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Abstract

Ž .Cooperativity, the departure from hyperbolic behaviour of the fractional saturation of a receptor at equilibrium Y for
Ž .different values of ligand concentration L , is an essential property of many physiological mechanisms and a first clue to

the existence of conformational transitions and allosteric interactions. Here we investigate the properties of a simple and
Ž .sensitive procedure to test and quantify cooperative behaviour. The measure of cooperativity involved is ksd K L rd L

Ž . Ž . w x w xwhere K L s 1yY LrYs free sites Lr occupied sites is called the ‘global dissociation quotient’ Cooperative
Ž .behaviour appears when k/0, i.e., K L is a function of L. We have shown, for several equilibrium models of cooperative

Ž . Ž .behaviour e.g., Monod–Wyman–Changeux and Koshland–Nemethy–Filmer , that K L can be expressed as the weighted´
Ž .average of the microscopic dissociation constants K where the weights are the corresponding fractions of occupied sitesi

Ž . Ž .X , K L sÝK X . As a consequence, the change in the global dissociation quotient with ligand concentration for ai i i
Ž .dimer is ks K yK d X rd L. This result shows that the quantitative importance of a cooperative behaviour in a dimer1 2 1

Ž . Ž .depends on two factors: i the difference of the microscopic dissociation constants of the sites and ii the change in the
fraction of occupied sites with ligand concentration. We analyze the generality of this unified view concluding that it would
be fulfilled by every equilibrium model where there is a one-to-one relationship between free and occupied sites.

Keywords: Cooperativity; Hill number; Koshland–Nemethy–Filmer model; Microscopic constant; Monod–Wyman–Changeux model´

1. Introduction

A century ago, findings such as the Bohr effect
showed that cooperativity was an essential property
for respiratory function. In the following decades,
methods were developed to analyse this phenomenon.
In particular, the Hill number used as a model-free
measure of cooperativity was one of the useful tools.
Mechanistically, the phenomenon for a long time has
been associated with large changes in the structure of

w xthe protein known as conformational transitions 1 .
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More recently, the discovery of the allosteric inter-
actions was one of the most important scientific

w x Ževents in the biochemical sciences 2 for historical
w x w x.accounts see Judson 3 and Debru 4 . The fact that

the activity of enzymes could be affected by metabo-
lites not chemically related to their substrates and
products opened new challenges. On the cellular
level, it changed our perception of metabolic func-
tioning and regulation. On the molecular level, many
questions emerged on the problem of the structure–
function relationship which is still only partially un-
derstood.

Many authors have contributed to a general theory
of cooperative events in biological macromolecules.
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Among these approaches, and in addition to the
results reviewed by J. Wyman and S.J. Gill in Bind-

w xing and Linkage 1 , we would like to mention the
physical description given in the comprehensive book

w xby T.L. Hill 5 and the work of M. Eigen related to
the relaxation behaviour of cooperative and allosteric

w xsystems 6 .
Conformational transitions represent the main

physical basis common to cooperative and allosteric
phenomena. Therefore, the experimental finding of
cooperativity is relevant not only for its own implica-
tions but also as a first clue to the existence of
conformational changes and allosteric interactions.
The quantity most extensively used to quantify coop-
erative behaviour is the Hill number, alternative mea-
sures of cooperativity being seldom used. Here we
will recall a simple and sensitive procedure to test

w xand quantify cooperative behaviour 7,8 . We have
previously shown that the quantity involved in this
procedure, which we call ‘global dissociation quo-
tient’, is directly related to the Hill number and has

w xan intuitive meaning 9 .
Based on the ‘global dissociation quotient’, in the

present work we develop a phenomenological ap-
proach that constitutes the basis for a unified micro-
scopic view of cooperativity. This approach is
model-free and, as we shall see, applies to very
different underlying mechanisms.

2. Cooperativity: an experimental phenomenon

Cooperativity can be unambiguously defined by
reference to an experimental procedure. The relevant
quantity to measure in a binding experiment is the
fractional saturation of the receptor at equilibrium
Ž .Ysoccupied sitesrtotal sites for different values of

Ž .free ligand concentration L . We say that the bind-
ing of a ligand to a protein is not cooperative if,
under the particular experimental conditions, the plot

ŽY vs. L is a section of a rectangular hyperbola Fig.
.1 . Therefore, the phenomenon of cooperativity is

synonymous to deviation from hyperbolic behaviour.
To diagnose the existence of cooperativity, several
ways to transform the hyperbola into a straight line
have been proposed. Three widely used in the scien-

Ž . Žtific literature are: a Lineweaver–Burk plot 1rY
. Ž . Ž .vs. 1rL , b Langmuir–Hanes plot LrY vs. L and

Ž .Fig. 1. Plot Y vs. L. Examples of hyperbolic curve dashed line ,
Ž . Ž .positive cooperativity qc and negative cooperativity yc .

