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A. The Bragg-Zimm Model for Helix-Coil Transitions

e The Zipper model agrees with experimental data well if the protein is

not too large. If the protein is large, a number of helical sequences

may initiate at remote location in the protein. In this limit, the zipper

model no longer works.

To address structural transitions in larger proteins, a more realistic

model is required. The Bragg-Zimm model relaxes the requirement

that the C-to-H transition only occurs adjacent to a preexisting H

domains.

In the Bragg-Zimm model, H states do not have to occur in

contiguously, but non-contiguous H states are energetically

unfavorable and thus are statistically weighted less in the partition
function.

The following rules apply in the Bragg-Zimm model:

I. Like the Zipper model, the Bragg-Zimm model is parameterized
by s and . The parameter s again is an equilibrium constant that
characterizes C==H such that s=[H]/[C].

Ii. The parameter o is called the nucleation parameter. A statistical

weight of os is assigned if the H is next to a C or is the first H in
the sequence. If H occurs next to another H its weight is s.

Iil. In proteins s is typically slightly greater than 1. The parameter o
varies between 0.001 and 0.0001.

e Using these rules we can construct the statistical weights for all eight

possible trimer sequences and the partition function. Table 9.1 gives the
trimer sequences and the weights.

Trimer CCC |HCC |CHC |CCH |CHH |HHC |HCH |HHH
Sequences
Statistical GS cS cS o8’ os* o’s? | oS
Weights

Table 10.1: Bragg-Zimm Model: statistical weights for the eight possible trimer
sequences.

e The partition function is simply constructed as in the other models using

the statistical weights in table 9.1:
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=0, (1+305+205" +o°s* +05°) = q, (1+ o(3s+25° +o5% + 53)) (10.1)

¢ Note the differences between the partition function for the zipper model
versus the Bragg-Zimm model: the HCH intermediate is disallowed in the zipper
model and allowed in Bragg-Zimm...but it has a “probability” of 6°s qo/q
e As before it is now possible to calculate the fractional helicity. Let s=1.00,
=0.0600;
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e Recall in the last lecture that when we worked this problem for the zipper
model the result was virtually the same. The Zipper and Bragg-Zimm
models will not differ much for small s because the amount of HCH, for
example, will not be large at small s. The two theories will differ more
when s becomes large.

e The Bragg-Zimm Model was used to calculate the theory lines (solid
lines) in Figure 10.1.

¢ In general the fully cooperative model rises too fast to simulate data. As
o — 0 the helix is destabilized and longer chains (i.e. larger N) are
required to stabilize the helix.

e As o —1 the Bragg-Zimm model approaches the non-cooperative model.
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Figure 10.1; Comparison of Non-cooperative, fully cooperative (equation 6.10) and
Bragg-Zimm (equation 9.5) for N=3 and ¢=0.05.

B. The Bragg-Zimm Partition Function: Matrix methods
e Three of the models that we have covered for helix-coil transitions have
relatively simple expressions for the partition functions:
O Non-cooperative:

q=0d, (1+Zﬁsq:qo (1+s)N (10.3)

O Fully Cooperative:

q=0,(1+s") (10.4)

O Zipper:

q:%(

N
1+0) (N-k+1)s*

k=1

]_ os®(s" +Ns*—(N +1) (105

(s-1)°

e Given the partition function g for each model equation 10.3-10.5) we can
determine the fraction of monomer that are helical from

(n) 1saq
f,=Ll=—2>"1 10.6
" N Nqgbds (108)

0 The Bragg-Zimm model is more complicated than these other models in that it
uses a set of rules to construct a partition function. These rules are:

If a C monomer follows a another C monomer, it is weighted
by 1 in the partition function
If a C monomer follows a H monomer, it is weighted also by 1
in the partition function
If a H monomer follows a C it is a nucleation step and is
weighted by os.
If a H monomer follows another H it is a propagation step and
is weighted by s.

0 These four rules are compiled into a statistical weight

matrix M which has the form:

C(l os
M =
~ H (1 S j (10.7)

C H
The matrix M is used in the following calculation to generate
the partition function.

o For N=1:

&:(1,0)8 C’j@:uas (108)

Qo S

0o For N=2;
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qiz(l,o)ﬁ G:JG O:JGJ=1+20'5+0'52 (10.9)

0o For N=3:

ooy TIE T Tl T o

=1+30s+20s° +0%s* +05°
0 Matrix algebra techniques show that for a N-long polymer where N is
very large:

&:(1,0)(1 “SJN@JN -2) (10.11)

0o 1 s)\) A-4
s+1%,/(s—1)" +4os

2
o Equation 10.11 is valid only for very large N.
o When N is very large

Ing=InA""+In(1-2,)-In(4,-4,)~NIn4 (10.12)
o When the fraction helicity is calculated we can simplify

even more. Using the definition of fy and the
expression for q in equation 10.11...

and in general 4, > 4,

where 4, =

n
f _{n)_saing_ Si[m,ﬂ:i% (10.13)
N N o0s 0s A 0Os
o0 Conclusion: For the Bragg-Zimm model when N is very large:
S 04
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A 0Os
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