Theorem 0.1 (Riesz—Thorin). Let T be a linear map from LP° (Rd) N LP1 (Rd) to Lo (Rd) N
LT (RY) satisfying
\Tfllre; < M|l fllges forj=0,1.

Then fort € (0,1) and for p; and g defined by

I 1-t n t I 11—t t
Dt Pbo b1 ’ qt q0 q1
we have
IT £l Lo < (Mo) (M) fllzwe for f € LP(RT) N LP*(RY).

Proof. First of all notice that if f € L* N L? with a < b then f € L¢ for any ¢ € (a,b). To

see this recall Holder L1

1
1fgller <\ fllzellgllpe for —=—+ -~
r P q

+ % for t € (0,1) from |f| = |f|*| f|*~* we have

t
a

I llze = WA Nze < WP e A ey = DNzl F 1"

Then, since % =

For p; = po = p1 = oo (in fact we can repeat a similar argument for p; = pp = p; any fixed
value in [1,00]) we then have

ITfllzae < ITFNZar 1Tl a0 < (Mo)' ™ (M) | f | poe

So let us suppose p; < co. Then it is enough to prove
\/ngdw! < (Mo) " (M) | fllLoelgll o = (Mo) (M)

considering only [|f|[zr: = 9]l 4
take the E; to be finite measure sets mutually disjoint. If ¢; < oo we can also reduce to

= 1 for simple functions f = Z;”:l ajxgE; where we can

simple functions g = fozl bixF, where the Fj; are finite measure sets mutually disjoint.
The case ¢; = oo reduces to the case p; = oo by duality. In fact, see Remark 16 p. 44 [2],

HTHﬁ(Lpt,Ll) = HT*HL(Loo’LPé)'

Notice that if both py < oo and p; < oo and since we are treating qo = g1 = 1, then

T zezri )y = HT*”L(LOO,L”;) < M; and so one reduces to the case p; = oo. If, say,

po = oo, then ||Tzpe 1y = [T < My since p1 < oo, but [T zzro,1) =

L(L>,LP1)
IT* || z(zo0 (o)) < Mo, so in other words, we don’t get a Lebesgue space. However, the
issue is to bound for f € LP°NL>® a T*f € L' N (L>®) = L' where ||T* f||(zooy = IT* f| 1,
so that one can still apply the above argument used for p; = oo.



Let us turn to the case p; < oo and ¢, < co. For a; = €%|a;| and by = €'¥*|bg| the polar
representations, set

s a(z) 1—2z =z
fo = lag| =@ % yp; with a(z) := + —
N j:l‘ i I =) Po P1
Noooise 1—
gs = E b | T80 eVEx . with B(z) = qOZ i

k=1
Notice that since we are assuming ¢; < oo, then ¢; > 1 and so 3(t) = q—lt < 1, so that g, is

well defined. Similarly, since p; < oo we have «a(t) = plt > 0, so also f, is well defined.
We consider now the function

F(:) = [ Th.g.de

Our goal is to prove |F(t)| < My ~‘M;j.
F(z) is holomorphic in 0 < Re z < 1, continuous and bounded in 0 < Re z < 1. Boundedness
follows from estimates like

l|a; | Co) | = |aj] o which is bounded for 0 < Rez < 1.

We have F(t) = [T fgdz since f; = f and g, = g.
By the 3 hnes lemma, see below, which yields |F(z)| < Mj 8¢ MJe? if the two estimates
below are true, our theorem is a consequence of the following two inequalities

|F(2)| < M for Rez=0;

|F(2)] < M for Rez=1.

For z = iy we have for py < oo

» m a(iy) Ppo m %+iy(§7%) po
iy = lagl =@ | Xz, = |lag] Pt XE;
P =1
m ) N Po m
Z \ypt lajl™ | xe; =Y laiPxe; = |17
j=1 j=1

This implies

il = ([ 1) ™ = ([ 1) ™ =1 0.1)

Notice that we have also || fiy||oc = 1 when py = oo.

Proceeding similarly, using 1 — §(z) = 1(1_,Z + o, for z =iy and ¢, < oo we have
0 1
/
w2 —1 a |%
, "\l g 90
d al 1-8(iy) |90 N T T N y y
il =D 1Bkl PO | xm =D (el (bl | xmo= ) [kl %xm = 1g]%.
k=1 k=1 j=1



This implies

O\‘H

1
/ af
iyl = (/Rd ’giy‘%dx> o _ (/ |g|qtdx) =1 (0.2)

Notice that we have also ||giy|/cc = 1 when g = oo.
Then

[E ()| < T fiyllao |91l gy < Moll fiylpolgiyllgy = Mo-

By a similar argument
[ frait = [P

! /
|91+iy|™ = |g]*.

Indeed by a1 +iy) = % — ;i%

m

‘f1+iy’p1 = Z
j=1
m
Z M%‘

andbyl—ﬁ(l—l—iy):%—;—z

a(l4iy) h1
|aj| =@

m PP Bo/
= Z ‘aj‘ Pt XE;
j=1

m
= lajlPxe, = |f"
j=1

~

a1
w(g-) &
N 1—B(1+iy) @ N % qil N
q, 7 7 q q
|11y = Z b PO | xp, = Z b b @ — Z bk | %X, = |g]%.
k=1 k=1 j=1

Finally

qt

P+ )] < T iyl 91l < Ml ol gl = Mill 152 gl = M.

O
Here we have used the following lemma.

Lemma 0.2 (Three Lines Lemma). Let F(z) be holomorphic in the strip 0 < Rez < 1,
continuous and bounded in 0 < Rez <1 and such that

|F'(2)] < My for Rez =0,
|F(2)| < My for Rez=1.

Then we have |F(z)] < Mg~ %*MRe* for all 0 < Rez < 1.



Proof. Let us start with the special case My = M; = 1 and set B := ||F||e. Set he(z) :=
(1 + ez)~! with € > 0. Since Re(1 + €z) = 1 + ex > 1 it follows |he(2)| < 1 in the strip.
Furthermore Im(1 + €z) = ey implies also |h(2)| < |ey| . Consider now the two horizontal
lines y = £B/e and let R be the rectangle 0 <z <1 and |y| < B/e. In |y| > B/e we have

B B

|F(Z)h€(2:)’ S @ S |€B/€|

On the other hand by the maximum modulus principle
sup |F(2)he(2)| = sup |F(2)he(2)| <1,
R OR
where on the horizontal sides the last inequality follows from the previous inequality and

on the vertical sides follows from |F(z)| <1 for Rez = 0,1 and from |h.(z)| < 1.
Hence in the whole strip 0 < x < 1 we have |F(2)he(z)| < 1 for any € > 0. This implies

lim [F(2)he(2)] = [F(2)] <1

in the whole strip 0 < z < 1.
In the general case (M, M) # (1,1) set g(z) := My~ *M7. Notice that

glz) = el 08 MogeIos iy 1g(2)] = 1M =
min(My, M) < |g(2)| < max(My, My).

So F(z)g~!(z) satisfies the hypotheses of the case My = M; = 1 and so |F(2)| < |g(2)| =
Mol—ReleRez

O
Recall the formula
_6ﬁ _d —i¢x _l=?
e 2 = (2me) 2 e “*e” 2¢ dx for any € > 0. (0.3)
R4
1  Schrodinger equations

For up € §'(R?,C) the linear homogeneous Schrédinger equation is

iug + Au =0, u(0,z) = up(x). (1.1)

By applying F we transform the above problem into

d ixf?

This yields (¢, &) = e T(€). We have e EI° = G(¢, &) with G(t,z) = (2ti) 2e ar .
This follows from the following generalization of (0.3) for Rez > 0

_le? _d g =l
e ? 2 = (27z) 2/ e T2 .
Rd

4



This formula follows from the fact that both sides are holomorphic in Re z > 0 and coincide
for z € Ry. Then taking the limit z — 2i for Rez > 0 and using the continuity of F in
S'(R?,C) we get

Jel2 d i ilel®
e 6 = (4ri)2 / e %I dy.
R4
Then u(t,z) = (2%)_%G(t, ) * ug(z). In particular, for ug € LP(R?,C) for p € [1,2] and by
Reisz’s interpolation defines for any ¢ > 0 an operator which we denote by

ilz—y|?

ePlug(z) = (47rit)_% /Rde a up(y)dy (1.2)

which is s.t. e : LP(R% C) — LY (R, C) for p € [1,2] and p/ = S with |8 tugl| <
(47rt)_d(%_ﬁ) |luo||z» by Riesz interpolation.
Remark 1.1. Notice that for no p # 2 and ¢t > 0 we have that ¢! defines a bounded
operator LP(R? C) — LP(R%,C), see [9].
Remark 1.2. Notice that et : LP(R?) — LI(R?) is a bounded operator for all 1 < p < ¢ <
0.

Notice that (1.1) is time reversible. and if u(t, z) = e®ug(z), then v(t, z) = u(—t,z) =

e Pg(x) is a solution.

Let now u(t, z) = e'®tug(z), and for v, D € R? consider vy(z) = €2 ug(x — D). Then
v(t,z) = ePlug(z) = eiv'x*i%tu(t, x —tv—D).
In the sequel, given v, w € L*(R%, C) we will use the notation
(v,w) = Re /]Rd v(x)w(x)dx. (1.3)

In the sequel we will reinterpret the equation

iu + Au=f, u(0)=uy e HY(R?) (1.4)
in the integral form
t
u(t) = etPug — i / A phdt. (1.5)
0

To understand this formula we will need Strichartz’s inequalities.
We say that a pair (g, r) is admissible when

2 d d

242 _Z 1.

PRI (1.6)
2d . .

2§r§m(2§7’§001fd:1,2§7’<001fd:2). (1.7)



2d
Remark 1.3. The pair (o00,2) is always admissible. The endpoint (2, m) is admissible

for d > 3 but the point (2,00) is not for d = 2. The equality (1.6) needs to be true by the
parabolic scaling u(t, z) ~ u(\%t, A\x), which preserves the set of solutions to (1.1).

We have the following important result.

Theorem 1.4 (Strichartz’s estimates). The following facts hold.

(1) For every uy € L*(R?) we have ¢®tuy € LI(R, L™ (R?)) N CO(R, L*(RY)) for every
admissible (q,r). Furthermore, there exists a C' s.t.

HeiAtUOHLq(R,LT(Rd)) < Clluol| 2 (1.8)

(2) Let I be an interval and letty € 1. If (7, p) is an admissible pair and f € L (I, L” (R%))
then for any admissible pair (q,r) the function

TH) = [ @0 s)ds (1.9)

belongs to LI(I, L™ (RY)NCO(T, L>(RY)) and there exists a constant C independent of
I and f s.t.
1T fllpor,orwayy < CUFll Ly (1,00 mayy- (1.10)

2 Keel and Tao’s proof of Strichartz estimates

We will follow the argument by Keel and Tao [8]. We will assume that (X,dx) is a
measurable space and that H is a Hilbert space. We consider a family of operators
U(t): H— L*(X). We assume the following two hypotheses.

(1) There exists a C' > 0 s.t.

[U@) fllr2 < Cllf[lz for all f € H;

(2) there exist a 0 >0 and a C' > 0 s.t. for all ¢ # s and all g € L'(X) we have

U@ U (s)) gllLee < CJt = s[7|gll -

We say that a pair (g, r) is o—admissible when

2 20
7+7

=0

q (2.1)
rq > 2 and (q,r, 0) 7£ (2,00, 1)

2
Particularly important, for ¢ > 1 , is the point P = (2, 01> .
o —

6



Notice that (1) implies |U*(t)F|2 < C|F|[z2 by duality and that (U(t)h, f) 2(x) =
(h, (U®) Fhpg

Theorem 2.1 (Keel and Tao’s Strichartz estimates). If U(t) satisfies (1) and (2), and if
furthermore there exists an appropriate scaling operator in X and H, then we have

(3)
U (2ol o2 (xyy < Cor ol
)
I ) Fs)dsllin < 1Pl o vy
(5)

U)(U())* F(s)dsll ace.r(x0)) < CorarlFll g o7 (-

|
t>s
for all admissible pairs (q,r) and (q,7).

(3) is called the homogeneous estimate and (5) the non-homogeneous estimate or also
the retarded estimate. (3) and (4) are equivalent by duality. The scaling operators are used
only in Sect. 2.2.

2.1 Proof of the nonendpoint homogeneous estimate

We consider the case (q,7) # P. The proof of this case predates the paper by Keel and
Tao.
It is elementary that (4) is by duality and hypothesis (1) equivalent

< CIF o @ xep |Gl ot .2 (00

[ W66, 0060 s

So we have to prove the above estimate. Furthermore, it is enough to prove the above
bound for

T(F,G) = / (U(3))*F(s), (UL)*G(t)) 1 dtds. (2.2)

t>s

By (1) we know that (3) holds for ¢ = co and r = 2. So pointwise

(U ()" F(s), (U1)*G()) | = ‘<U(t)(U(5))*F(S)>G(t»L?(X)
<T@ () F(s)l2x) IGO 2 (x) < CPIF ()2 IG#) 22 (x)-

!Notice that since h — (U(t)h, f)r2(x) is continuous, an element f* € H remains defined such that
(U@h, fyr2(xy = (hy [*) - The map f — f* is linear, bounded and (U(¢))"f := f".




