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Suggested textbooks

Quantum Computation and Quantum
Information, by Michael Nielsen and
Quantum Computatisii Isaac Chuang.

and Quantum Informa

PN Quantum Computing — From Linear
QUANTUM algebra to Physical Realization, by
COMPUTING Mikio Nakahara and Tetsuo Ohimi

From Linear Algebra
to Physical Realizations

Mikio Nakahara ass Tetsuo Ohmi

Lecture notes on Quantum Computing by Stefano Olivares:
https://sites.unimi.it/olivares/quantum-computing/

(especially for physical realization of quantum computers)

Introduction to Python:
https://github.com/mainaezio/TIF_2020_Introduction_to_Python
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1980s: Richard Feynman

* Classical computers are very
inefficient in simulating
quantum systems (eN)

e Computers are physical
objects

* Why not creating computers
following quantum laws?

They will efficiently simulate
at least themselves, maybe

more, thus will be
any classical computer
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faster than

W 1947: First transistor (Bell Labs)

1958: First
integrated
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-

1981: Osborne 1, first

true mobile computer 1989: first Macintosh

Richard Feynman

On quantum physics and computer simulation

.. . there is plenty of room to make [computers] smaller. . . . nothing that I can see in
the physical laws . . . says the computer elements cannot be made enormously smaller
than they are now. In fact, there may be certain advantages.

—1959

Might I say immediately . . . we always have had a great deal of difficulty in under-
standing the world view that quantum mechanics represents. . . . I cannot define the
real problem, therefore I suspect there’s not a real problem, but I'm not sure there’s no
real problem.

1 mentioned . . . the possibility . . . of things being affected not just
by the past, but also by the future, and therefore that our probabili-
ties are in some sense “illusory.” We only have the information
from the past and we try to predict the next step, but in reality it
depends upon the near future . . .I'm trying to get . . . you people
who think about computer-simulation possibilities to . . . digest . . .
the real answers of quantum mechanics and see if you can’t invent
a different point of view than the physicists . . .
... the discovery of computers and the thinking about computers
has turned out to be extremely useful in many branches of human
reasoning. For instance, we never really understood how lousy our
understanding of languages was, the theory of grammar and all that
stuff, until we tried to make a computer which would be able to
understand language . . . 1. .. was hoping that the computer-type
thinking would give us some new ideas . . .

... trying to find a computer simulation of physics seems to me to be an
excellent program to follow out. . . . the real use of it would be with quantum
mechanics. . . . Nature isn’t classical . . . and if you want to make a simulation of
Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.
—1981

Feynman, R. 1959. There’s Plenty of Room at the Bottom. Talk given at the annual meeting of the American
Physical Society at Caltech. (Excerpt reprinted with permission from Caltech’s Engineering and Science.)
———. 1981. Simulating Physics with Computers. Keynote address delivered at the MIT Physics of
Computation Conference. Published in far. J. Theor. Phys. 21 (6/7), 1982. (Excerpts reprinted with
of Theoretical Physics.)

permission from the International Jou




Brief history of quantum
computing

1980:
1985:
1992:
1993:
1994
1995:

1996:
1998:

1999:
2000:
2000:

2001:
2014:

2016:
2019:
2023:

Paul Benioff describes the first QM model of computation
David Deutsch describes first universal QC

Deutsch-Jozsa algorithm

Simon’s algorithm

Shor’s algorithm

Monroe & Wineland realize the first guantum gate (CNOT)
with trapped ions

Grover’s algorithm

First realization of a quantum algorithm (Deutsch-Jozsa),
with NMR

Nakamura and Tsai demonstrate superconducting qubits
Fahri et al. propose Adiabatic Quantum Computation

Raussendorf et al: One way (measurement based) quantum
computing

Shor’s algorithm implemented to factorize 15

Fahri et al. QAOA (Quantum Approximate Optimization
Algorithm)

IBM Quantum Experience
Quantum supremacy by Google (?)

First tests of error correcting schemes (Google)

(from “Timeline of Quantum Computing”, Wikipedia)



vendors

labs (*)

The Rise of Quantum Computing
Companies

Number of Quantum Organizations by Date Founded
Source: The Quantum Insider Intelligence Platform
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Qubit Counts (2021)
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Physical realization of Quantum
Computers

Superconducting qubits: In superconductors, the basic charge carriers
are pairs of electrons (known as Cooper pairs), rather than single
fermions as found in typical conductors. These implement
superconducting electronic circuits using superconducting qubits as
artificial atoms; the two logic states are the ground state and the excited
state. Superconducting quantum computing devices are typically
designed in the radio-frequency spectrum, cooled in dilution
refrigerators below 15 mK (millikelvins) and addressed with conventional
electronic instruments, e.g. frequency synthesizers and spectrum
analyzers.

The largest number of qubits is about 433 (IBM)

Companies:
1. IBM

2. Google
3. Intel

4. Rigetti

Trapped ions: the ions are suspended in free space using
electromagnetic fields. Qubits are stored in stable electronic states of
each ion, and quantum information can be transferred through the
collective quantized motion of the ions in a shared trap (interacting
through the Coulomb force). Lasers are applied to induce coupling
between the qubit states (for single qubit operations) or coupling
between the internal qubit states and the external motional states (for
entanglement between qubits).

The largest number of particles to be controllably entangled is about 20-
30 trapped ions.

