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A. Non-Cooperative & Fully Cooperative Helix-Coil Transitions 
• From last lecture, we have reviewed two types of helix-coil transitions. The non-

cooperative model has a partition function for N monomers: 
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• In equation 9.1 the partition function for the intermediate structures, which are 
mixes of C and H, are binomial coefficients. Occurrence of binomial coefficients 
indicates our counting follows that of N independent events each with an outcome 
that is either C or H. 

• Cooperativity implies the monomers no longer make helix-coil transitions 
independently. This means the coefficients in the partition function  for 
intermediate forms must be changed. The simplest model is to assume formation 
of helices for different monomers are completely correlated such that only two 
forms exist: fully structured or completely unstructured. The partition function for 
this model is 

 ( )0 1 Nq q s= +  (9.2) 

• The non-cooperative and fully cooperative models are extreme cases that do not 
commonly occur in nature.  

 
B. The Zipper Model  

• The zipper model assumes that when helical segments appear within an otherwise 
random coil, they can occur only in contiguous segments. Thus as before we have 

o entirely coiled=...CCCCCCCCC... 
o entirely helical=...HHHHHHHH... 
o states that are partially helical can be ...CCCCCHHHHHCCCC... but not 

...CCCCCHHCCHHHHCC... 
• When a C to H transition occurs it MUST be at the end of a sequence of H’s 

like: CCCCHHHHCCC CCCCHHHHHCC→… … … …  
but not CCCCHHHHCCC CCHCHHHHCCC→… … … …  

o An allowed transition 
CCCCHHHHCCC CCCCHHHHHCC→… … … … is called a propagation 

step and has an equilibrium constant  
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o ∆G is as before the Gibbs energy change for helix formation 
o We assume all propagation steps have the same equilibrium constant s. 
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o The other type of equilibrium is called a nucleation which refers to the 
formation of the first helical sequence from an all-coil sequence. For 
example a nucleation is  

 CCCCCCCCC CCCCCCHCC→… … … …  
  for which  
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o The nucleation step is energetically unfavorable so that the parameter σ<<1. 
With these two energy rules we can determine the equilibrium constant for 
any configuration. As before, the sequence CCCCHHHHCCC… …  
contributes to the partition function 4sσ . So the total partition function is  
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where 1k N kΩ = − +  is the number of ways of arranging k contiguous H 
segments into a N long chain.  

• We can calculate the fractional helicity by several methods. First from 9.5:  
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• Then for 0 k N< ≤   
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• Then  
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o Equation 9.5 and 9.8  have  closed forms that do not require series 

summations. First divide the single series in equation 9.5 into two series:  
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• The first series is a geometric series and can be written 
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• The second series can be written 
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• Putting equations 9.10 and 9.11 into 9.9 we get a closed form for the partition 
function of the zipper model: 
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o A closed form for fH can be obtained by substituting equation 9.12 into 
1

H
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B. How to Work Zipper Model Problems 
• Equation 9.13 is valid for any N. If N is large (i.e. >4 to 6) it may be preferable to 

calculate the fractional helicity using equation 9.13 instead of using equation 9.5.. 
• However, if N is <4 to 6, it may be easier to calculate the partition function using 

equation 9.5 and then calculate the fractional helicity from 1
H
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• In the following examples we show the relative merits of these two approaches. 
 
Example 1: Using the zipper model calculate the fraction helicity for  a trimer (i.e. 
N=3) assuming: s=10.0 and σ=0.0600;  
• Method 1 : Using equation 9.5 and 1

H
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For a trimer the zipper partition function is: 
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For s=10.0 and σ=0.0600 
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• Method 2: Use equation 9.13 
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For s=10.0 and σ=0.0600: 
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Both methods agree to within 1%. In terms of the amount of work involved in 
getting the answer, both methods are comparable. 

 
 

Example 2:  Repeat the same calculation but assume N=20,  s=10.0 and σ=0.0600 
 
To work this problem with method 1 would require computing a partition function with 

20 terms in it: i.e. ( )
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consuming. Better to use equation 9.13: 
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Note when N becomes large you can neglect many of the small terms in equation 9.13 
and simplify your work significantly.  
 
Example 3: There is one situation which might cause some hesitation. For N=3, s=1.00 
and σ=0.0600 computing the partition function with equation 9.5, followed by 

determination of fH gives quite quickly:  
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For s=1 the non-cooperative result would be 1
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 and the same result is 

obtained for the fully cooperative model. The zipper model reduces fH for s=1 by 
removing intermediate sequences with non-adjacent H’s. 
 
Note: Trying to use equation 9.13 to solve for  s=1 causes some consternation because the 
denominator goes like (s-1)3 and therefore the denominator approaches zero as s 
approaches 1. However for s=1 the numerator also approaches zero. This means that as s 
approaches 1 fH does NOT blow up. It can be shown that for very large N (i.e. large 
proteins) as s approaches 1 fH approaches 0.5.  
 
  
 