Furthermore

[((U())"F(s), U($)"G(0) | = [(UE)U(s))"F(s), G(t)) p2(xy| < UG U ()" F ()l oo x) 1G] 1)
SOt =s["7F () 1) GO L1 x)-
From the Riesz—Thorin Interpolation Theorem, see Theorem 0.1, we have (omitting the
constant) for any r € [2, o]
* —o(1-2 —1=p(rr
UMW) F ()l prx) S N = 81 CDIES) | oy = 1= 810D ()]
o o

h —-1-2_-2
where B(r,7) == 0o .

Then we conclude
(U ()" F(s), U0) G0 | S [t = |7 PONE ) o o) IGO L (x0)-

For % — % = —p(r,r), using the Hardy,Littlewood Sobolev inequality, see Theorem 7?7,

which requires ¢ > ¢/,

IT(F.G) < | /R |t — 5‘7176(71’7")||F(5)||Lr’(x)d5||LQ(R)HGHLq’(RLr’(X)) S HFHLq’(R,Lr’(x))||GHL<1’(R,LT’(X))~

Notice that % — = = —f(r,r) means

1
q
2 2 2
1-2= o41+22 024272,
q r g

and —f(r,r) > 0 means

20

r < .
oc—1

2.2  Proof of the endpoint homogeneous estimate

Here we consider the endpoint case (¢,r) = P = (2, 2%), when o > 1.

The introduction of a scaling operator will simplify considerably the discussion. We
will denote it by D) for A > 0. We assume the following:
1. there exist operators Dy : H — H s.t. (D xf,Dag)y =X (f,9)y
2. there exist operators Dy : L"(X) — L"(X) s.t [[Dafllr(x) = A_%HfHLT(X)
3. in all cases Dy = Dy-1 and D} = A7 Dy 1.

Notice that for o = %l, H = L*(R%) and X = R? with L"(X) the standard Lebesgue spaces,

then Dy f(x) :== f ()\%m) satisfies the desired requirements. Notice that we used the same
notation for dilation operators in H and L"(X), but they are distinct operators.



Lemma 2.2. Let the function t — U(t) satisfy (1) and (2) in Sect. 2. Then t —
D)\U(Mt)Dy-1 satisfies (1) and (2) in Sect. 2 with exactly the same constants C.

Proof. Indeed
IDAUA) Dy £l 2 = A2 [UN) Dy-1 fll 2 < CX"2 Dy fllr = Cllf I
and from (D \U(As)Dy-1)* = D\(U(As))*Dy-1,

[DAU (M) D=1 (DAU (As) Dy-1)" f[| oo [ DAU (At) (U (As)) " D=1 f| oo
= [[UA)UAs))" Dy fllzee < CAT[t = 8|77 | Dy-1 fll 1 = Clt = 8[| fll 1

O
After the above preliminary on scaling operators, expand
T(F,G) = ZTJ(F’ G) where T;(F,G) := / ((U(s))"F(s), (U(t)"G(t))y dtds.
jez t—27>s>t—27+1
(2.3)
We will prove
D TFG)| S Fll o G o o (2.4)

JEL
We will prove the following.

Lemma 2.3. For a fized constant C' dependent only on the constants in (1) —(2) Sect. 2.
we have '
IT3(F, G)| < C27 PO F|| oy |Gl 2 (2.5)

with (1/a,1/b) in a sufficiently small, but fixed neighborhood of (1/r,1/r), dependent only
ono.

Proof. Notice that

Tj(F,G) = / (U(s))*F(s), (U(D)"G(1)) 5 dtds

t—21>s>t—27+1
= 223'23'“/ (Dy; (U(275))* Dy Dyi F(275), Dy (U(271))* Dy Do; G(2't) ) ,, dtds.
t—1>s>t—2
Suppose now that we have (2.4) in the particular case j = 0. Then we have

‘TJ(F7 G)’ < C22j2jUHDzJ'F(2j3)HL?La’ HszG(th)HBLb’ = CQQijUQ_j(H%JF%) ”FHL2La’ HGHL2L’>’

= 02‘7'(2+071720.+%+%)”F||L2La/HGHL2Lb/ = C2j(lig+%+%)”FHL2La’HGHL?Lb’ = C2_jﬁ(a’b)HFHL2La’”GHLQLI’/

where we recall f(a,b) =0 —-1—-2 — 2.



So we have reduced to the case j = 0. Next we do another reduction. We claim that to
prove the case j = 0 it is enough to assume that F' and G are supported in time intervals
of length 1. Indeed, assuming this case, then we have

: Z /n+1>t>n dt/t 1>5>1—2 (U(s))"F(s), (U0)"G(#)) pr ds

ne’l

To(F, G)]

1
2
< O YNl 125 1G22 <c<ZHFHL2(<M+l)La ) (ZHGHLZ Py )

ne”l neZ nez

[N

‘”(Z”F” ) (ZHGHWIM) = OVl g [

ne”L nez

Hence, in the rest of the proof we will assume that F' and G are supported in time intervals
of length 1. To prove (2.5) for j = 0 we consider three cases:

(i) a=b=0o0
(ii) 2<a<rand b=2
(iii) a=2and 2 < b < 7.

Then the desired result follows by interpolation.
Let us start with (i). The proof is elementary and straightforward, because we have

MEGI< [ar [ ) FE).C0)x lds

<c / dat / it — s IF) | IGE) 1 < C / dat / 1 () | GOl
t—1>s>t—2 t—1>s>t—2
< C|F|\pipGllpipr < C\Fllp2p1 |Gl p2pr-

Let us now consider (ii). Here we will use the Strichartz estimates in Sect. 2.1. We have

mrol< [I([  we)Feasowren) i

| H

II(U(t))* ()|t
t—1>s>t—-2

/t‘1>8>t—2(U( / |(U(#)* Gl
/t—1>s>t_2(U(s))*F(3)dS

where we used (1) in Sect. 2. Now, using the non endpoint Strichartz estimates in Sect.
2.1 (notice here 2 < a < r) we have, for (¢(a),a) admissible,

/ (U(s))" F(s)ds
t—1>s>t—2

U(s))*F(s)ds

Ssup’
t

)

< ClGll e sup\
t H

< CHFHLq(a)’La’ < OHFHL?La"

sup ’

t H

10



This proves (ii) and by symmetry yields also (iii). O

Now we need to show that (2.5) implies (2.4). Obviously, we cannot just take a = b =r
and sum up, since f(r,r) = 0. To give an intuition on how to overcome this problem, Keel
and Tao consider functions of the form

k

F(t) =277 f(Dx (@) and G(s) =277 g()X ) (), (2.6)

with scalar functions f(t), g(s) and E(t) resp. E(s) sets of size 2¥ resp. ok Applying (2.5)
we obtain

k_k
/ 7

IT3(F,G)| < 0273(0-1=5=F)g-Frouo-
= 029 -5-%) g~ D=1+ £ 5| 1] L2 g 12

= 02T e DGR G0) ) £ 2 g 2

= 02k=39) (G =2)+(E=39) (F=3) || ][ 12l g | - (2.7)

2V fllz2llgll 2
g

Notice now that we can adjust (a,b) s.t. for a fixed small € > 0 the last term equals
O T PP (2.8)
whose sum for j € Z is finite.
To convert the above intuition in a proof we consider the following preliminary lemma.
Lemma 2.4. Let p € (0,00). Then any f € L% can be written as

= crx

kEZ

k 1
where meas(suppxr) < 2 2%, |xx| <277 and |kl < 27 || f]|Le-

Proof. Consider the distribution function A(a) = meas({|f(z)] > «}). Then for each k
consider
1

k
o= nE o= 2hak k= X (1))

Notice that {oy }rez is decreasing in k (since, the larger k, the larger is the set {a : A(a) <

2F1).

We show the desired properties. We have
suppxx C {z : agr1 < |f(@)| < ai} CH{z:|f(z)] > agi1}-
Then we get the 1st inequality:

meas(suppxg) < meas({z : |f(x)] > ar11}) = hm AMa) =sup{A(a) : a > appq}) < 2FFL

a%a,ﬁq

11



Next, by [f(z)| < oy in suppxy, we have
@)

873

hSAES

Ixk(w)] <2 <2

Let now lim o = inf ap = o and lim o = sup o = @. Then we claim that & = 0 and
k—+o00 keZ k——o0 kEZ

that |f(x)] < @ a.e. Indeed, suppose that |f(x)| > @ on a set of positive measure. There
there is o > @ with A(a) > 2% for some k € Z. Then o, > a > @, which is a contradiction.
On the other hand, suppose we have 0 < o < . Then A(a) = oo, since otherwise \(a) < 2¥
for a k, and then a > ap > a > «, getting a contradiction. But by Chebyshev’s inequality,

00 > || fllLy = aPAa),

hence getting a contradiction. The above claim and the obvious fact that for any x we
have |f(z)| € (ag41, 0] for at most one k, prove f = ZCka (the claim guarantees the

kEZ
existence of one such k).

1
We have || f||zr < 27|/ck|/e» by

17112, = / PP = / S el uelPdz = 3 Jexl? / xelPdz < 3 JexlP2Fmeas(suppx)

kEZ keZ keZ
<2 lal
keZ

Next we have

Sl =3 2kof = |

keZ kez R

a? (Z 2k5(a — ozk)) da = / o (—F'(a))da

Ry

where

Fla):=> 2"H(ap—a)= Y _ 2"< > 2F <2xa).

keZ ag>a 2k <\(a)

Then, integrating by parts and using (?7),

> el ZP/

o F(a)da < 2p [ Na)da =2 f]f,
keZ Ry

R4

1
so that [|c||ew <27 f| 1r.
O
Furthermore we have the following.

Lemma 2.5. Let 1 < q,r < oo and let f € LI(I, L) with I an interval. Then we can write
the expansion of Lemma 2.4

F=> a®)x() (2.9)

keZ
with t — {cx(t)} a map in LI(1,0").

12



Proof. Formally this follows immediately from

1
Hex @ zaery = IHex @3 ler oy < 27 111z -

However one needs to argue that the function t — {ci(t)} is measurable. By a density

argument it is enough to consider the case of simple functions f = Z X&, (t)gj(z) with
7j=1,..n

E; mutually disjoints sets. Then A(t, ) = meas({|f(t,z)| > a}) = Z XE; (t)Aj(a) with
j=1,...,n

Aj the distribution function of g;. Then ay(t) =32,  , XE; (t)a,(gj) with a,gj) defined like
in Lemma 2.4 for each g;. Then

{a®y= Y xg O} for ¢ff) = 2r 0.

Jj=1,...,n
This is measurable in .
]
Consider now the
F(t) =Y flt)xx(t), G(s)=_ gr(s)Xu(s). (2.10)
keZ keZ
By (2.6)—(2.8) e have
S ITEG) < 3 T (fexi 5] < © 3 2-=otFiel) 1o lge 2
J jikk jikk
= O [ ST aEteiel=el il )y e gz -
kk J
We claim that for a fixed C' = C(o,¢)
3 gelkiolelkiol < comelbFl(1 4 |k — R)). (2.11)

J

To prove this inequality, it is not restrictive to assume k& < k. Then the summation on the
left can be rewritten as

Z 92ejo—e(k-+k) T Z 9—e(k—k) T Z oe(k+k)—2ejo
Jjo<k k<jo‘§E E<jcr

Then (here [t] € Z is the integer part of ¢ € R, defined by [t] <t < [t] +1)

oo
Z g2ejo—e(k+k) _ 9—e(k+k) Z 92ejo _ g—e(k+k) Zzzsa([g]—j) = O, 2 cU+h)+2e0(2]
Jsk <[] 7=0

_ % ok (o kT 1
S 050_2 €(k+k)+2€ > — Cgaz €(k k) — 050_2 E‘k kl Where CEU — m
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We have

i T)—2ej0 — e (ki) 2ejo  oc(kih) > 250 +1+]) a(k+E)—2w([§]+1)
Z 2 <2 Z 2 = Z 2 Ceo?
k<jo 7[;]+1 7=0

< CEUQa(k-FE)—QEUE _ 0602—8(E—k) _ 0802_5|k_']5"

Finally
3 g—c(b—k) _ o—c(h—k) 3 1 = 9—e(k—k) <[k] _ {k} - 1) < o~ lo=sh=R) (k)
~ _ o o -
k<jo<k [£)+1<jo<[2]

Hence (2.11) is proved. From this we conclude that for a fixed C

SR G) <0y 2 Ha 4 | - R fill 2119zl 2
J kk

< ClHIullzz e [ 2 @+ |k = kDllggl 22}

k

()
<C (Z 27 (1 + [k ) 1%l z2 Hiee @z [Nl 9wl 22 Hle2 2

where we used Lemma ?7. So, using r’ < 2,

Y ITE G < CHIflle e {9kl 2 e = Sl AHe@ iz {a el
J
< MLl iz N oyl 22 < C I g N2 NG
which completes the proof of (2.4).