Ž . Ž .c Eadie–Hofstee plot Y vs. YrL . The last plot
appears to be the most sensitive to deviations from

w xlinearity 10 .

3. A measure of cooperativity: the Hill number

Once the existence of cooperativity has been estab-
lished, the following step is to determine its quantita-

Ž .tive importance. The Hill number h is the measure
of cooperativity most extensively used. Its prevalence
is based on the fact that the Hill equation, i.e.

Lh

Ys 1Ž .hKqL

with K and h constants, has been found to fit
cooperative data well in the range of 10% to 90%

Ž w x.saturation. This means that if we plot ln Yr 1yY
Ž . Ž .vs. ln L i.e., the Hill plot , in that range, we obtain

a straight line whose slope

Y
d ln ž /1yY

hs 2Ž .
d ln LŽ .

is the Hill number. From the Hill equation we see
that in the absence of cooperativity hs1. h)1 is
called positive cooperativity and h-1 negative co-
operativity. The actual value of h is a quantitative
measure of the extent of the cooperative behaviour. It
is important to keep in mind that, although h is
approximately constant in a wide range of L, strictly

Ž .speaking, it depends on L see Fig. 4A .
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Historically, the Hill number was introduced in
1910 by A.V. Hill in an attempt to understand the
sigmoid binding curve of oxygen to haemoglobin
w x11 . He suggested that such behaviour could be
explained by a model where h molecules of ligand
bind to the protein in a single step. A theoretical
consequence of this hypothesis was that the fractional
saturation and the ligand concentration would be
related by the Hill equation where the Hill number
would be equal to the number of binding sites. In
fact, when this theory was applied to the oxygen
binding curve of haemoglobin two interesting results
were obtained. The Hill plot was a straight line as

Žpredicted by the theory the data available at that
.time covered intermediate values of saturation only .

In contrast, the value of the Hill number obtained was
2.8, although haemoglobin has four binding sites for
oxygen. The first of these results supports the use of
the Hill number as a model-free measure of coopera-
tivity. However, the interpretation of the Hill number
was obscured by its discrepancy with the number of
binding sites.

4. An alternative measure of cooperativity

An alternative way to describe the deviation from
w xhyperbolic behaviour is to use the equation 7,8

Žw x .12 , pp. 630–633 :

L
Ys . 3Ž .

K L qLŽ .
Ž . ŽIn the absence of cooperativity, K L is constant Y
.vs. L is a rectangular hyperbola . Cooperative be-

Ž .haviour is, therefore, equivalent to change in K L
Ž .with ligand concentration. Rearranging Eq. 3 , we

obtain:

1yY L
K L s . 4Ž . Ž .

Y

By combining this result with the definition of Y, it
Ž .is easily shown that the experimental value of K L

w x w xcan be interpreted as free sites Lr occupied sites ,
and it has the same form as a dissociation constant. In

Ž .the definition of K L free sites and occupied sites
are the sum of all the free sites and all the occupied
sites of the system respectively. As a consequence,

Ž .K L usually depends on the ligand concentration,
being constant only in the absence of cooperativity.
Taking into account all these considerations we called
Ž .K L : ‘global dissociation quotient’. Similarly, the

Ž . Ž Ž ..reciprocal of K L 1rK L , the ‘global association
quotient’, represents the overall affinity of the recep-
tor for the ligand. Note that in what follows, we will

Ž .continue to use the same symbol, K L , and the same
name, global dissociation quotient, for the value cal-

Ž Ž ..culated from the experimental data Eq. 4 and for
w x w xits interpretation: free sites Lr occupied sites .

