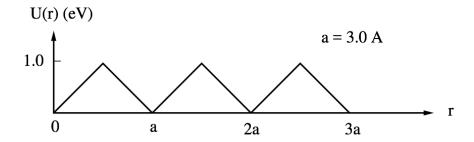
Fisica della Materia Condensata I scritto finale a.a. 2019/20 17 Febbraio 2020

(Tempo: 3 h)


NOTA:

Dare i passaggi necessari per comprendere il procedimento con cui si è arrivati alla soluzione, altrimenti questa, anche se corretta, non sarà considerata valida.

Esercizio 1: Fattore di struttura

- 1. Dire quale reticolo di Bravais descrive la struttura del diamante, scrivere i vettori primitivi di reticolo diretto e l'eventuale base interna alla cella primitiva.
- 2. Scrivere (i) i vettori primitivi del reticolo reciproco $\{\mathbf{b}_i\}$ e (ii) il generico vettore \mathbf{K} .
- 3. Scrivere il fattore di struttura $S_{\mathbf{K}}$.
- 4. Mostrare che $S_{\mathbf{K}}$ è uguale a zero per $\mathbf{K} = 2 \mathbf{G}_i$, dove \mathbf{G}_i è un vettore di base nel reticolo reciproco riferito alla cella cubica convenzionale.

Esercizio 2: Potenziale debole

Considerare un potenziale cristallino come in figura.

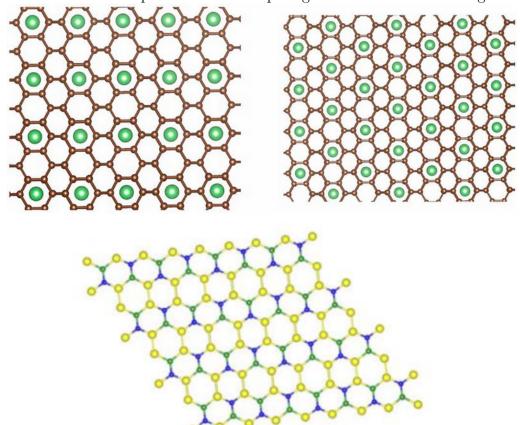
1. Calcolare la componente U(K) di Fourier del potenziale:

$$U(K) = \frac{1}{a} \int_{-\frac{a}{2}}^{\frac{a}{2}} U(x)e^{-iKx}dx$$

per i vettori di reticolo reciproco $K = \frac{2\pi}{a}, \frac{4\pi}{a}, e^{\frac{6\pi}{a}}$.

2. Calcolare i primi due gap di energia.

Esercizio 3: Semiconduttori


In un semiconduttore intrinseco la concentrazione degli elettroni in banda di conduzione n(T) a 500 K e a 600 K è $n(500K) = 2.5 \cdot 10^{20} m^{-3}$ e $n(600K) = 2 \cdot 10^{21} m^{-3}$. Si indichi con p(T) la concentrazione delle buche in banda di valenza.

Supponiamo che in tale semiconduttore il potenziale chimico si trovi <u>sempre</u> (cioè qualunque sia la temperatura) a metà del gap di energia.

- 1. Calcolare la concentrazione delle buche in banda di valenza p(T) a 500 K e a 600 K
- 2. Calcolare l'energia di gap
- 3. Calcolare la massa efficace di elettroni e buche
- 4. Dimostrare che la conducibilità complessivamente è $\sigma = ne\mu_n + pe\mu_p$, dove μ_n e μ_p sono le mobilità degli elettroni e delle buche, definite come $\mu_n = \frac{e\tau_n}{m_n^*}$ e $\mu_p = \frac{e\tau_h}{m_n^*}$.
- 5. Sapendo che la conducibilità complessiva del semiconduttore a 500K è $\sigma(500K) = 4 \cdot 10^{-4} \Omega^{-1} m^{-1}$ e che le mobilità degli elettroni e delle buche μ_n e μ_p sono indipendenti dalla temperatura tra 500K e 600K, con μ_n pari a 4 volte μ_p , determinare i tempi di rilassamento per elettroni e buche.

Esercizio 4: Strutture cristalline 2D

Tracciare una cella primitiva unitaria per ognuna delle strutture in figura.