2.3 Proof of the non homogeneous estimate
We need to prove that for all admissible pairs (g, ) and (g,7) we have
T(F,G)|<C ,r,Zj,’fHFHLq’(R,Lr’(X))HGHL«?’(RLF’(X))- (2.12)

We have already proved that this is true for (¢,7) = (¢, 7). Furthermore, proceeding like in
Lemma 2.3

T(F,G)| g/‘< >S(U(5)) F(s)ds, (U(1)) G(t)>H‘dt
< [ W) F@aslal @)y GOl < supll | @) Fs)dsl [ 100G
< ClGlswl [ O) Fls)dsln

14



Then, by (4) in Theorem 2.1 (that is the dual homogenous estimates, which are already
proved) for any admissible pair (g, r)

supl| [ (U(s)" F(s)dsllar = supl| /R (U() F()X(oey ()5l < CIFX ooyl .1y < CIF -

t>s
So (2.12) holds for (g,7) = (00, 2) and any admissible pair (g, ). Obviously, symmetrically
(2.12) holds for (g,r) = (00, 2) and any admissible pair (g, 7). Finally, let us consider (g, )
and (¢, 7) not in one of the cases already covered. Then it is not restrictive to assume that
(q,7) = (ag,, by,) for to € (0,1) where

8- (e-a(zd)

In the cases t = 0,1 the inequality holds, because these are cases considered above. By a
generalization of Riesz—Thorin, Theorem 0.1, the inequality holds also for the intermediate
t’s. O

2.4 Improved non—homogeneous Strichartz estimates

While the homogeneous Strichartz estimates (1.8) are optimal, the non-homogeneous Strichartz
estimates (1.10) as described in Claim 2 of Theorem 1.4 are not optimal.
We say that a pair (g,r) is acceptable when

1 d d

1 _a_d 2.13
q 2 r ( )
2<r<oocand2<r < oo. (2.14)

Remark 2.6. Admissible pairs are acceptable, but the viceversa is not necessarily true.

We state without proof the following theorem from [7]

Theorem 2.7 (Inhomogeneous Strichartz estimates). Statement 2 in Theorem 1.4 is true
for any pairs (q,r) and (v, p) which are acceptable, satisfy

1+}y:d<1_1_1> (2.15)

and the following conditions:
e if d =1 no further conditions;
e ifd=2r<o0andp< oo

o if d > 3 we distinguish two cases.

15



1. The non—sharp case

1 1
S+ <, (2.16)
qa v
d—21 1 d—2 1 1
—— —<-and —— - < -— (2.17)
d r 7 p d p~r
2. The sharp case
1 1
-+ - =1, (2.18)
qa 7
d—21 1 d—21 1
—— —<—and — — < — and 2.19
p 7,<pcm y p<rcm (2.19)
1 1 1 1
—<-and - < —. (2.20)
T q p

3 The semilinear Schrodinger equation

There is a vast literature on semilinear Schrédinger equations. For a survey, with a concise
discussion of some physical motivations, we refer to [14]. Here though, we consider only the
mathematical formalism and only the pure power semilinear Schrodinger equations

iuy = —Au+ MuP~lu for (¢,z) € [0,00) x R?
u(0, ) = uo(x)

for A € {1,—1} and p > 1. Here p < d* with d* = oo for d = 1,2 and d* = % for d > 3.
We collect here a number of facts needed later.

(3.1)

Lemma 3.1. We have the following facts.

(1) For 1 < p < d* we have the Gagliardo—Nirenberg inequality:

1 1

o
lull o1 gty < CpllVullFa gy ull >y for il 2 d (3.2)

(2) The map v — |u|P~ u is a locally Lipschitz from H'(R?) to H~'(R?).

2
(5) For u & WHH(RELC) we have V(™) = ol ¥+ (o~ Dl () T

and belonging to L' ;) (Rd C).

Proof. For (1) see Theorem ?7?.
We turn (2). By (3.2) we know that v — |u[P"'u maps H'(R?) — LPTY(RY) —

L (Rd) Furthermore this map is locally Lipschitz:
Il u = ool e < ClI(P™ + 0P (@ = o)l w0

< Cl(”“HLpH + HU”Lp+1)||U V|| o
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where we have used, for w = v — u,

1

d

\u|p—1u—|u\p—1v:/ (ot (4 1) di =
0

1 1 1
d p=1
/ lu 4 tw[P~ dtw + / (u+ tw)% ((ur +tw1)? + (up + two)?) T gt = / lu 4 tw[P~ dtw+
0 0 0
2 1 _
p—1 2 N
Z ; (u+ tw)T ((u1 + twi)” + (ug + twa)?) 2 2(uj + tw;)dtw,
j=1

which from |u + tw| < |u| + |v| for t € [0,1] and

—_ p—3

1 —
(u+tw) P ((wn + twn)” + (2 + t02)?) 7 2(y + twy)wy| < (p— Dl + toof " fu

yields
[P~ — JolP o] < p(ful + [0))P7Hu = o] < p2P7H (a0 |u - o],
where in the last step we used, for |u| > |v],
(Jul + Jol)P~t < 227 HufP~h < 227 (fufP~h o o).

Next, we show that we have an embedding L (RY) — H~Y(R?). Indeed, this is equivalent
to HY(R?) — LPTY(R?) with in turn is a consequence of (3.2).

We turn (3). First of all we claim that if G € C'(C,C) with G(0) = 0 and |VG| <
M < 00, then V(G(u)) = 0,G(u)Vu + 0zG(u)Vu in the sense of distributions. This claim
can be proved like Proposition 9.5 in [2] and we skip the proof here.
Let us now consider an increasing function g € C*° (R, R) s.t.

sTl for0<s<1

p—1
272 for s > 2

m2

C>®(R4,C) and all u € WHPTL(R? C) we have

and let us define G,,(u) = mP~1g ('“‘2) u for m € N. Then, by the claim, for all ¢ €

~ [ Gntw) 330 = [ .G+ 06Gin w0y . (3.3)

Let us take now the limit for m — co. We have

/ Gon(u) Dyp = / P~ B0 — / P~ B + / Gon(u) Dy,
|u|>m [u|>m

17



Now we have

/ lulP~1u 9, e %% 0 by Dominated Convergence
|lu|>m
since X {ju|>m} () 7% 0 ae. by Chebyshev’s inequality. Similarly

[ Gnwog< [ (Gutw el <2 [l oy
lu|>m |u|>m |u|>m

— —
< 2P 1/|> [ulP|0;p] —— 20
ul>m

Next, we consider the limit of the r.h.s. of (3.3). For G(u) = |u|P~!u we have
/ (G ()51 + DG (1)O57) 9 / (0,G (w);u + 9aG (u);7)
- / (0uG(uw)Oju + OaG(u)d5u) ¢ + / (0uGin(u)0ju + FaGm(u)dju) ¢
|u|>m |lu|>m

Then, like before, the terms of the 2nd line converge to 0 as m — oo and so we conclude
that all p € C®°(R? C) and all u € WHPH (R, C) we have

2
—/ﬁm1u@w=/<mml@u+@—nww1QZ>aw>¢

The fact of belonging to L% (]Rd C) follows immediately from Hoélder inequality.

O]
Important are the following quantities:
/ |Vu|*dx + / lu[P*da
Pj(u) = = Im djuudz (3.4)

2 Rd
mmzéme.

Here E(u) is the energy, Pj(u) for j = 1,...,d are the linear momenta and @(u) is the mass
or charge.

Remark 3.2. Notice that Q,P; € C®(H'(RY),R) while £ € C'(H'(R?),R). We will
show that the above quantities are conserved for solutions in H!(R% C). Here E is the
hamiltonian. The system is invariant under the transformation u — eu for ¥ € R and the
transformations w(z1,...xj—1, 25, Tj41, ..., £q) = w(T1,...Tj—1,Tj — T, Tj41, ..., 2q) for 7 € R.
The related Noether invariants are ) and P;.
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2
Remark 3.3. Notice that if u(¢,z) solves the equation (3.1) then also 7ru(7t,7z) solves

the equation (3.1), with initial value 77ug(7-). Notice that
2 d 2
||T”U0(a7')HH5p(Rd) = ”UOHHSp(Rd) for s, = 27

He#r(RY) is the critical space for the equation (3.1) and equation (3.1) is critical for H*» (R%).
Equation (3.1) is supercritical for H*(R?) with s < s,. In practice when an equation is
critical or supercritical the well-posedness is either hard to prove or not true.

3.1 The local existence

We will consider the following integral formulation of (3.1):

t
u(t) = e ug — i)\/ )2 () [P u(s)ds. (3.5)
0
Proposition 3.4 (Local well posedness in L?(R%)). For any p € (1,1+4/d) and any
ug € L?(RY) there exists T > 0 and a unique solution of (3.5) with
2 d d
ue C([-T,T), L*(RY) N LY([-T, T), LP*H(RY)) with = + 1= (3.6)
qQ p

Furthermore, there exists a (decreasing) function T(-) : [0,400) — (0,+00] such that the
above T satisfies T > T(||uol|z2) > 0.

Moreover, for any T' € (0,T) there exists a neighborhood V of ug in L*(R?) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

V = C([-T', T, L*(RY)) N LY([-T",T"], LPTH(RY)) (3.7)

and is Lipschitz.
Finally, we have u € L*([~T,T], L°(R%)) for all admissible pairs (a,b).

Remark 3.5. We will prove later that for p € (1,1 + 2/d) that we can take T" = oo always.

Proof. The proof is a fixed point argument. We set for an a > 0 to be fixed below
E(T,a) = {v € C([-T,T), L*(R) N LA(-T,T], " (RY)) :

vl == (vl poo (e, L2Rey) + 0l Lagmr, ), Lot (RAY) < a}

and we denote by ®(u) the r.h.s. of (3.5). Our first aim is to show that for 7" = T'(|luo||z2)
sufficiently small, then ® : E(T,a) — E(T,a) is a contraction.
By Strichartz’s estimates

P(u < ¢ + colllulPtu
[®(u)ll7 < eolluollz2 + col||ul \qu,([_TTLLpTﬂ)

= COHUOHL2 + Couu”ipq’([—T,T],Ler)

19



We will see in a moment that
pe(1,1+4/d) < pq <q. (3.8)
Assuming this for a moment, by Holder we conclude that for a § > 0
(w7 < colluollze + o@DV [l iy < collunlz +co(2T)a?.
So for c(2T)%aP~1 < 1/2, which can be obtained by picking 7' small enough, we have
[2(w)ll7 < eolluollzz + 5 <a

if a > 2¢p||uo||z2. Hence ® (E(T,a)) C E(T,a). Let us fix here an a > 2¢pl|ug|| 2.
Now let us show that ® is a contraction for 7" small enough. We have

O(u) — P < p=Ly — Jy|P1
() ~ B < eoll ol 0l e

1 1
< COcH(Hu”IEpH + Hngp-&-l)Hu — 0|1 HLq’(—T,T)
-1 -1
< COC(HUH}zq([,T,T],LpH + HUHiq([,T,TLLpH)H“ - UHLP([—T,T],LPH)

p=1 1

where % + 2= %. Since we are still assuming (3.8), we must have p < ¢, for p > ¢ would

imply pq¢’ > ¢, contrary to (3.8). Then by Holder and for an appropriate 6 > 0
() - B(0)llr < o020 T — vl oy o) < C20P T — ol

So, for cgC2aP~1T? < 1, where a > 2¢ol|ug|| 2, we obtain that ® is a contraction and we
obtain the existence and uniqueness of the solution.

Next, let us prove (3.8). Obviously p¢’ < ¢ is equivalent to p/¢ < 1 —1/q, in turn to
(p+1)/g <1, thatisto1/g<1/(p+1). But 1/g=d/4—d/(2p+2), so the last inequality
is equivalent to
2d+4 4

94 =
d +d

d/4 < <§+1>/(p+1)<:>p+1<

and this yields the desired result.
We have proved the existence of a T' = T'(|lug||z2) with the desired properties. Then
there exists a neighborhood V' of ug in L?(R%) such that for any vg € V we have a >
2¢o||ug|| 2. Then there is a corresponding solution v(¢) in C([—T, T], L2(R?))NLI([-T, T], LP*1(R%)).
Let now T € (0,T') to be fixed. Using the equation and proceeding like above,

lu = vl < collo = voll 2 + coC 2T (Jfullf + ol ) u = vl

< colluo — vol| 2 + coC(2T")%2 ((2col[vollz2)P ™t + (2co]luollz2)P ™) lu — o]z
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Adjusting T, we can assume that it satisfies (recall a > 2co max{||lvo||z2, ||uol|z2})
4eoC(2T")aP~t < 1/2.
Notice that here 7" = T"(||ug|| z2). Renaming T'= T", from the above we get
lu = vllr < 2colluo — wvol| 2

and this gives the desired Lipschitz continuity.
Finally, the last statement follows from (3.5) and the Strichartz Estimates.
O

Proposition 3.6 (Local well posedness in H'(R%)). For any p € (1,d*) and any up €
HY(RY) there exists T > 0 and a unique solution of (3.5) with

d d
we O(-T,T), H'(®RY) n LA~ T,T), W ®Y) with >+ % =9 (39)
q p+1 2
Furthermore, there exists a (decreasing) function T(-) : [0,400) — (0,+00] such that the
above T satisfies T > T'(||ug||g1) > 0.
Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in H'(R?) s.t. the map

vo — v(t), associating to each initial value its corresponding solution, sends
V= C([-T', T, L*(RY) N LY([=T", T, W+ (RY))

and is Lipschitz.
Finally, we have u € L([~T,T], W *(R%)) for all admissible pairs (a,b).