Ž .Eq. 4 can be used for diagnostic purposes. For
instance, deviations from a horizontal straight line in

w xthe plot 1yY LrY vs. L is a positive test for the
existence of cooperativity. The same curve can also
be used to evaluate the extent of the cooperative

Žeffect. We will use the slope of this curve i.e., the
Ž .derivative of K L with respect to L, symbolized by

.k as a quantitative measure of cooperativity, i.e.

d K LŽ .
ks . 5Ž .

d L

k equal, greater or smaller than zero will correspond
to absence of cooperativity, negative and positive
cooperativity respectively. Under this view, the phe-
nomenon of cooperativity is equivalent to the change
in the global dissociation quotient with ligand con-
centration.

It is important to remember that the Hill number
Ž Ž . Ž . .and k Eqs. 2 and 5 , respectively can be calcu-

lated from a table of experimental values, Y vs. L,
Ž .and are model-free measures of cooperativity. K L

is analogous, at least in its form, to a dissociation
constant and the meaning of its derivative with re-

Ž .spect to L k is transparent. In the next section we
will show that there is a close relationship between h
and k which makes it possible to assign to h an
intuitive meaning.

5. On the meaning of the Hill number

The two measures of cooperativity described
above, h and k , are closely related. Working with

Ž . Ž . w xEqs. 2 and 4 we obtain 9 :

hy1syC K Ž L. 6Ž .L
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where

L d K L LŽ .
K Ž L.C s s k 7Ž .L K L d L K LŽ . Ž .

C K Ž L. can be interpreted as the relative change in theL

global dissociation quotient, divided by the relative
Žchange in the ligand concentration when small

.changes are considered . Similarly, its opposite,
yC K Ž L., represents the relative change in the globalL

Ž Ž ..association quotient 1rK L per relative change in
the ligand concentration. In essence, yC K Ž L. de-L

scribes how sensitive to relative changes in ligand
concentration is the overall affinity of the system.
The Hill number shares this meaning, the only differ-
ence being that in the Hill number the non-cooper-

Ž .ative behaviour is positioned in one and not in zero .
Therefore, the main difference between the alterna-
tive measure of cooperativity, k , and the traditional
measure of cooperativity, h, is that the first one
represents the absolute change in global dissociation
quotient per absolute change in ligand concentration
while the second one is related to the corresponding
relative changes.

6. Models for cooperativity

Several models have been proposed to explain the
molecular mechanisms responsible for the existence

Ž . Ž .Fig. 2. Reaction schemes. A MWC dimer and B KNF dimer.

Ž .Fig. 3. Plots for diagnose of cooperativity. A Hill plots in the
Ž .case of non-cooperative behaviour dashed line , positive cooper-

Ž . Ž . Ž .ativity qc and negative cooperativity yc . B represents the
global dissociation quotient as a function of ligand concentration

Ž . Ž .for the same data as in A . Note that K L vs. L is a more
sensitive test than the traditional Hill plot. The curves were

Ž .generated with a KNF dimer see Fig. 2B and Table 1 with the
microscopic dissociation constants taking the following values:

Ž .K s2.5 and K s2.5 dashed line , K s25 and K s0.251 2 1 2
Ž . Ž .qc , and K s0.25 and K s25 yc .1 2
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of cooperative behaviours. Here we will consider two
famous models: the concerted model of Monod,

Ž . w xWyman and Changeux MWC 13 and the sequen-
Ž .tial model of Koshland, Nemethy and Filmer KNF´

w x14 . The reaction schemes, in the case of a dimer,
are given in Fig. 2 and the corresponding expressions

Ž . Ž .for the fractional saturation Y , the Hill number h ,

Ž .Fig. 4. Quantitative measures of cooperativity. A represents h
Ž .vs. L and B represents k vs. L in the case of non-cooperative
Ž . Ž .behaviour dashed line , positive cooperativity qc and negative

Ž .cooperativity yc . The curves were generated as in Fig. 3.

Ž Ž ..the global dissociation quotient K L and its
Ž . Ž .derivative with respect to L k in Table 1 . Two

types of equilibrium constants are involved in these
models: the microscopic dissociation constants of the

Ž .ligand-binding site complexes K and K and the1 2

constant for the transition between the two states of
Ž .the protein K . In Fig. 3 we give two plots, sug-e

Ž w x.gested above, for diagnostic purposes: ln Yr 1yY
Ž . Ž .vs. ln L and K L vs. L. These plots exemplify a

