Scritto di Geometria 1 del 27 giugno 2023

Esercizio 1. Sia
$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 2 & 0 & 4 & -2 \\ 2 & 0 & 4 & -2 \end{pmatrix}$$
 e $L_A : \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione lineare associata ad A .

- (1) Si determinino una base di $Ker(L_A)$ e una dell'immagine di L_A .
- (2) Siano e_1, e_2, e_3, e_4 i vettori della base canonica di \mathbb{R}^4 . Si dimostri che

$$\mathcal{A} = (e_4, e_3, e_2, e_1 - e_3)$$
 e $\mathcal{B} = (e_3 + 2e_4, e_2, e_3, e_1 + e_3)$

sono due basi di \mathbb{R}^4 .

- (3) Trovare $M_{\mathcal{B}}^{\mathcal{A}}(L_A)$ la matrice associata a L_A rispetto alle basi \mathcal{A} nel dominio e \mathcal{B} nel codominio.
- (4) Trovare, se esiste, un'applicazione lineare $g : \mathbb{R}^4 \to \mathbb{R}^4$ tale che $g \circ L_A = 0$ e tale che la dimensione dell'immagine di g sia 2, giustificando la risposta.
- **Esercizio 2.** (1) Siano $f: V \to W$ lineare e v_1, \ldots, v_k una base di Ker(f), e si consideri un prolungamento ad una base $v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$ di V. Dimostrare che $f(v_{k+1}), \ldots, f(v_n)$ è una base dell'immagine di f.
 - (2) Sia $f:V\to W$ un'applicazione lineare fra spazi vettoriali di dimensione finita. Dimostrare che esistono basi \mathcal{A} di V e \mathcal{B} di W tali che la matrice $M_{\mathcal{B}}^{\mathcal{A}}(f)$ è della forma:

$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

dove E_r è la matrice identica $r \times r$ e gli 0 rappresentano delle matrici con entrate tutte nulle.

Esercizio 3. Si consideri la matrice $M_t = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2t-1 & t & 1 \end{pmatrix}$ dipendente dal parametro t.

- (1) Si dica per quali $t \in \mathbb{R}$ gli autovalori di M_t sono tutti reali, specificando i casi in cui ci sono autovalori di molteplicità algebrica maggiore di 1.
- (2) Si determini per quali valori di $t \in \mathbb{R}$ la matrice M_t è diagonalizzabile sul campo dei numeri reali.

Esercizio 4. Si consideri il campo dei numeri complessi $\mathbb C$ come spazio vettoriale su $\mathbb R$. Sia $b:\mathbb C\times\mathbb C\to\mathbb R$ l'applicazione definita da

$$b(z_1, z_2) = 2 \Re \mathfrak{e} (z_1 \cdot z_2),$$

1

dove Re indica la parte reale di un numero complesso.

- (1) Si dimostri che b è bilineare e simmetrica.
- (2) Si verifichi se b è definita positiva.
- (3) Si consideri la base $\mathcal{B}=(1,i)$ di \mathbb{C} ; si calcoli $M_{\mathcal{B}}(b)$.