Proof. The proof is similar to that of Proposition 3.4. The proof is a fixed point argu-
ment.This time we set

EMT,a) = {v e O([-T,T), H\(RY) N LY([~T, T], WP+ (RY)) -

oll¥ = [0l Loo (=1, 110 Ry + 10l Lo/, w1 mey) < a}

and, as before, use ®(u) for the r.h.s. of (3.5). We need to show that by taking 7" sufficiently
small then ® : EY(T,a) — E'(T,a) and is a contraction. The argument is similar to the
one in Proposition 3.4 and is based on the Strichartz estimates. We will only consider some
of the estimates. By Lemma 3.1 and Strichartz’s estimates, we have

IV®(u)llr < colluoll g + colllulP~' V| pt1

Lo (-TT),L 7 )

= colluoll 2 + collwlT s gy poen) IVl ar,77,0001)- (3.10)

where % + % = ?. Notice that if 8 < ¢, we can proceed exactly like in Proposition 3.4.
However this works only for p € (1,1 + 4/d), which is not necessarily true here. Instead,
using the Sobolev Embedding we bound

<@n)F < (207 ()l

HUHL,B ([-T,T),Lpt1) ~ HUHLB( [-T,T),H!) ﬂ HuHLoo ([-T,1],HY)
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So, inserting this in the previous inequality we get

-1
IV (u)llr < colluollm + co2T) 7 (ulls)?. (3.11)

Here it is important to remark that the admissible pair (¢,p + 1) is s.t. ¢ > 2. Indeed, for
d = 1,2 it is always true that, if p + 1 < oo, then the ¢ in (3.29) is ¢ > 2. On the other
hand, for d > 3 recall that

d+2 2d
1 frl=—— 1= ——.
p+1<d + d—2+ 1_2

And so again, since (q,p + 1) differs from the endpoint admissible pair ( we nec-

2d

2a=3)
essarily have ¢ > 2 also if d > 3.

In turn, the fact that ¢ > 2 implies that the 8 in the above formulas is § < oo. This
implies that we can pick 7" small enough s.t. (2T)]DTlap_1 < 1/2, which from (3.11) yields
||<I>(u)||g}) < ci||upl|gr + a/2 < a for a > 2¢q||ug||g1. From these arguments, it is easy to
conclude that there exists a T'(|juo||z1) s.t. for T' € (0, T(||uo||g1)) we have @ (EY(T,a)) C
EY(T,a). Proceeding similarly and like in Proposition 3.4, it can be shown that there exists
a T1(|luo| g2) s-t. for T € (0, Ty(||uol|g1)) the map @ is a contraction inside E*(T,a). The
Lipschitz continuity in terms of the initial data can be shown like in Proposition 3.4 and

the last statement follows from the Strichartz estimates.
O

Proposition 3.7 (Conservation laws). Let u(t) be a solution (3.5) as in Proposition 3.6.
Then all the three quantities in (3.4) are constant in t.

Proof. For u € C((—=T»,T1), H'(RY)) a maximal solution of (3.5) we will show that there
exists [=T,T] C (=T»,T1) where E(u(t)) = E(u(0)), Q(u(t)) = Q(u(0)) and P;(u(t)) =
P;(u(0)). In fact this shows that E(u(t)), Q(u(t)) and P;(u(t)) are locally constant in ¢.
Since these functions are continuous in ¢, the set of ¢t € (—T5,771) where E(u(t)) = E(u(0))
is closed in (—T5,T1); on the other hand, it is also open in (—T%,71) since E(u(t)) is
locally constant, and hence we have E(u(t)) = E(u(0)) for all ¢ € (=T5,71). Similarly
Q(u(t)) = Q(u(0)) and Pj(u(t)) = P;(u(0)) for all t € (=T, T1).

Step 1: truncations of the NLS. For ¢ € C°(R,[0,1]) a function with ¢ = 1
near 0 and with support contained in the ball Bga(0,7q), consider ? the operators Q,, =
©(v/=A/n). The truncations Q,, (Ju[P~'u) are locally Lipschitz functions from H'(R%) into

- s 1pdy P 1 mdy Qo gl d T
itself as they are compositions H'(R*) "'— =~ H 1 (R%) = H'(R%)) of a locally Lipschitz
function, Lemma 3.1, and of bounded linear maps.

2Notice that using everywhere the projections P,, = X[0,n] (v/—2A) would be a bad choice for this proof.
Difficulties would arise from the fact proved by C.Feffermann [6] that P, for d > 2 is bounded from LP(R?)
into itself only if p = 2. On the other hand it is elementary that the Q,, are of the form p1 * for a p € S(Rd)

and so are uniformly bounded from LP(R?) into itself for all p and form a sequence converging strongly to
the identity operator.
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We consider the following truncations of the NLS

{iunt = —Pur, Auy + )\Qn(]Qnun]”_lQnun) for (t,x) € R x R4
Un(o) = Qnuo-

By the theory of ODE’s, there exists a maximal solution u, (t) € C*(=T}(n), Ta(n)), H' (R))
of (3.12) . Furthermore, if T5(n) < co then we must have blow up

(3.12)

lim  ||u,(t = 400 if TH(n) < 0o 3.13
i (1) »(n) (313

with a similar blow up phenomenon if 7 (n) < co.
To get bounds on this sequence of functions we consider invariants of motion. The following
will be proved later.

Claim 3.8. The following functions are invariants of motion of (3.12):

A

En(v) == ||Pmon||L2 + p+1

Ianl”“de

Pj(v) with j =1, ...,d, (3.14)

Qv).

We assume Claim 3.8 and proceed. It is easy to check that u, = Py, u,. We claim
that T1(n) = Ta(n) = oco. Indeed by Q(un(t)) = Q(Qnuo) < Q(up) we have

[un (Ol = Prrgun(®)|lgr < nroflun(t)l2 = nrol|Quuollze < nrolluollr2- (3.15)
Let us now fix M such that ||ug|/1 < M and let us set
O, :=sup{tT > 0 : |Ju, ()| ;n < 2M for |t| < 7.} (3.16)

Our main focus is now to prove that there exists a fixed T'(M) > 0 s.t. 6, > T (M) for all
n.

First of all we prove that u, € CO’%((—GH, 0,,), L?) with a fixed Holder constant C(M). By
interpolation

’:MH
i

1

[t (t) — un(8) |22 S lun(t) — wn(s)]) 2 lln (t) — un(s)]]
1 1

S \/iHu”HZOO((_9n79n)7H1)HuntHioo((_gnﬂn)’Hfg ’t - 8’ (317)

M)\/|t — s| for t,s € (=0, 0,)

Now we want to prove

lun ()12 < lluol|% + C(M)t® for some fixed b > 0 and for ¢ € (—6,,6,). (3.18)
From E,(u,(t)) = En(Qnuo) and Q(un(t)) = Q(Qnuo) we get
2\ 2\
lun )l + —=— !Qnun\pHCM = 1Quuollzp + —— \Qiuolpﬂdx-

p+1
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Hence using Holder and Gagliardo—Nirenberg

2
Jun(®ls < ool + 2 [ ] 1Quun (0P~ 1Q2uap ™| o

< [luoll +C/d(|Qnun(t)|p +1Quol)|Quun(t) — Qpuoldz
R
< Jluollz + ClllQuun ()P + IQiUOIPIIL% 1Quun(t) — Qpuoll Lo
< Jluoll + C1 (1Quun(®)] 1 + 1QRu0NT 1) llun () — Quttol|F: l[un () — Quuoll 2

Then by (3.17) with s = 0, the Sobolev Embedding Theorem and (3.16) we get (3.18).
Now for T(M) defined s.t. C(M)T(M)® = 2M? (for the C(M) in (3.18)) from (3.18) we
get

[[wn ()| Lo a0y, 11 < VM. (3.19)

Since v/3M < 2M this obviously means that T(M) < 6, since, if we had 6,, < T(M) then,
by the fact that u, € C1(R, H'), the definition of 6,, in (3.16) would be contradicted.
Hence we have
unll oo (= (ar),m (0, HY) < 2M (3.20)

This completes step 1, up to Claim 3.8.

The proof of Claim 3.8 is rather elementary and involves applying to (3.12) (,upne),
( ,iuy) and < , O, un> and integration by parts. We will do this now, but then we will discuss
also the fact that Claim 3.8 is just a consequence of the fact that (3.12) is a hamiltonian
system with hamiltonian FE,, and that the invariance of () resp. P; just due to Nother
principle and the invariance with respect to multiplication by e resp. translation.

Indeed, applying (-, un¢) to (3.12)

0= *<Pnr0Aun7 unt> + )\<Qn(|Qnun|p_1Qnun)7 unt)

_ d
= _<Aun)unt> + >‘<’Qnun’p 1Qnunu Qnunt> = %En(un)

Notice furthermore that, by u, = Py, ,u,, we have

1

A

Similarly when we apply (-, iu,) to (3.12) we get

1d . _ .
iﬁl‘un(twﬁ = —(Prrg A, itn) + MQn(|Qnun 1Qnun)71un>- (3.21)

We have to show that r.h.s. are equal to 0. We observe that the the 1st term is 0 because

the bounded operator iP,,,, A of L?(R%) into itself is antisymmetric: (iPpro ) = —iPpp A
For the 2nd term we use

<Qn(|Qnun’p_lQnun)a 1un> = <’Qnun’p_1Qnuna 1Qnun> = )\Rei/Rd ‘Qnun‘p—i_ldw =0.
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This yields 4Q(u,(t)) = 0. In a similar fashion we can prove 4 P;(u,(t)) = 0.
These computations obscure somewhat the following simple facts. First of all, (3.12)
and, in a somewhat formal sense also (3.1), is a hamiltonian system. First of all, the

symplectic form is
QX,Y) = (iX,Y) (3.22)

where

(9) =Re [ f@)i)da. (3.23)

Notice that €2 satisfies the following definition for X = L2(R%, C) or X = H'(R%,C).

Definition 3.9. Let X be a Banach space on R and let X’ be its dual. A strong symplectic
form is a 2-form w on X s.t. dw = 0 (i.e. w is closed) and s.t. the map X 5> 2 — w(x,-) € X’
is an isomorphism.

Definition 3.10 (Gradient). Let F' € C1(L?(R%,C),R). Then the gradient VF € C°(L?(R%,C), L3(R%,C))
is defined by

(VF(u),Y) = dF(u)Y for all u,Y € L*(R%,C).

Notice that

d (1 A
_ = 7Pnr tY 2 - n tY p+1d
i (GIPor Vet )t 2 [ Quus yrtias)

= (P Su+ AQu(|Quul’ ! Quu), V).

(VE,(u),Y) (3.24)

t=0

We are interested in hamiltonian vector fields.

Definition 3.11 (Hamiltonian vector field). Let w be a strong symplectic form on the
Banach space X and F € C'(X,R). We define the Hamiltonian vector field Xp with
respect to w by

W(Xp(u),Y) :=dF(u)Y for all u,Y € X.

From Q(Xp,Y) = (iXp,Y) = (VF,Y) we conclude Xp = —iVF. Then from (3.24) it
is straightforward to conclude that (3.12) is a hamiltonian system with hamiltonian E,,.

Definition 3.12 (Poisson bracket). Let w be a strong symplectic form in a Banach space
X and let F,G € C*(X,R). Then the Poisson bracket {F,G} is given by

{F,G}(u) == w(Xrp(u),Xg(u)) = dF(u)Xqg(u).

So, for  we have {F,G} = (VF,—-iVG) = (iVF,VG). Now notice that if F' €
C1(X,R) then

d

5 ' (un(t))) = (VE(un(t)), in(t)) = (VE(un(?)), -IVEn(ua(t))) = {F, En}ly, ) (325)
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Notice now that the map v — eVu leaves E,, invariant. In particular the last assertion
implies that

d d
0= —E, = —F,(e"
d,l? (U) 90 d’l9 (6 U’) 90

= (VEy(u),iu) = (VE,(u),iVQ(u)) = (iVQ(u), VE,(u)) = {Q)EnHu
But then, since {Q, E,} = 0, by (3.25) we obviously have % (Q(un(t))) = 0.