Ž .feature of practical importance, namely, K L vs. L
is a more sensitive test for the existence of coopera-
tive behaviour than the traditional Hill plot. In addi-
tion, in Fig. 4, we plot the quantitative measures of
cooperativity, h and k , as a function of L. For high
values of L, both measures indicate a decrease in
cooperativity when L is increased. However, the
analysis of the plots shows an important difference
between them. The use of h results in the absence of
cooperativity at low ligand concentration. In contrast,
k indicates that, at low values of L, cooperativity is
maximum. This seeming contradiction is a conse-
quence of the fact that h measures relative changes
and k absolute changes. For very low L, the relative
change in L is very large and therefore the relative

Ž . Ž K Ž L..change in K L per relative change in L C isL

very small. In this situation, h is approximately equal
Ž Ž . Ž ..to one see Eqs. 6 and 7 even if k could be large.

A valid question at this point is: is the system
cooperative at very low L? If we are interested in the
binding behaviour produced by relative changes in L,
h is the relevant measure of cooperativity and the
system is not significantly cooperative at low L. On
the other hand, if we want to quantify the effect of
absolute changes in L, the appropriate measure of
cooperativity is k which is maximum at low L.

7. A unified view of cooperativity

The models for cooperativity described above are
based on very different molecular mechanisms. The
MWC model relies on the existence of two forms of
the free oligomeric protein in equilibrium. In con-
trast, the KNF model postulates that in the absence of
ligand there is only one form of free protein and that
the binding of the ligand to one site of it affects the
binding properties of the adjacent sites. According to
these models there are several mechanistic explana-
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tions for the phenomenon of cooperativity. Is it possi-
ble to summarize in a single idea the diversity of
these mechanisms? Is there a unified view of cooper-
ativity? We think that these questions have a positive
answer.

Ž .In the two models under consideration K L can
be expressed as follows:

K L sK X qK X 8Ž . Ž .1 1 2 2

K and K are the microscopic dissociation constants1 2

of the two sites. X and X are the fractions of1 2

occupied sites with dissociation constants K and K1 2
Ž wrespectively i.e., X s occupied sites with dissocia-i

x w x .tion constant K r total occupied sites , is1,2 .i

These fractions satisfy: X qX s1 and, therefore,1 2
Ž .K L can be interpreted as the ‘weighted average’ of

the microscopic dissociation constants. The validity
Ž .of Eq. 8 for MWC and KNF models can be tested

using the properties given in Table 1.
Now we can calculate a general expression for k .

Ž .Differentiating and combining Eq. 8 and X qX1 2

s1, we obtain:

d K L d XŽ . 1
ks s K yK 9Ž .1 2d L d L

This is a central result. It tells us that the quantitative
importance of a cooperative behaviour in a dimer

Ž .depends on two factors: 1 the difference of the
Ž .microscopic dissociation constants of the sites and 2

the extent of the change in the fraction of occupied
sites with ligand concentration. The existence of two
types of sites with different dissociation constants is
not a sufficient condition to generate cooperativity. It
is also necessary that when L is changed the fraction
of occupied sites changes significantly. There is an
important difference between the KNF model and the
MWC model regarding the factor d X rd L in Eq.1
Ž . Ž9 . In the first model, the cooperativity described by
.k can only be abolished by increasing ligand con-

centration while, in the second one, it is also sup-
pressed at very high or very low values of K , thee

constant for the transition between the two states of
the protein. For these extreme values of K , d X rd Le 1

will approach zero and the protein will show hyper-
bolic behaviour for all values of L, even if it has two
sites with very different microscopic dissociation

Ž .constants see Table 1 . The definition of cooperativ-
w xity proposed by Forsen and Linse 15 , namely the´

free energy coupling, is related to the first factor in
Ž .Eq. 9 . Since their measure of cooperativity only

includes one of the two aspects involved in a cooper-
Ž .ative behaviour in a dimer it does not allows a full

description of the phenomenon as traditionally de-
fined.

