n1) (12x12xn1) (8x8xn2) (4x4xn2)



CONVOLUTIONAL NEURAL NETWORKS
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SUPERVISED VS UNSUPERVISED VS SELF-SUPERVISED LEARNING

a) Unsupervised learning
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APPLICATIONS TO MEDICAL PHYSICS




APPLICATIONS IN IMAGING

= Computer Aided Diagnosis A

Mass Detection Mass Segmentation Mass Classification

3 i mﬂ]ﬁ}m »

Deep learning based YOLO ﬁDeep Learning based FrCN Deep Learning based CNN
Input g /" Final Decision
Mammogram of CAD system

Malignant

Lung tumor

{a) Normal {B) Pncumonta {c) COVD-19



APPLICATIONS IN IMAGING

u [raditional reconstruction algorithms:
: ; FBP HIR MBIR DLR
5-|n-;,:||:_| ram Somain

Filtered Back Projection, Iterative

Reconstruction 100% dose

- Noise increases with less dose

®  Deep learning based reconstruction
and image denoising:

50% dose

25% dose

Image domain

e
G

X-Ray
Transmission
Measurements

~. = Detector Array



APPLICATIONS IN IMAGING

= MRl scan advantages: = CT scan needed for dose calculation

= Synthetic CT Generation .
- Better soft tissue contrast (electron density)

for MRI Guided Radiotherapy

- No radiation dose

Generative Adversarial Networks (GAN)

Generator

Synthetic CT

Discriminator
\

‘ I ——3p» Fake/ RealCT




APPLICATIONS IN IMAGING

= Automatic Image
Registration

Multimodality: PET-CT, CT, MRI

To combine data from different imaging modalities
Deformable image registration on the same modality,
changes in patient anatomy, deforming contours/dose distributions

For image guided radiotherapy: to aid patient positioning

Network predicts the affine transformation (rigid registration) or
deformation fields (deformable registration)



RADIOMICS VS DEEP LEARNING

Image Acquisition Lesion Delineation Feature Extraction Statistical Analysis/Model Building
= Conventional Machine Learning Algorithms and @
S DE'SEI.'ip-ti'n'E'
Statistics combined with image features ‘w@ ddp) e
. . . o0
(radiomics) can be used to predict: rdor e\ { ~—
Forests networks ctatistics
. . Machine mA o
= Bening vs Malignant tumors learing ‘& Ci: % o
. . — .'\\\\
= Treatment Prognosis/Survival Support vector p—
machines

Endpoints

RECIET
JE——

=

®m  Lession classification

= Deep Learning automatizes the radiomic
workflow.

Fig.1 Outline of the two kinds of radiomics pipeline. a The classi- either statistical or machine learning methodologies. b The deep
cal/conventional radiomics model where, after image acquisition, learning radiomics pipeline where, after image acquisition, neural
areas of interest are delineated and handcrafted features are extracted. networks automatically perform feature extraction, selection, and

Subsequently. models are built around these predefined features using classification



RADIOTHERAPY

External Beam Radiotherapy objective: deliver a high radiation dose to the tumor while keeping dose to normal
tissue low.



RADIOTHERAPY WORKFLOW

MR /CT Follow-up
imaging in and response
the treatment assessment

position



APPLICATIONS IN RADIOTHERAPY

Input tile - - w Segmentation
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v 1024 4 4+ up-convelution (2x2)

s > - L] + max pooling [2x2)

e Saves time from the
= U-net architecture radiologist
e Standardize contours

=  Automatic
Segmentation of
Organs at Risk



RADIOTHERAPY PLANNING

= |teratively decide treatment parameters until a
satisfactory dose distribution is obtained:

= Uniform dose to the tumor

= Limit on dose to organs at risk

Dose Yolume Histogram
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APPLICATIONS IN RADIOTHERAPY

Knowledge Based Planning:

= Traditional KBP uses geometric and anatomical
features (i.e. OAR distance to PTV) to find the
“best” dose distribution from a database (in terms
of DVHs or other dose metrics) -> Varian

RapidPlan.

Relative Volume (%)

" Predicted dose metrics used as a starting point for \ ‘
the optimization. 00 0

Relative Dose (%)




APPLICATIONS IN RADIOTHERAPY

= Deep learning architectures can be leveraged
to predict an ideal dose distribution from the
patient anatomy (CT image). Dose prediction.

= Machine Learning Planning in Raystation
(random forest algorithm)

i Mimicked
» E




APPLICATIONS IN RADIOTHERAPY

= Adaptive Radiotherapy:
= Off-line adaptation for changes in the tumor
=  Online daily adaptation

Real time planning with patient in the room

Blagder at . Bladder ot
simulation | treatment

Distended rectum
at treatment

Daily changes in patient anatomy and organ movements



CHALLENGES

= New responsibilities in the clinic: = Interpretability of Al Models:

= Acceptance : :
P Deep learning models are considered to be black-box

= Commissioning models in practice. It is difficult to know why/how the

= Continuous Quality Control (data model is doing something.

drift) = Reliability/Trustworthiness:

m  Of all additional software This becomes an issue with models we don’t understand.



INTERPRETING NEURAL NETWORKS

Input Image
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EXPLAINABILITY IN Al

= This reveals that very accurate models
sometimes memorize artifacts. In this
example for COVID x-ray detection, the
model focuses on text in the image.

= Methods that highlight the relative
importance of parts of the image: what
the model is “looking at” when making
a decision.




VISUALIZING ARTIFICIAL NEURONS

= Curve detecting Neurons

3b:406

3b:379

! \\\ ii

3b 388 3b:340 3b:330 3b:349 3b:324

Image Optimization Maximum Dataset Activation



NEURON “GROUPS” THROUGHOUT LAYERS

Gabor Filters 44% Color Contrast 42%

Color Contrast 16%

Proto-Head 3%

‘ G i? : f

Line 17% Tiny Curves 6%  Textures 8% Corners 2%
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CURVE DETECTING CIRCUIT

conv2di conv2d2 conv2di 3a 3a 3b
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TO COMPLEX OBJECT DETECTORS

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car
detector, especially at
the bottom.

Wheels (4b:373) excite
the car detector at the
bottom and inhibit at
the top.

@ positive (excitation)
® negative (inhibition)

A 'y I oF

=~ —

A car detector (4c:447)
is assembled from
earlier units.



CONCLUSIONS

= Artificial Intelligence and in particular, deep learning, provide a high degree of accuracy in a wide range of tasks,
and a big opportunity to automate the medical physics workflow.

= [Interpretability and explainability of these models will become a more pressing subject as adoption becomes
more widespread.

= Deep learning models are not directly interpretable, but there are some techniques that aid in improving their
understanding and research is being done to improve their understanding.
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