Let us consider now, for { € j }?:1 the standard basis of R%, the transformation (e, F)(z) ==
F(z — \¥;). Obviously E, is invariant by this transformation and

d d
= —FE, = —En(ry2.

= — (VEu(u),0ju) = (VEu(u),iVFP;j(u)) = (VP;j(u), VE.(u)) = {F}, En}|,

But then, since {P;}, E,,} = 0, by (3.25) we obviously have <& (P;(ux(t))) = 0.
The above argument gives a link between group actions and invariants.

Step 2: Convergence u, — u. Let us consider I := [-T,T] C [-T(M),T(M)] N
(=T5,T1). Obviously we have

t

un(t) = 5 Quug — iA /O DD Q (| Quttn ()7~ Qi (5)) s,
Taking the difference with (3.5) we obtain
u(t) — up(t) = (1 — Qn)ug — i /O t DB (1 — Q) |u(s) P u(s)ds
=it [ IR () als) ~ 1Qus) Q) s
—ia [ IR, (Quul) P Qun(s) — [Quin () Q) s

Then we have

[ = unll oy + llu = wnll ey < coll(1 = Qu)uollm + coll(1 = Qu)lul” ul pi1

Ld(Iwh )

-1 —1
el u = QP Qual s
+ COH|Qnu‘p_1Qnu - ‘Qnun‘p_lQnunH , 1 ptl .
L (Iwh )
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and so, for a fixed ¥ > 0
lu = tnllagr oy + lu = all ey < coll(1 = Qu)uolls + coll(1 = Qu)lul”u]
+ COC|I|"9 (HUHLOO IHl) + ||Qnu||p:o1 i ) ||(1 — Qn)uHL‘I(I,WlaPJﬂ)

+ CUC|I|19 (HQnUHLoo([ HY) + HQnunHLoo I,H? ) HQN(U - un)HLq(I,lePH)

< coll (1 = Qn)uoll g + coll (1 — Qn)ul? ™ ull et

Ld (Iwh )

+ coC 1”20l gy I (L = Qu)ull parwroeny

+ coC 2TV (lully oy + (C0)™) Jfu = | o wion,
Then, taking T small so that coC|27|” (HuHLoo Tt (C(M))p_l) < 1/2 we conclude

[l = tnll Lagr ooy + llu = unl oo 1,1y < 2¢0]| (1 — Qn)uoll g1+

20011 = Qu)lulMull s+ 260CH P2l | (L = Qu)ulog ey,

But now we have r.h.s."=° 0. Hence we have proved that there exist T > 0 s.t.

Jimlu = wnl| e (-r,7y,11) = 0. (3.26)

Now, taking the limit for n — +oo in Q(u,(t)) = Q(Qnuo) and Pj(un(t)) = Pj(Qnuo)

we obtain Q(u(t)) = Q(uo) and Pj(u(t)) = Pj(ug) for all t € [-T,T]. Similarly, taking

the limit for n — +o0 in E,(u,) = E,(Qpup) and with a little bit of work, we obtain
E(u(t)) = E(up) for all t € [-T,T].

]

Corollary 3.13. Let u(t) be a solution (3.5) as in Proposition 3.4. Then Q(u(t)) = Q(uo).
In particular, the solutions in in Proposition 3.4 are globally defined.

Proof. As above it is enough to show that Q(u(t)) = Q(ug) for t € [T, T] for some T > 0.

So let us take the T in the statement of Proposition 3.4 and let us take 7" € (0,7"). There

exists a sequence u(g") € H' (R4, C) with ué") "0 wp in L2(RE,C). So for n > 1 we
(n)

have uy ' € V, the V in (3.7). In particular, for the corresponding solutions w, we have
u™ "%y in C([-T',T'), LA(R%)). Then, since Qu™ (1)) = Q(u{") for t € ([-T',T",
taking the limit we obtain Q(u(t)) = Q(ug) for t € ([-T1",T"]. Since T' € (0,T) is arbitrary
and t — Q(u(t)) is continuous, we have Q(u(t)) = Q(ug) for t € ([=T,T]. This implies that
t — Q(u(t)) is locally constant, and hence it is constant.

0
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Remark 3.14. It can be shown that under the hypotheses of Proposition 3.6 there are unique
maximal solutions to (3.5) of the type u € C°((—S,T), H'(R%)) with T > 0 and S > 0 and
with

lim |[Vu(t)]|2(ray = 400 if T < +00 and
=T~

lim [ Vu(t)]| ey = +oo if S < +oc,

Proposition 3.15 (Conservation or regularity). Letu € CO((—=S,T), H(R?)) be a mazimal
solution of (3.5). Suppose that the initial value satisfies ug € H?(RY). Then

ue CO(=8,T), H*(RY)). (3.27)

O]

3.2 The global existence

We start with the following observation.

Lemma 3.16. Let u € C°((—S,T), H'(RY)) be a mazimal solution as of Proposition 3.6.
Then if T < oo we have
Ji V(0 2asy = +oc. (3.28)

Analogously, lim s [|[Vu(t)|| p2(ray = +00 if S < occ.

Remark 3.17. Notice that it is very important for this lemma that p < d*. Indeed, in the
energy critical case p = d*, the above statement is false.

Proof. Suppose by contradiction that there exists a solution with 1" < oo for which there is
a sequence t; /T s.t. [lu(t;)|| g1 ray < M < co. Then by Proposition 3.6 one can extend
u(t) beyond t; + T'(M) > T and get a contradiction.

[

Corollary 3.18. If A > 0 the solutions of Proposition 3.6 are globally defined.

Proof. Indeed if a solution has maximal interval of existence (—S,T') with T' < oo, we must
have (3.28). But for A > 0 we have ||Vu(t)||z2 < 2E(u(t)) = 2E(up).
O

Corollary 3.19. If A<Oand 1l <p <1+ % the solutions of Proposition 3.6 are globally
defined.

Proof. We have

2| Al _ 1
2 +1 a(p+1) (1—a)(p+1) _
2E(u(t)) > ||Vu(t)||L2(Rd) - mC}é’ ||vu(t)HL2(Rd)||u0||L2(Rd) for m =3
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Notice that

d 4 4
a(p+1):§(p+1)—d<2<:>(p+1)—2<E<:>p<1+8.

But then, if (3.28) happens, we have

) 2| 1)— (1—a)(p+1
2 +1 (p+1) )(p+1)

26(uo) = Jimg 2B(u(0) > gy [ V() ey (1= 2 G 1T D ol ™ )

= lim [ Vu(®) F2 g =+

which is absurd. O

Corollary 3.20. If A <0 and1 <p <1+ % the solutions of Proposition 3.6 are globally
defined.

3.3 Local existence for the L? critical case

We consider now equation (3.5) for p =1 + %. Notice that in this case (p+ 1,p+ 1) is an
admissible pair.

Theorem 3.21. For any ug € L*(R%) there exists a unique mazximal solution of (3.5) with
p=1+ 75 with

d d
w e C([0,T%), LA(RY) N LP ([0, T%), LPTH(RY)) with 2 T i (3.29)

Furthermore, the mass is preserved, we have u € L*(]0,T], Lb(Rd)) for any admissible pair,
if T € (0,7%).
There is continuity with respect to the initial data. And finally, if T* < oo, then

Thrrr}* [wll a(o,17, L0 (rey) = +00 for any admissible pair with b > p+ 1. (3.30)

Proposition 3.22. There exists a § > 0 such that if for some T > 0 we have
1€ 0| Lo jo 7y, Lo+1 (rey) < 6,
then there exists a unique solution
u € C([0,T], L*(RY) N LP([0,T), LPTH(RY)).

The mass is constant. Moreover, for any T' € (0,T) there exists a neighborhood V' of ug in
L?*(R%) s.t. the map vy — v(t), associating to each initial value its corresponding solution,
sends

V — C([0, 7], L*(R%) N LPT([0, T'], LPT (RY))

and is Lipschitz.
Finally, we have u € L%([0,T], L*(R%)) for all admissible pairs (a,b).
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Proof. The proof is a fixed point argument. We set like before
E(T, (5) = {'l) S Lp+1([0,T],Lp+1(Rd)) : H'UHLp—‘—l([O,TLLpJ—I(Rd)) < 2(5}

and we denote by ®(u) the r.h.s. of (3.5).
By Strichartz’s estimates

1
1 ()l Lo+10,7)xrty) < & + coll[uf ™ ul| L5 ([0,T]xR%)

=0+ CO||U||Lp+1 ([0.T]xR%)) < 6+ cp2PP < 26,

for 6 > 0 small enough, so that the map ® preserves E(7,0). Now we show that @ is a
contraction in E(T,J). We have

19(u) = @ ()| o1 o, ryxray) < colllul ™ u = o]l g

< coCll (™" + [P Hlu = o]

([0 T]xR%))
([0 T]xR%))

< o€ (Il o ey + 101 o sy ) 10 = Ul s oy

< coC2P 710" M|u — vl posr (0,77 xR

which is a contraction for 6 > 0 small enough. The remaining part is also similar to that
in Proposition 3.4. In particular, let us now discuss the conservation of mass. The first
observation is that if ug € H'(R?) then we have u € C([0,T], H*(R?)). Ti orove this we
observe that v € C([0, 7], H'(R%)) by Proposition 3.6 and if it is not possible to take 7 > T,

then we will have a maximal interval of existence v € C([0,7), H'(R%)) with 7 € (0,T) and
blow up ||Vu(s)| g1 = +oo. But, for s <1 < T,

IV ull Lot (5 )ty < IV 0]l Lot (5, xR +COHUHLP+1 (5. ) xR IV Ul Lo (s, my xR))
Now, for s close to 7 we will have
p—1

COHU||LP+1([S,TI]XRd)) <1/2

and so, taking 7 —
IV ull Lot (5.7 xRy < 20V E S0l Lot (5.7 xR

and in particular

[Vl o1 (0,7 xray) < +00.
Feeding this back in Strichartz inequality, we have

IV oo (0,17, 22(RaY)) < I VU0l 2 (Ra) + collulZ (0.1 xRy IVl Lrt1 (0,7 xre)) < 00,
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which excludes the blow up || Vu(s)|| g1 — +00. So we conclude that u € C([0, T], H' (R%))
and that, energy, momenta and mass of u(t) are constant in [0,7]. If now up ¢ H'(R?),
we consider a sequence ug, € H'(RY) with ug, 2720 g in L?*(R%). For any T € (0,T),
we have by well posedness that for the corresponding solutions we have w, 2720 win
C([0, 7], LA(R%)). Then Q(un) —2% Q(u) in C([0,T"],R). Since Q(uy) are constant
functions, also Q(u) is constant in [0,7”] for all 77 < T'.
itA T—0t -
Proof of Theorem 3.21. Clearly we have ||~ uo|| Lpo+1((0,7),Lr+1 (r2)) — 0, s0 We can
apply Proposition 3.22 for T' > 0 sufficiently small. There will be a maximal interval of
existence. We now prove the blow up result (3.30). Suppose that it is false, and that there
is a maximal solution in [0, 7%*) with T* < oo and

[wll Lo (po,r+), L0 (reyy < +00 for an admissible pair with b > p + 1. (3.31)

Then if b > p+ 1, we have

1 1
1- ptl b

||u”Lp+1([0,T*),Lp+1(Rd)) < HuHuoo([07T*)7L2(Rd))||u”LaéL[O’T*)’Lb(Rd)) for p = p% _% .

So (3.31) holds also for b = p+ 1. Now, for s close to T we have from (3.5)
t
ew_@ﬂu$)zzdﬂ+iA/m8“49AMQUW4u@UﬁC
This yields
s<T—=T*~

€A u(8) || ot (o7, Lo @y < Nl Lot (fs 7, Lot may) + Cllul o (o 77 242 et 0.

So

Sw €8 0u() | Lot (s 77,20+ (mety) < 0/2 = 1€ U(S) | Lot (o o Lo () < /2
where we used the continuity in T of T — [|e!t=5)%(s) | Lo+1(s,7],Lo+1 (ray)- Therefore by the

continuity there exists € > 0 small enough so that Hei(t_s)Au(S)HLp+l([syT*+E]’Lp+l(Rd)) < 9.
Then the solution u can be extended beyond T also in the interval [0, Ty + ¢].

O
Example 3.23. In the case A = —1 of the L%~ critical focusing NLS
iug = —Au — \u|§u in R x RY, (3.32)
there are related solutions in H! (R%, [0, +00))to
~Ad+¢— oo =0. (3.33)
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In 1-d they are explicit,

(B + 17
2

2y
cosh »=1 (P5=1)

o) = (3.34)

For d > 2 there are many types of solitons. For example, the ones in (3.34) are ground
states, and they are the only ones in d = 1. But in d > 2 there are also excited states.
Notice that if u(t,z) is a solution of (3.32), then also the following is a solution,

22
v(t,z) = i (1, j) e,

i ?
Since now, given a solution ¢(x) of (3.33), then u(t,x) = *T2V* o lgy(x —tv — D) is a
solution of (3.32), it follows, choosing v = D = 0, that

d [T\ 22 i o _d x izt i
S(t,x):=t 2¢(¥)e4te t soalso S(T'—t,z):=(T—1t)" 2¢ T3 e HT-He T-t,

Obviously this for 7" > 0 has maximal positive lifespan 7. Then, for any admissible pair
(g,7) with r > 2, we have

_dd 2
IS(T = t, &)l r(gay = (T = )72 |l r ey = (T = ¢) " [0l 1 (may & L9(0,T).