Table 1
Ž . Ž .Properties of the Monod–Wyman–Changeux MWC and Koshland–Nemethy–Filmer KNF dimers´

Property Model

MWC KNF

2 2K K qL qK K K qL L K qL LŽ . Ž . Ž .2 1 e 1 2 2
Y 2 2 22 2 L q2 K LqK KK K qL qK K K qLŽ . Ž . 2 1 22 1 e 1 2

2K K K K yK L K yK LŽ . Ž .e 1 2 1 2 1 2
h 1q 1q2 2 K qL K qLK K qL qK K K qL K K qL qK K K qLw x Ž .Ž .Ž . Ž . Ž . Ž . 1 22 1 e 1 2 2 1 e 1 2

2 2K K K qL qK K K K qL K K qK LŽ . Ž .1 2 1 2 e 1 2 1 2 2Ž .K L 2 2 K qLK K qL qK K K qLŽ . Ž . 22 1 e 1 2
22 2K K K K yK K K yKŽ . Ž .e 1 2 1 2 2 1 2

k y y2 22 2 K qLŽ .K K qL qK K K qLŽ . Ž . 22 1 e 1 2

2K K qL KŽ .2 1 2
X1 2 2 K qLK K qL qK K K qLŽ . Ž . 22 1 e 1 2

2 2d X K K K K yK KŽ .1 e 1 2 1 2 2
y y2 22 2d L K qLŽ .K K qL qK K K qLŽ . Ž . 22 1 e 1 2
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The interpretation of the global dissociation quo-
tient as the weighted average of the microscopic or
elementary dissociation constants is valid for macro-
molecules with N different sites:

K L sK X q . . . qK X s K X 10Ž . Ž .Ý1 1 N N i i
i

Ž .We have demonstrated see Appendix Section A.1
that in all the models whose fractional saturation can

w xbe put in the form of an Adair equation 16 — e.g.,
Ž .the MWC and KNF models for N subunits — K L

Ž .can be decomposed according to Eq. 10 . The de-
composition was also successful for models where
the structure of the oligomeric receptor exhibits asso-

Žciation–dissociation equilibrium see Appendix Sec-
.tion A.2 . The only requirements for the fulfillment

Ž .of Eq. 10 appear to be that the system is at equilib-
rium and that the occupied sites are in a one-to-one
relationship with the free sites from which they are
formed by ligand binding. A more detailed discussion
on the generality of the unified view of cooperativity
is given in Appendix Section A.3.

The quantitative measure of cooperativity, k , used
above was based on the global dissociation quotient.
Alternatively, we could have done a similar treatment
in terms of the derivative of the global association

Ž Ž .. Ž w x.quotient 1rK L with respect to L see also 25 .
The advantage of using the global dissociation quo-
tient, however, is that k is a dimensionless quantity
and therefore its value is independent of the units
used.

8. Cooperativity in enzymes

The analysis given above was concerned with
equilibrium situations. Enzyme catalysis is intrinsi-
cally a non-equilibrium process and requires a special
treatment. The diagnose of cooperativity is done us-

Žing the same plots that linearize the hyperbola i.e.,
Lineweaver–Burk, Langmuir–Hanes and Eadie–

.Hofstee plots . For this purpose the fractional satura-
Ž .tion at equilibrium Y is replaced by the steady-state

Ž . Ž .initial velocity Õ and the ligand concentration L
Ž .by the substrate concentration S . To quantify the

cooperative behaviour, the procedure usually applied
requires, in addition, the measurement of the maxi-

Ž . Ž .mum velocity V . h and k , defined in Eqs. 2 andm

Ž .5 respectively, can be calculated by substituting in
those equations Y by ÕrV and L by S. The valuesm

obtained in this way are empirical measures of the
departure from hyperbolic behaviour but, as we shall
see, their interpretation is more difficult than in a
binding experiment.

A general way to express the dependence of the
velocity with the concentration of a substrate in the
absence of products is:

V S SŽ .
Õs 11Ž .

Q S qSŽ .

Ž . w x w x Ž .where Q S s free sites Sr occupied sites and V S
Ž .s Ýk X E . k are the catalytic constants, X thei i t i i

fraction of occupied sites with catalytic constant ki
Ži.e., X soccupied sites with catalytic constanti

.k rtotal occupied sites and E the total concentrationi t
Ž . Ž .of sites free plus occupied . Eq. 11 shows how to

represent a general rate equation using two meaning-
Ž . Ž . Ž . wful quantities: Q S and V S . Q S is equal to free

x w x Žsites Sr occupied sites i.e., the global dissociation
.quotient but is not necessarily equal to the experi-

w Ž .x Ž .mental value determined by 1y ÕrV Sr ÕrV .m m

This is the reason why, for the description of cooper-
ativity in enzymes, we use two different notations:
Ž . Ž .K S for the empirical value and Q S for the global

dissociation quotient. On the other hand, the quantity
Ž .between parentheses in the expression for V S rep-

resents the weighted average of the catalytic con-
Ž .stants and, therefore, V S can be interpreted as the

average maximum velocity. In the simplest case where
Ž . Ž .Q S and V S are constants the system is not coop-

erative and the equation is of the Michaelis–Menten
w xtype 17,18 . Cooperativity — i.e., the deviation from

hyperbolic behaviour — can be originated by changes
Ž . Ž .in Q S , V S or both. The first case is what Monod
w xet al. 13 called K-system. It could be found when ki