3.4 The H! critical cases

We consider now equation (3.5) for p = 1+ ﬁ. We will consider the admissible pair (v, p)

admissible pair (v, p) given byp = 27612 _ (3.35)
issible pair (7, p) given byp = 57—, 7= 5. .
Notice that it is an admissible pair because
2 d_d
Yy op 2
Indeed
yA d d—2 d*>—-2d+4 2 d 2 d
fi * 24} P 2d ata T 2
-2 dZ-2d+4

Theorem 3.24. For any ug € H'(R?) there exists a unique mazimal solution of (3.5) with
p=1+ 75 with

we C([0,T%), H'(RY)) nC*([0,T%), H 1 (R)). (3.36)
Furthermore, the mass and energy are preserved, we have u € L%([0, T], WLP(R%)) for any
admissible pair, if T € (0,T%).
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There is continuity with respect to the initial data in the following sense. If 0 < T < T* and

if uon 270w in H'(R?) then for the corresponding solutions we have we have uy, 70w
in LP([0,T"], HY(R%)) for any p < co.
And finally, if T* < oo, then
lim |[ul| a(jo,r), L6 (ray) = +00 for any admissible pair with d > b > 2. (3.37)
T—T* B

The proof of Theorem 3.24 is based on Proposition 3.25 below. In the course of the

proof, we will consider admissible pairs (a,b) with b € (2,d) the number 7 := % =1—1
Then there exists an admissible pair (a, 3) such that
4
1 1 75 . .
@ = E + = which can be rewritten as
2 4 1 1
=5ta2\sa) (3:3%)

Here notice that for b* = oo, that is when b = d, then § = 2, and if b* = d%d? that is
in the case b = 2, we have § = d%d? which is the endpoint. So for b € (2,d) we have the
intermediate cases 2 < 8 < d%dQ. We claim that the « in (o, ) satisfies

1

4
d— .
o + 922 o1, equivalently (3.39)
1=

1
a
2 4 d /1 1
a+ci—22(2_b>'

So in other words, we need to show

11 1 d 1 1 2 1 1
<Oé7ﬁ) = <2_d—2 <2_b> ,1—ﬁ <b—d)> for any b € (2,d) (340)

11
It is enough to check the endpoints, in fact recall that (, 5) lays in a line, so it is enough
«

S

to prove (3.40) just for two values of b, because then this will imply the equality for all
values of b. If b* = oo, that is when b = d, then 8 = 2, which implies a = 0o, and so (3.39)
becomes

4
1 = d—2 d—2

which is obviously correct.
2d
Looking at b = 2, then as we mentioned, we have the endpoint («, §) = <2, d2>’ which

makes (3.39) true because o/ =2 and a = 0.



It is interesting to check when (a, b) = («, ) we obtain exactly the admissible pair in (3.35).
Indeed,

1= 2+ 4 <~ a=2+ 1 2d =
a a @ d—2 d—2_7'

Finally, since the map é — é in (3.39) is affine and 1 is a fixed point, in any case when

a # « it follows that v is in between them, and so also p is in between b and 8 and that

. . 11 11 11
there exists a 6 € (0,1) with (7, p) =0 <a b) +(1-0) <a’ 5) . (3.41)

Proposition 3.25. There exists a § > 0 such that if for some T > 0 we have
€ | Lo (jo.1), w10 ey < O
then there exists a unique solution
we C([0, 71, H'(RY) N L7([0,T), W (R7)).

Moreover, for any T' € (0,T) there exists a neighborhood V of ug in L*(R?) s.t. the map
vo — v(t), associating to each initial value its corresponding solution, sends

V — C([0,T], L2(RY)) n L7([0, T"), WP (R?)

and is Lipschitz.
Finally, we have u € L*([0,T], W5(R?)) for all admissible pairs (a,b) and mass and
energy are preserved.

Proof (sketch). The proof is by a contraction argument. We set like before
E(T,6) = {v € LY([0,7), W2 (RY) : [ol] o o191ty < 20
and we denote by ®(u) the r.h.s. of (3.5). Let us open a small parenthesis now, and let
us pick an admissible pair (a,b) with b € (2,d). Then, for = = % =7 — L and (o, 8)

admissible like in (3.39), by Strichartz estimates, by the Chain Rule in Lemma 3.1 and by
p—1= %, we have

H‘I’(U)HLa [0,7),WLA(Rd)) < HeitAUOHLa OT) W18(R4)) +eollu?~H(V >“HL&’([0,T),WLB’(Rd))
< Nl uoll oo 1), w18 may) + collullh, [0 71,0 1%l L 0,7y, w8 ()
< [l€* ol Lo 0.7y, w18 (R +Co||UHLa (0., 4l La o), w6 (may)

So, in the particular case (a,b) = (o, 8) = (p,7), we have

1D ()| £ o, 010 (Ry) < 1€ uoll Lo,y w10 (R + collell oy, we ey
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Hence in E(T,J) we have
H(I)(u)HL’Y([O,T),Wl’P(R‘i)) <6+ 662105? < 20,

for § > 0 small enough, so that the map ® preserves E(T, ). In a similar fashion we prove
that ® is a contraction in E(T,d). We skip the proof on the conservation of mass, energy

and momenta.

Proof of Theorem 8.2/. Clearly we have ||e!*® uol| Ly (o,1), w0 () 07, 0, so we can

apply Proposition 3.25 for T > 0 sufficiently small. There will be a maximal interval of
existence. We now prove the blow up result (3.37). Suppose that it is false, and that there
is a maximal solution in [0,7%) with 7™ < oo and

[ull Lafo,r+), wremay) < +oo. (3.42)
But then

i(t—s)A (

[l o (s 7y Wit ey < € M Lo (1s,77,W1.8 () +00HUHLa (0.1 w14l za o7, w18 (Ra))

s<T—T*~

and the fact that |jul/? 0, implies

([, 7], Wb (RY))

ull oo, w8 ey < 201€T U)o (a1, 1.8 (R
| < 2|98y (s)]|

for s <T < T* with s and T close to T™. This implies in fact that also

[wll oo, ), w18 (Reyy < +00. (3.43)
Then, by
t
el(t*S)Au(s) =u(t) + i/\/ el(t*t/)A\u(t’)\pflu(t’)dt',
1€ 2 wu(8) | a2y, w08 ety < Nl oz, w08 )y + COllall (g g,y 1l ooy, 1.8 )
s<T—T*~
—— 0.

Since there exists a 6 € [0, 1] with the following, see (3.41),

e = ) o o s oy S ™2 o rywroqay e S ul LGy ay sy

it follows that we can arrange |el(t=5)%

*

()| L ([s, 1 +],Wie(rdy) < 0, for s close enough to
and for € > 0 arbitrarily small. But then the solution u can be extended beyond T™*.

We skip here the discussion of the well posedness.
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4 The dispersive equation

Here we will consider dispersive equations

{iut = —Au+ |ulP~tu for (t,x) € [0,00) x RY (1)

U(O,{E) = uO(x)
with 1 +4/d < p < d*. In this §we will give a partial proof of the following classical result.
Theorem 4.1 (Scattering). Consider the unique solution u € C°(R, H'(R?)). Then

u e LYR, WY (R)) for any admissible pair (4.2)
and there exist uyx € H'(R?) s.t.

Jim () — s || g1 gay = 0. (4.3)

Remark 4.2. Scattering (the completeness of scattering operators) refers specifically to (4.3).
Notice that for 1 < p < 14 2/d Scattering (4.3) is false. For 1+2/d <p <1+4/dis an
open problem.

Here the key deep statement is (4.2). In fact, (4.2) implies easily (4.3), as we show now
in the case +. So, assume (4.2), and in particular let

2 d d
e LYR,, WHPHL(RY)) with = + —— = —. 4.4
u R+ (R?)) wi PR (4.4)

From (3.5) with A\ = 1, we have
. t .
e Au(t) = ug — i/ e u(s)|PLu(s)ds,
0
so that, for t; < to, we have

. 3 t2 i
e 2 Bu(ty) — e Bu(ty) = i / 72 fu(s) P u(s)ds.
t1

Then

le™ 2% u(tz) — e Bu(t) | <

/2 e B8 u(s) [P u(s)ds

t1

Hl

1
< NullZa ey o), ey 1l 2o ey, 0en) (4.5)

where % + == %. We claim that a > q. Otherwise a < ¢ and so

1
q

| —

<5 eptl<qg

Q3

/!

<
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So, from p > 1+ %, (¢,p + 1) is an admissible pair with both entries > 2 + %. But
(2 + %, 24 %) is an admissible pair, so we get an absurd and we conclude a > q.
So, let us consider the pair («, /) which is admissible (notice that o > ¢ > 2 implies
00 >a>2andso2<f <p+ 1. We claim that
1 1 7
=~ T withre0,1]. 46
=51 0.1] (4.6
Assuming this, (4.5) can be majorized yielding

t1<to—-+o0
_—

e 28u(ty) — e M2y 0.

(tl)HHl < COHUHLOA ([t1,t2], WI,B)||u”Lq([t1,t2]7W1’p+1)
This implies that there exists

_ —itA 7l d
Uy = t_lgrnooe u(t) in H*(R?).

Then we have
etPu, —u(t) = —i/ )8y ()P u(s)ds.
t

As above,

t—+
we = u®)llm < Mul2l, o s [l ooy wimss 550,

”eitA
which proves the limit (4.3).
Turning to the proof of (4.6), obviously « > ¢ implies 8 < p + 1 so that
r 1 7
p+1 B d
with 7 > 0. Since 2 < 8 < p+1 < +oo, for d = 1,2 we have 7 < 1. For d > 3 we have

2d_ Qipee 4=2 — 1 _ 1
2<B<p+1< 5. Since 57 =5 — 3,

Lt ord=2 11
p+1 B d 2d 2 d
which implies 0 < 7 < 1 by
1—7‘>171
d 2 fB

As we indicated above, in Theorem 4.1, the deep statement is (4.2). The proof is rather
complicated. For this we will need the following which we will discuss only for dimension
d> 3.

Theorem 4.3. Let d > 3. Then given a solution u € C°(R, H'(RY)) we have

. 2d
t_l}gloo [w(®)]lr@ay = 0 for all 2 <7 < T3 (4.7
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Remark 4.4. Notice that it is enough to prove only case r = p+1. In fact, for 2 <r < p+1
there is an exponent a € (0,1) with

[w(®)]| 2 (ray < HUOII%z(Rd)HU( Mt gy

which yields (4.7) while for p+ 1 < r < 2% there is an exponent « € (0,1) with

« -« a l—«
(@)l Lrray < ()71 gayllu(t)] L% < a1 gay l1u(t)] L

< )% gy (2Eug))

which again yields (4.7).
Theorem 4.3 is deep result and implies (4.2) rather easily as we see now. We will use
the following elementary lemma.

Lemma 4.5. consider a function f(z) = a—x+bx® forx >0, a,b>0, a > 1. We assume
that there are 0 < xg < x1 s.t. f(xo) = f(x1) = 0. Let now ¢ € C(I,[0,400)) be such that
o(t) < a+bp*(t) for all t € I and that there exists a point tg € I s.t. ¢(to) < xo. Then
o(t) <o forallt el

Proof. Since f(¢(t)) > 0 for all ¢, and ¢ is continuous, the image of ¢ is either in [0, zg] or
in [z1,400). Obviously, the first case needs to occur. O
Proof that Theorem 4.3 implies (4.2) (sketch). Consider

t

u(t) = e =8y () — i / )8 () [P u(s)ds,

S
Then by the Strichartz estimates

lllzaqs sy < Clhu(S) e +C [l Nz |,

1
7

q
—cm<mm+o</|wﬂ+qwqmw%MmWWH@

9

< Ollu(S)|| g + CH“HLOOQ((S,t)vLTl)”UHZIq([S,thLpH)-
Here
p—§=p+1—q>0@p>l+4/d.

a

From Theorem 4.3, applied to 7 = p+ 1, we know HuHi;q( 7o

$.1).07+) ——— 0. Furthermore,

using conservation of mass and energy, there is a uniform upper bound for ||u(S)||z1. There
exists a constant Cy > 0 s.t. for any € > 0 there is Sg > 0 such that for any Sy < 5 < t,

9
HUHLQ((S,t),WLPH) <Cp+ 5”“”2;([5715]714/1,p+1)-
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Picking € > 0 sufficiently small, by Lemma 4.5 we conclude that there exists a fixed constant
Xo s.t.

||u||Lq((S,t)7W1,p+1) < Xj for any Sp < S < t.

In particular we can take ¢ = co. Since we know that u € L} (R, WP+ 'we conclude that
|l Lo w1wpt1)y < +00. Time reversibility of the NLS, yields the same result for negative
times. The Strichartz estimates, yield u € L*(R,W'?) for any admissible pair. Like in
(3.10), we have

[wll La((s),wrey < collu(S)|[m + CoHUHLa (s.y.ony lull s, wre)

% —|—% = % with here a > ¢ by the discussion in the proof of (3.8). So now let (¢, 3)

be an admissible pair. We have W1#(R?) — LPT1(R?), so, up to a change of constants, we
get

where

1wl pages,e,wrey < collw(S) g + COHUHZZ%(S@,WL;J)HUHLq((S,t),WLpH) (4.8)

and in particular
-1
Il s arios) < colla()lan + collulalig o o lullzoqspwionn.  (49)

If in (4.9) we have p < 2, then since |ul|za((g,),w1.0+1) S7H%, 0 the factor lwll Lo (5,0, w18
remains bounded for t — 400 if S > 1. If instead p — 1 > 1 we can apply Lemma 4.5.
So we conclude that in all cases [|u|fa((gy) w1.6) remains bounded for ¢ — +o00 if S > 1.
Inserting this information in (4.8), we get the same conclusion for [[ul|za((s),w1.b)-

5 Proof of Theorem 4.3

Lemma 5.1. Let p € [1,00) and q¢ < d with 0 < g < p. Then we have

|u(@)[? p \?
/Rd a2 =\ go) e IVl zga)- (5.1)

Proof. The general case u € W1P(R?) reduces to the special case u € C°(R?). In fact,
if (5.1) is valid for all u € C°(R?), then for a u € W'P(R?) with u ¢ C®(R?), we can

consider a sequence C°(R%) > u, D2H0 4 in WP (RY). Then, up to subsequence, we

have u,(x) LimascN u(z) for a.a. € RY, see p. 94 [2]. Then, by Fathou’s Lemma

p P
/ [u@)] dr < liminf/ Mdm
R |z n—oo Jpa x|

p ! P\’
< Jim (520 ) T 19 e = (2 ) Tl 190y

n—o0
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So we will prove (5.1) for u € C°(R%). Let z(z) := || 92. Then

Vor=V(z| )z + 2|V z = —gla| 0 Sz d|z| 1 = (d - q)|z] 7

]

Integrating the identity
ulfPV -z =V - ([uP2) = plulP V] - 2,

we obtain for arbitrary » > 0

p
(d—q)/ [ul) de = V- (Ju|Pz) d:L'—p/ |u[P~IV |u| - zdx
|| >r

‘$|q |z|>r lz|>r

p=liy
< —p/ [uP IV |u| - zdx < p/ Mdd’c,
|z|>r |z|>r ]9

where we used

| >r |z =r |z
Using 1 — % + % + % = 1 and Holder inequality, we have

p(g—1)

p=1l|y _
p/ de :p/ MW%WMW
|z[>r |

o=t s> |l

q—1

<ol [ P ) " a5l
SV Japor Jale pray[Vullo@a).

u(z)[” P\ -
/|x>r ’(IZ‘q dxg d—q HUHZE,png)HVUH%p(Rd)

and, taking r — 07, we obtain (5.1).

This yields

Lemma 5.2. For d > 4 there exists a Cy s.t. we have

Jua)
Adm3w<@W%wy

Proof. We proceed as above for ¢ = 3 and p = 2, to obtain

2
(d— 3)/ [ut) dr < —p/ |u[P7IV |u| - zdx < 2/ |uHVu|dx
|| >r |:L"3 |z|>r |l’|2

|| >r

1 1
<2 / wd:v 2 / ‘Vu|2dx 2 .
N || >r |l‘|2 || >r |l’|2
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In the 2nd line we apply (5.1) for p = ¢ = 2 to both u and Vu, to obtain

1 1
u(x)|? ul? 2 Vu|? 2 2
-3 [ ta< ( [ de) ( [ ) <2 (25 19l e

Then (5.2) follows sending r — 0. O
Let ug € H2 Then u € C°([0,T), H?) by the theory by Kato. Then equation (4.1)
holds also in a differential sense as

iy = — A+ [ufP " in D ((0,7), LR, C))

Notice that u € C1([0,T), L?). Let us now consider the quadratic form

! <i <ar i d2‘1> uu> . (5.3)

Notice that it is well defined and self-adjoint. Then, taking the derivative for u € C°([0,T), H?)N
CY([0,T), L?) we have

%2 <1<8T+2T>u,u>——<<&a+ o >u,1u>.

which can be proved assuming first u € C°°([0,7T), H?) and then proceeding by a density
argument. In our case we get

d —1 . d - ]. _
a2 (5 ) ) -
d—1 d—1
i _ v _ p—1
<(8T + ) u, 1u> <(8T + ) u, —Au + |ul u> . (5.4)

The equality (5.4) is crucial, indeed we will use it to prove

d , p—1 |u|PH
— (0 >(d—-1 d 5.5
& i) > @= 0t [ e (55)
which tells us that u — (9yu,iu) is some sort of Lyapunov functional and is crucial in our
argument.

The first observation to obtain (5.5), is that the following is true,

-1 1
<<6r + d2r ) u,iu> = 5% (Oru, iu) . (5.6)
Indeed, notice that
1 . 1 x -
5@ Re (iuw,) + §V . <; Re (1uu))
1 - 1 A 1 x | 1 -
=5 Re (ivw,) —i—M—F 3 (V . ;) Re (ium) —i—M—i— 3 Re (ivw,)
d—1
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so that integrating in = we obtain exactly (5.6).
The next step to prove (5.5), is the following inequality.

Claim 5.3. Let u € H?(RY,C). Then

({50 %5V <o o

Proof. The proof is based on the identity

Re {Au <u7~ + d;?qlu>} =V -Re {Vu <u7~ + d;ﬂ%)} -V {%\Vuﬁ} (5.8)

d—1 x 1 d—1)(d—-3
+9- (17 Sp) - 2 (vep - o) - D= D

4 3
which we check now. We have
. d—1_ . d—1_ Tp . d—1_
V- Re {Vu (ur + o u> } = Re {Au (ur + " u)} + Re {Bjuﬁj <78ku)} + Re {@uaj ( o u)}
1

d— 1 - d—1
—RedAu(m + 5 5 +J%0HVUP+~ﬂVM2—Re{fgi@u@ﬁ}+4——ﬂVuF
2r r 73 2r

2r
d—1xz; .
- Tr—g Re {0;uu}

B o d—-1_ Tk 9 9 T |Vul|? — |u > d—1 9
= Re{Au (ur + o u)} + O <§|VU\ ) — [Vul“0 (—) + + o |Vul

2r r
d—1z; d—1 €T;
~or (i) =, ().

Now we use

() =5
0, (%) =52

to conclude
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which is (5.8). Now, applying the Divergence Theorem to (5.8) in R%\ Dga(0,a) and take
the limit for @ — 0 and Lemma 5.1, we have

<(a 4 4= 1>u,Au> < —/Rdi(\vuy?— ur?) o = DE=3) |“’2da;

2r 4 a—=0t Jpsq T3

. . d-1_ |Vul?> d—1 |ul?
_1Lrg(1)r+1f - [Re{ur (ur—i- g u)} 5 + — T ds.

Let us now suppose that u € C*°(R%, C). Then

lim |Vu|?dS =0
a—=0% JoB(z,a)

Similarly, for d > 3 and v € C*®(R%,C) we have

2
lim |u|2
a—0t Jo—q a

ds =0

Hence, for d > 3 and v € C*®°(R%,C) we obtain 5.1, we have

i1 L (9l o de - 7DD [
< _ _ _ L A N— <
<<8,, + 5 >u, Au> < /Rd . (IVul® = |u,|?) da 1 i ——dz <0.

(5.9)

For u € H?(RY,C) and, u ¢ C*=(R?, C) considered a sequence u,, 270 win H? (R4, C), we
have

d—1 1 (d=1)(d=3) [ |ua?
g, Dup y=— [ = 2 — | |?) dz —
<<8T+ 2 )u" u"> /Rd - ([Vnl” = funy %) da 4 /Rd a

which in the limit converges to (5.9).
For d = 3 then u € C°(R3) and so

245

lim lul*— = 4r|u(0)[?,

a—0% J9B(0,a)

so that we obtain
d—1 1
)+ ——— Au ) = — - 2, ? -2 2,
<<8 + o )u, u> /R3 " (\Vu| || )de‘ 7|u(0)]

The next step to prove inequality (5.5) is the following identity,

d—1 —1p—1 [ |uPt!
p—1 _
<<8T + o > u, |u| u> 5 : / (5.10)
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Indeed

d—1 _ d—1 lulPtt 1 p-1
p—1, \ _ 1 2 24
<<&+»2T>UJM z§ o LS [ e o
d—1 lulpt™ 1 2 gy 1
= - Or d
2 /Rd T +2p+1/Rd (jul®) =" de
_d—l/ |up+1_d—1/ |u|p+1_d—1p—1/ [P+
2 Jga T p+lJga 7 2 p+1lJga v
So now we can prove (5.5). Indeed, from (5.6), (5.4), (5.6) and (5.10), we obtain
1d d—1 d—1
_ Y — - - o p—1
SEyT (Oru,iu) = <(8r + o > u, 1u> <(8r + o > u, —Au + |u] u>
d—1 _ d—1p—1 Pt
< — - Py )y = —
< (e ) =T L

which yields (5.5).
Lemma 5.4. We have

|u|PH1 2 p+1 22 p+1
Lt [ < 2 Pl Valemane < 51 gz (o).
(5.11)

furthermore, we have u(t) 220 in HY(RY).

Proof. To get (5.11) if ug € H?(R?) it is enough to integrate (5.5). The general case follows
by density, because if H? > g, LimA N up in H', we know that for any 7' > 0 for the
corresponding solutions u,, 22H0 4 in C%([0,T], H'). Then, by the density argument in

Lemma 5.1, we have

Pt e [ w2 pt1
/ dt/]Rd < lggf . dt i nr S d_1 p— HUOTLHLQ Rd)HvunHLOO [0 T] L2(]Rd))

n—+400 p+ 1
d 1 p— HUOHL2(Rd)HVU”LOO [0,T],L2(R%))-

Taking the limit for T — 400 we obtain (5.11) with R replaced by R;, which by time
reversibility yields also the general case.

To get u(t) — 220 in H'(RY) it is enough to show (u(t),)) L2420 0 for all 4 € CX(RY).
We have

| (w9 | < 1=

HLP+1II?“P+WH pit
p+1

so that | (u,)|P™ € L'(R). On the other hand, from

iy = —Au+ |ufP~luin D/ ((o,T), H—l(Rd,C)) .
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we have u € BC! (R, H*(R?,C)) which implies | (u,v) |** € BC'(R) for 2k > p + 2 and
for s <t we have

[ {u(), ) IP* = [ {u(s), \2’“ 2’<¢/ | (ut), o) PE7H (alt'), ) |t

C (&, B(uo), Juoll2)) / | (u(t)), ) [Pt S22 0,

Before starting the direct proof of Theorem 4.3 we recall the following lemma.

Lemma 5.5. There exists a constant C = Cr such that for any u € L2((0,T), H'(R%)) N
HY((0,T), HY(RY)) we have u € C°([0, T], L>(R%)) with

[wll oo (0,77, L2(RaY) < C (Hu||L2((O,T),H1(Rd)) + HaHLQ((O,T),H*l(Rd))) , (5.12)
Furthermore we have |[u(t)||3. € AC([0,T]) with

@ u(t) 2 = 2 u(t) (1)) (5.13)

Proof. Let us assume additionally that u € C1([0, T], L2(R%)). Then for any fixed ¢y € [0, T']
we have

lu(®)IIZ2 = llu(to)lIZ> + 2/ (u(s), a(s)) ds (5.14)

to

< Jlu(to)ll7= + HUH%Z(((),T),HI(Rd)) + Huuiz((o,T),H—l(Rd))-

We can choose [u(to)||2, =T! fo lu(s)||22ds obtaining (5.12) for C' = V14 T-1
The general case is obtained by considering a sequence (uy,) in C1([0, T], H'(R?)) converging
towin L2((0,T), H*(R*))NH((0,T), H~'(R?)). To get such a sequence, we can extend ap-
propriately u into a function in L?(R, H'(R?))NH*(R, H~'(R?)), and then we can consider
Up, = Pe,, * U With €, 27 0. Then this sequence satisfies the desired properties.
Then (5.12) implies that (u,) is a Cauchy sequence in C°([0,T], L?(R%)). The limit is
necessarily u, which satisfies (5.12). Also by a limit, we conclude that u satisfies the
equality in (5.14), for any fixed ¢y € [0,T]. This implies [|u(t)||2, € AC([0,T]) and formula
(5.13).