Ž .has the same value k for all the occupied sites. As a
Ž .result V S is independent of S and equal to the

Ž Ž . .maximum velocity V V S sk E sV . In thism t m
Ž . Ž .case, the empirical value K S is equal to Q S and

can be interpreted as a global dissociation quotient.
Ž .Therefore, to be able to identify the value of K S

Ž . Ž .with Q S we must demonstrate that V S sV . Am

piece of evidence in this direction could be to study
the dependence of the maximum velocity with the
concentration of an allosteric effector of the enzyme
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Ž .M . If when using saturating values of S the veloc-
ity does not depend on M then we can assume that
we are working with a pure K-system. In the case of

ŽV-systems for a well studied experimental system
w x. Ž . Ž .see 19 , K S cannot be identified with Q S and it

is not possible to assign a general meaning to the
values of k and h.

In the theoretical ground, we have shown
Ž .Acerenza and Mizraji, unpublished results that there

Ž .are some steady-state models where Q S cannot be
expressed as the weighted average of the microscopic

Žor elementary dissociation constants of the sites see
Ž ..Eq. 10 . A possible scenario to explain this diffi-

culty could be that the equilibrium constants are not
the appropriate description for the steady-state disso-
ciation properties. The development of a unified view
of cooperativity that includes all non-equilibrium sit-
uations remains an open problem.

9. Final remarks

The study of cooperative and allosteric isolated
proteins has given us a clearer picture of the confor-
mational transitions and domain interactions taking
place at the molecular level. Our present image of
these proteins is closer to a complex molecular ma-
chine than to a small active site maintained in a large
inert structure. At the cellular level cooperative and
allosteric proteins have been found in virtually all
functional domains. For instance, in the context of
neural function, large conformational transitions have
even been related to the consolidation of long-term

Žw x .memories 1 , p. 268 . This ubiquity suggests that
the peculiar binding and kinetic properties of cooper-
ative and allosteric proteins would be essential to the
phenomenon of life or, at least, would give the
organism that possess them a notorious advantage.
The type of advantage would vary with the biological
function. For instance, the introduction of new al-
losteric interactions in a metabolic system confers to
it the potential ability to respond in a qualitatively

w xricher way to changes in the environment 20–22 .
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Appendix A. On the generality of the unified view

The aim of this appendix is to analyse the general-
Ž .ity of Eq. 10 . This will be done in three steps. First,

Ž .we will prove that Eq. 10 holds for the general
Adair model. Secondly, we will show an
association–dissociation model, not belonging to the

Ž .general Adair form, that fulfills Eq. 10 . Finally, we
will uncover the general conditions required for the
fulfillment of the unified view of cooperativity.

A.1. Adair cooperatiÕity model

w xThe Adair cooperativity model 16 assumes the
existence of all the partly liganded intermediates. In a
receptor with N sites for the ligand the total concen-

Ž .tration of free sites R and the total concentrationf
Ž .of occupied sites R are given by:o

N

R s Ny iy1 ML 12Ž . Ž .Ž .Ýf iy1
is1

N

R s i ML . 13Ž .Ýo i
is1

w xwhere L is the ligand concentration and ML is thei

concentration of receptor bound to i molecules of
ligand. The fractional saturation is:

N

i MLÝ iRo is0Ys s 14Ž .NR qRf o N MLÝ i
is0

w x w xAt equilibrium, the species ML and ML areiy1 i

related by the expression:

L MLiy1XK s is1, . . . , N. 15Ž .i MLi

where K X are the macroscopic dissociation constants.i
Ž .Applying Eq. 15 i times we obtain:

iML sc ML L is1, . . . , N. 16Ž .i i 0
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where

1
c s is1, . . . , N. 17Ž .i i

XKŁ j
js0

X Ž . Ž .and K s1. Substituting Eq. 16 into Eq. 14 , we0

obtain the fractional saturation in terms of the macro-
scopic dissociation constants:

N
iic LÝ i

is0Ys 18Ž .N
in c LÝ i

is0

Ž .The global dissociation quotient, K L , for the Adair
model is given by:

N

L Ny iy1 MLŽ .Ž .Ý iy1LRf is1K L s s 19Ž . Ž .NRo i MLÝ i
is1

Ž .Combining this equation with Eq. 15 , we obtain:
N

XNy iy1 K MLŽ .Ž .Ý i i
is1K L s . 20Ž . Ž .N

i MLÝ i
is1

The microscopic or intrinsic dissociation constants
Ž .K are defined by:i

Ny iy1Ž .
XK s K 21Ž .i ii

Ž Ž ..where Ny iy1 ri is called the statistical factor.
Ž .The expression for K L in terms of the microscopic

dissociation constants is:
N

K i MLÝ i i
is1K L s . 22Ž . Ž .N

i MLÝ i
is1

Finally, the last equation can be rearranged to the
form:

N

K L s K X 23Ž . Ž .Ý i i
is1

where

i MLi
X s . 24Ž .i N

i MLÝ i
is1

is the fraction of occupied sites with microscopic
dissociation constant K . We conclude that in everyi

model whose fractional saturation can be put in the
Ž Ž .. Ž .form of an Adair equation Eq. 18 K L can be
Ž . Ž Ž ..decomposed according to Eq. 23 i.e., Eq. 10 .

We would like to mention that the saturation func-
Ž Ž ..tion Eq. 14 can be expressed in terms of the

Ž .binding polynomial also called partition function
w x23,1 . As a consequence, the relationship between
Ž .K L and the binding polynomial is readily obtain-

able. In addition, the work of Bardsley and col-
leagues shows that the factorizability of these polyno-
mials is related to the type of cooperativity and also
provides valuable information about site–site interac-

w xtions 24,25 .
Finally, we will make some comments on the

meaning of the microscopic dissociation constants.
Let us consider a receptor molecule where i of the N
sites are bound to ligand. If these i occupied sites are
identical their individual dissociation constants would
also be identical and their values can be calculated

Ž .using Eq. 21 . On the other hand, if the occupied
sites are different the dissociation constant of each of
the i occupied sites in the molecule could in principle
have a different value. In this last situation the micro-

Ž .scopic dissociation constant defined by Eq. 21 could
be expressed in terms of the i different ‘elementary’
dissociation constants corresponding to the i occu-
pied sites. To exemplify this case we consider a KNF
dimer with different subunits. The reaction scheme
for this model is:

R R qL|LR R K1 2 1 2 11

R R qL|R R L K1 2 1 2 12

R R LqL|LR R L K1 2 1 2 21

LR R qL|LR R L K1 2 1 2 22

where K , K , K and K are the elementary11 12 21 22

dissociation constants. It can be shown that, for the
model under consideration, the expressions for the
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microscopic dissociation constants K and K in1 2

terms of the elementary dissociation constants are:

2 K K11 12
K s 25Ž .1 K qK11 12

K qK21 22
K s 26Ž .2 2

The microscopic dissociation constants could there-
fore be interpreted as ‘mean’ values of the i elemen-
tary dissociation constants. In fact, in this particular
example, K is the harmonic mean between K and1 11

K , and K is the arithmetic mean between K and12 2 21

K . It is important to note that while there is one22

microscopic dissociation constant associated to each
macroscopic dissociation constant, there is in princi-
ple no upper limit to the number of different elemen-
tary constants.

A.2. Association–dissociation models

w x w xFrieden 26 and Nichol et al. 27 showed that the
existence of association–dissociation equilibrium be-
tween the subunits of a receptor could generate a
cooperative binding curve. Here we will show in a
particular example that, although the fractional satu-
ration of this type of models can not be put under the
form of an Adair equation, the global dissociation

Ž .quotient, K L , can be expressed as the weighted
average of the microscopic dissociation constants. Let
us consider the following reaction scheme:

2 M|M K2 e

MqL|ML K1

M qL|M L K2 2 2

M LqL|M L K2 2 2 2

where M represents the monomer, M the dimer and2

L the ligand. K is the association constant of twoe

subunits of monomer to give the dimer and K and1

K are the microscopic dissociation constants of the2

ligand from the monomer and the dimer respectively.
After cumbersome calculations we obtained the ex-
pression for the fractional saturation:

1qa LŽ .
Ys 27Ž .