O

Lemma 5.6. We have

/ |uPtde 22125 0, (5.15)
|z|>tlogt
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Proof. We consider for M > 0

|Am7| for |z] < M

0 =
() { 1 for |z| > M

Then 6, € WH(R?) with | VOus||z~ < 1/M. Now we have u € CO(R, H') N C' (R, H™1).
Then, by Lemma 5.5 applied to v/Oyu, t — 271 (O u(t), u(t)) € AC([-T,T)) for any T > 0
with

d .
227 (Onru(®), u(t)) = (Oaru(t), u(t))
Since we have iu(t) = —Au + [u[P~u in D'(R, H~1), we have
d . O e .
227 Ouru(t), u(®)| = [(Onu(®),ibu = ilul " u)| = [(Onru(t), i0u)] < [[Vullg2]lul g2 VO o

< IVl g2 llull 2 VOl e < CM
Then it follows, for a C' independent from M,
(Orru(t), u(t)) < CM ™t + (Oaruo, uo) -

Setting M = tlogt, we obtain by dominated convergence

/ () Pdz < (B 105 pu(t), ult))
|z|>tlogt

C
§+/ . !u|daz+/ luo|2dz =525 0.
logt |z|<tlogt tlogt |z|>tlogt

Finally
()21 o100y < 1O G010 0O

a t——+o00
< Clu®)$ 1501080 [ VEOI 80 < C N0 1E2 0501080

—— 0.

Lemma 5.7. For anye >0 ,t>1 and 7 > 0 there exists ty > max(t,27) s.t

/ / lu[PHdzds < e. (5.16)
to—27 J|z|<slogs

Proof. The starting point is Lemma 5.4. We have

ulPH! * ds
oo>/dt/ [u Z/ / ulPTtda
R R T 2 slogs |z|<slogs

> t+2(k+1)T
/ ( ) ds / |u|p+1dx
t+2kT slogs |z|<slogs

v

(]2 TTM

v

1 t+2(k+1)
/ ds/ lu[P dz.
(t + Z(k + 1)7—) 10g(t + Q(k + 1)T) t+2kT |z|<slog s

i

0
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From this inequality we derive

t+2(k+1)7
liminf/ ds/ lu[Pdx = 0,
k=400 Jitokr |z|<slog s

because otherwise the series would diverge. Hence for any € > 0 there exists kg arbitrarily

large with
t+2(ko+1)T
/ ds/ lulPde < e.
t+2koT |z|<slogs

So for tg =t + 2(ko + 1)7 we obtain (5.16).

O
Lemma 5.8. For any €,a,b € Ry there exists tg > max(a,b) s.t.
sup  JJu(s)| pp+1 < e (5.17)
SG[to—b,to]
Proof. We have
. t .
u(t) = ePug — i/ =By (s)|P~ Tu(s)ds
0
. t_T . 1 .
= Py —i/ =8y (s) P u(s)ds —i/ =By (s)|P~ Tu(s)ds
0 t—1
w(t,T) 2(t,7)
= "Pug + w(t, ) + 2(t, 7).
Now we consider each of the last three terms.
Claim 5.9. We have
€A ug|| o1 = 0. (5.18)

41
Proof. Indeed, if ug € LPT, then

1

: D 5 S
T e R I
p

0.

il
The general case follows from the special one using the fact that H' N L% is dense in
H'. O

Claim 5.10. There is a constant C independent from ¢ and 7 s.t.

d(p—1)—2max(1,p—1)

leo(t, 7| gos < Cr "0 (5.19)
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Remark 5.11. The exponent is strictly negative. Indeed, for p — 1 < 1 we have

0<dlp—1)—2max(l,p—1)=d(p—1)—2<—=p> 1+§.
fp—1>1
0<d(p—1) —2max(l,p—1)=(d—-2)(p—1) < d > 3.
Proof. We define

[ xifp>2
1= 5L if p < 2.

Then we have, for a dimensional constant C,

t—r1 _d<l_l) »
ot r)le <0 [ =0 B s
Here we claim
1 1
- — — 1. 2
d <2 q> > (5.20)

This is obvious by d > 3 if ¢ = co. Otherwise, for p < 2

11 1 2-p\ d P
d<2 q) d<2 5 ) 2(p )>1<=p> —i—d,

where the last inequality follows from p > 1+ %. So we have, for a dimensional constant C

lwott, P lze < G sup fu(s)] (5.21)

p
Lrd" "

We claim now that 2 < pg’ < p + 1. Indeed, for p > 2 we have ¢ = 1 and the claim holds.
If p < 2 then

1 1 2 —
q q 2 2

so that pg’ = 2. So in all cases we have H' < LP? and we can uniformly bound the last

factor on the right in (5.21).
Next, we claim ||w(t, 7)|| 2 < 2||uol| 2, which follows from

t—1 t—T
w(t,r) = —i/ T8 |y ()P u(s)ds = €74 (—i/ ei(t_T_S)A|u(8)p_lu(s)d8>
0 0

=7 (u(t —7)— ei(t_T)Auo) = e™u(t — 1) — ePug.
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Finally, we claim p+ 1 < ¢. This is obviously the case if ¢ = co. Otherwise p < 2, and then
2
q>p+1<:>fp>p+1<:>2>(p+1)(2—p):2+p P

where the last inequality follows from p > 1 and so from p — p* < 0. Finally by Holder

9 —_ 9 12 9 L4 ] 2 .

N[ =
Y-

T pF1
PT So

Notice that a =

D=
Q=
[N
|
-
il

P

“(i-sk) ¢ (5.22)

lw(t, T)l[pe+r < CT

[N
Q-

We now examine the exponent in (5.22). If ¢ = co the exponent equals
1 1 > dp—1)—2(p—1) d(p—1) —2max(1,p — 1)

_(d_2)<2_p+1 2(p+1) - 20p+1)

In the case ¢ < oo, then

<;p;>< r ;) (55

p—1) —2max1p—1)

_ dlp—-1) -
2(p + 1) 2(p+1)
So we have proved that the exponent in (5.22) is exactly the one in (5.19), which is then
proved.
O
We now consider
t
4@7)::—{/‘ )8 y(s) P u(s)ds
t—7
We have
(5.23)

__1
) )0 ds.

t (1
ot Dl 5 [ (1= (3
t—1

Notice that p < d*, that isp+1 < dQTd2 is equivalent to d ( i) < 1. Indeed,

1 _d-1 1 1

b+l 24 2 d
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We now pick ¢ € (1, Z%ﬁf};) Notice that this implies gd (% — ﬁ) < 1. Then

t —dq(l—i) 1/q t ,
ot )l < ( |-l ds) < / Huniiﬂds)
t—1 ) t—1
t , 7
=CO7r¢ (/ ||u||iz)+1d5>
t—T

QY

for some a > 0. Now we claim ¢'p > p + 1 or, equivalently, 2 7 <5 +1 Indeed
q 2 p+1 qg q 2 p+1 q 2 p+1
2p+ 1) —(p+1)d+2d D 2—(p+1)d—l—2d D
= — < ,
2(p+1) p+1 2(p+1) p+1

where the last inequality holds because

2
2—(p+1)d—|—2d:2—pd—|—d<0<:>p>1+g,

with the latter true because, in our case, p > 1 + %.
From ¢'p > p+ 1(> 2) and p < d* it follows that,

+1 '—p—1 +1 1B H- 1 g, 1-8
lellZher = Nl ™ < ell gl 7Pl 700 for g = S

So, by the Sobolev embedding H'(RY) < L¥+1(R?), we conclude for the solutions of our
equation

+1 1)8 (pd’ —p—1)(1-B)
ulP7,, < CllullPtL uo | P (2B (ug)) ™

for a dimensional constant C, related to Sobolev embedding. So, for a constant C' which
depends on the dimensione and ug, we have

1
q

t —_
et < Co ([ ullhas)”
—T

1
t t Fd
@ / ds/ |u|p+1dx—|—/ ds/ lulPdx
t—7 |z|>slog s t—7 |z|<slogs
1
o

1
L 5+ +1 / L 5 t 1
<27 Cta ( sup [lu(s) || |x>slogs)> +27CT (/ ds |ulP T dx
sEt—T,t] t—r1 |z|<slogs
(5.24)
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Let us take now 7 > b such that

d(p—1)—2max(1l,p—1)

lw(t, 7)1 < CT 2(pH1) <

(5.25)

IR

Next, using Lemma 5.6 and Claim 5.9 let us take ¢; > max(a, b) such that for ¢t > ¢;

L

itA L~ o+ +1 T e
e ugl| ppsr + 29 CT" 4 ( sup ||u(8)”ip+l(x|>slogs)) <7 (5.26)
SE[t—T,t] -
Using Lemma 5.7 there exists ty > t; + 27 such that for t € [tg,t9 — 7]
1 1

1 t q’ 1 to q €
27 Cr° / ds/ |ulP T da <27 C7° / ds/ |ul[P T da < -
t—T1 |z|<slog s to—27 |z|<slog s 4

(5.27)

If we consider now the €,a,b in the statement, we can take ty = t9 large enough so that
to > max(a,b) and take 7 > b obtaining (5.17).
O
We now move to complete the proof of Theorem 4.3.
Let us fix € > 0. Pick ¢ > 7 > 0. Then, in view of u(t) = e"®ug + w(t, 7) + 2(t,7), we have
that by Claims 5.9-5.10 there exists t; > 0 and 7. with

d(p—1)—2max(1,p—1)
i - €
[u(®)ll o1 < [l ul| o1 + Cre Ay Hllzt )l < 5+ ll2(E )l o,

where we chose [|e"®ug||ppr1 < £ for t >t and
_d(p—1)—2max(1l,p—1)

CTe ey =-, (5.28)

'S e

where C'is a dimensional constant. In turn by (5.23)

! —d(l—i) p _ggp:&; P
|2, 7e) | Lo+1 5/ (t—s) 2o ”uHLerldS <Cre 7 sup HU(S)HLP+1'

t—Te SE[t—Te,t]

From Lemma 5.8 we know that there exists ty > max(t1,7) s.t.

sup  JJu(s)|| g < —. (5.29)

sE& [tofTe ,to}

P

Consider now

te =sup{t >to: sup |lu(s)||pp+1 < e€forall t € [to,t]},
SE[t—Te,t]

o1



where (5.29) guarantees that the set on the right hand side contains at least tp and in fact,by
the continuity in ¢ of the function ¢ — sup,cp_r ¢ lu(s)| zp+1, @ whole interval.
If tc = 400 we will have proved the desired result, because in particular this guarantees
that [|u(s)||zp+1 < € for all the t > ¢y and, since here € > 0 is arbitrarily small.
So, let us suppose that t. < co. Then, by u € C°(R, H'), we have |[u(t:)||ir+1 = €.
Then we have
d(p—1)

€ € 1—
<t tlelte il < S ORI s u(s)[en,
SE[te—Te,te]

so that we conclude

€ 1— d(p—1)
€< 3 + (C’T6 2p+1) 6p1> €.

We now need to check that it is possible to choose 7, such that both

1_d(p71) 1
Cre "Wl <o (5.30)

and (5.28) are true. This will lead to a contradiction. Suppose that for 7. which satisfies
(5.28) inequality (5.30) is false. This implies

1_ d@=1) 1_dp=1) _ d(p=1)?—2(p—1) max(1,p—1)

% <7 T 2(pt+D) Ep—l — 61141)—17_E T 2(pt+D) 2(p+1) , (531)

where we substituted e?~! using the equality (5.28). We will show now that the exponent
of 7 is negative, so that taking 7. > 1 formula (5.31) leads to a contradiction. Taking a
unique fraction in the exponent and focusing on the numerator, we have

20p+1)—dp—1) —d(p —1)* +2(p — 1) max(1,p — 1)
=(—-1)@2max(l,p-1)—d—d(p—1))+2(p+1)
=(-1)@2max(l,p-1)+2-d(p—-1)) —dlp—1) -2(p— 1) +2(p+ 1)
=(p-1)2max(l,p—1)+2—-d(p—1))—d(p—1) + 4. (5.32)

For p — 1 <1 the quantity in line (5.32) becomes
(p—1)(@d—dp—-1))—dlp—-1)+4=pd—-dp—1)) <0

by p > 1+ 4/d and this completes the proof for p — 1 < 1.
For p — 1 > 1 the quantity in line (5.32) becomes

(p—1)Q2p-1)+2-dp-1)—dp—1)+4
=p-1)2-Wd-2)(p—1))—dlp—-1)+4

02



For d > 4

(P—1)2—-(d=2)(p—1)) —d(p—1)+4
<@p-1)@2-20p—1) —4(p—1)+4=-2(p—-1)p—4(p—-2)<0.

Finally, for d = 3 and p — 1 > 1 the quantity in line (5.32) becomes, for « = p — 1,

P—1)2p-1)+2-3(pp-1)-3(p-1)+4
=—a’—a+4=—qla).

Now, g(a) = 0 for ax = —1/2 + @ This means that ¢(o) < 0 for p —1 > ‘/g_l.
The completion of the proof of Theorem 4.3 for the remaining cases, that is d = 3 and

1741 - .
2<p§%18110t in [4].
O
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