K qLq K qL aŽ .1 2

where

2(K b q2 K m yb1 e t
as 28Ž .

K2

K K qLŽ .2 1
bs 29Ž .

2 K K qLŽ .1 2

and m is the total concentration of sites. This frac-t

tional saturation is not a quotient of polynomials and,
Žtherefore, does not belong to the Adair type Eq.

Ž ..18 .
Ž .The global dissociation quotient defined in Eq. 4

is:

K qK a1 2
K L s 30Ž . Ž .

1qa

The fractions of occupied sites with microscopic
dissociation constants K and K are:1 2

1
X s 31Ž .1 1qa

a
X s 32Ž .2 1qa

Ž . Ž .Combining Eqs. 30 – 32 it is immediate to show
Ž . Ž .that K L , X and X satisfy Eq. 10 .1 2

A.3. General requirements for the fulfillment of Eq.
( )10

In the first section of this appendix we have proven
Ž .that Eq. 10 applies to all those equilibrium systems

whose fractional saturation can be put under the form
of an Adair equation. In the second section we showed
that the validity of this relationship could be extended
to association–dissociation models. Our aim in this
last section is to show what are the general require-

Ž .ments for the fulfillment of Eq. 10 .
The definition for the global dissociation quotient

is:

LRf
K L s 33Ž . Ž .

Ro

where R and R are the concentrations of total freef o

sites and total occupied sites respectively. We will
assume that each type of occupied site decomposes to
give a single type of free site and that each type of
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free site combines with the ligand to give a single
type of occupied site. This one to one relationship
allows to assign a unique elementary dissociation
constant to each type of occupied site. We will call
R the concentration of occupied sites with elemen-o, j

tary dissociation constant K and R the concentra-j f, j

tion of the corresponding free sites. At equilibrium
we have:

R Lf , j
K s 34Ž .j Ro, j

With this condition the concentration of total free
sites can be expressed as follows:

K Rj o , j
R s R s 35Ž .Ý Ýf f , j Lj j

Ž .Substituting the last expression into Eq. 33 we
obtain:

K Rj o , j
K L s s K X 36Ž . Ž .Ý Ý j jRoj j

Ž .We conclude that the fulfillment of Eq. 10 requires
that the system is at equilibrium and that there is a
one to one relationship between free sites and occu-
pied sites.

The importance of the one to one relationship
between free and occupied sites for the fulfillment of

Ž .Eq. 10 can be illustrated with a simple example. Let
us consider the reaction scheme:

RqL|C K1 1

RqL|C K2 2

where R represents the free receptor and C and C1 2

two forms of the occupied receptor. K and K are1 2

the dissociation constants of C and C respectively.1 2
Ž .This simple model does not fulfil Eq. 10 , since:

K K1 2
K L s 37Ž . Ž .

K qK1 2

K2
X s 38Ž .1 K qK1 2

K1
X s 39Ž .2 K qK1 2

and therefore
2

K X s2 K L 40Ž . Ž .Ý j j
js1

Finally, it is important to remember that the num-
ber of discrete states that one includes in a reaction
scheme is somehow arbitrary. In this sense, the
scheme described above could be considered a sim-
plified version of the more detailed scheme:

R |R K1 2 e

R qL|C K1 1 1

R qL|C K2 2 2

The simplification from this scheme to the previ-
ous one could be based, for example, in the assump-
tion that the interconversion of R and R is faster1 2

w xthan all the other reaction steps 28 . Under this
assumption, the free forms of the receptor, R and1

Ž .R , can be fusioned in one form R obtaining a2

scheme with the same kinetic behaviour. In this
situation one is tempted to apply a one-sided view of
the ‘principle of parsimony’ in the sense of choosing
the smallest of the two diagrams previously shown
compatible with the steady-state kinetic measure-
ments. However, the expanded scheme has the advan-
tage that makes explicit the existence of the two
different forms of free sites and is the simplest
structural description. Importantly for our approach,

Ž .the expanded diagram fulfills Eq. 10 . If this type of
expansion is applied to allow a one to one relation-

Žship between free sites and occupied sites every time
.this one-to-one relationship is not satisfied it appears

Ž .that Eq. 10 will be fulfilled by all equilibrium
receptors, cooperative and non-cooperative, without
exceptions.
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