Companies:

1. Quantinuum (2021 — Cambridge UK)

2. 1onQ (2015 — Maryland USA)

3. Quantum Factory (2018 — Munich DE)

4. Alpine Quantum Technologies (2018 — Austria AT)
5. Oxford lonics (2019 — Begbroke UK)

6. EleQtron (2020 — Siegen DE)



Neutral atoms: the atoms are trapped in optical lattices, and
manipulated with lasers. Qubits are encoded in the internal states.
To turn on interactions between qubits, researchers target a pair of
adjacent atoms with a laser pulse that excites one of them to a high-
energy state called a Rydberg state, in which a valence electron
orbits far from the nucleus. The Rydberg atom’s strong electric
dipole interactions prevent the laser from also exciting its neighbour,
an effect known as a Rydberg blockade, but it’s impossible to know
which of the atoms was excited. The result is a single excitation
shared between two qubits that can’t be described separately—the
characteristic feature of entanglement.

The largest number of particles to be controllably entangled is about
10 neutral atoms. Overall they can control hundred of atoms.

Companies:

1. Pasqual (2019 — Paris Region FR)

2. Atom Computing (2018 — Berkeley USA)
3. ColdQuanta (2007 — Boulder USA)

4. Quera Computing (2018 — Boston USA)

Photons: It is a type of quantum computing that uses photons as a
representation of qubits. The main advantages are simple
components, the ability to run a variety of quantum operations, and
most importantly, photonic quantum computers can perform at
room temperature, which reduces the size of the extreme cooling
systems.

Companies:

Xanandu Quantum Technologies (2016 — Canada)
ORCA Computing (2019 — London UK)
PsiQuantum (2015 — Silicon Valley USA)
TundraSystem Global (2014 — Cardiff UK)
Quandela (2017 — Paris FR)

QuiX Quantum (2019 — Enschede NL)

o Uk wNhoE



Cloud-based Quantum Computing

IBM Q Experience (superconducting qubits)
Xanadu (photonic quantum computer)
Forest by Rigetti Comuting (superconducting qubits)

Several simulators of quantum computers



Classical computation

Several models studied for the theory of classical computation
e Turing machines
* High-level programmable languages

* Boolean circuits

So far, the Boolean circuit model is by far the easiest model to
generalize to quantum computation, being the closest to physical
implementation. We will review it very briefly.

Boolean circuit model

Proposition: Any Boolean function
f: {0,1}" = {0,1}™

is computable by a Boolean circuit C using just AND, OR and NOT
gates (in other words, AND, OR, NOT are universal for classical
computation)

AND AAB OR AvVB NOT -A
A — A
out
I ) > a
INPUT | OUTPUT INPUT | OUTPUT INPUT | OUTPUT
A B A+B
A | B | AANDB ; A NOT A
00 0
0|0 0 - 0 1
0 1 0 ) 0 1 1
' 1 0
110 0 1 0 1
11 1 1 1 1



Example 1: NAND, NOR, XOR

NAND

NO

—
same as

:}>

L INPUT

A

0
0
1
1

B

0
1
0
1

INPUT

OUTPUT

ANAND B A > :

1
1
1
0

Pronunciation: ex-or

OUTPUT jI>_ | INPUT | OUTPUT
ANOR B = A B | AXORB
1 oo 0
. XOR A@®B 51 1
0 10 1
0 1 1 0

Example 2: Half adder

Input

Output

Sum

Carry

0

-l >

lOo|l=10O|®0

O|=|=|]0O

-l ol o

Note the elements of a circuit:
* Wires

* Gates

* Input on the left

e Qutput on the right

Size of a circuit = number of gates

DUPE gate: duplicates bits



NAND is universal

The number of fundamental gates can be reduced
Proposition: The NAND and DUPE gates are universal for computation

Desired AND Gate

A_
D

Desired OR Gate

=

Desired NOT Gate

A—[>o—o

NAND Construction
A_
D ro

X

NAND Construction

A-{] )D_Q

5

0y

NAND
Construction

Ny

Q

Y



Reversible Computation

B

Logical gates are not always reversible: [ pur | outpur INPUT
. . A
« NOT is reversible A | NoTA
0 1
* AND is irreversible 1 0

0
0
1
1

The laws of Physics are reversible, therefore if computation is

0
1
0
1

OUTPUT
AAND B
0

0
0
1

implemented physically, it should be written in terms of reversible

gates => Universal reversible computation should be possible,

there should exists a universal set of reversible gates.

This problem was studied in the ‘60s and ‘70s by Landauer e Bennett

in connection with thermodynamics.

They were considering whether it is possible to have circuits made

only of reversible gates, thus dissipating no energy. This was thought

to be an important issue at that time. In fact now supercomputers

needs heavy cooling systems. Yet it is not the most pressing one

Reversible computation is important in the context of quantum

computation, because — as we will see — quantum circuits need to be

reversible in order to work properly.



Reversible gates - CNOT gate

Definition: A Boolean gate G is said to be reversible if it has the same
number of inputs and outputs, and its mapping is bijective.

Some important new reversible gates
INPUT | OUTPUT

0 0 0 0

X1 X1 Control bit 0 1 0 1
CNOT =
X9 W X1 @ Xy  Target bit 1 0 1 1

1 1 1 0

If the control bit is O, the target bit is left unchanged, otherwise it is flipped

CCNOT gate

X1 X1 Control bit INPUT OUTPUT

X X2 . 0 0 0 0 0 0

CCNOT = 2 Control bit ololi1lolola
0 1 0 0 1 0

X X1 A Xo) @ Xa Target bit

3 \U ( 1 2) 3 0 1 1 0 1 1

1 0 0 1 0 0

) ) ) . 1 0 1 1 0 1

A NOT gate is applied to the target bit only if both PR PR R R R
control bits are 1, otherwise it is left unchanged. 111110

This is also called Toffoli gate.

Comments:

* With the same logic, one can build the CCCNOT = C3NOT gate and in
general the C"NOT gate.

* The CNOT and CCNOQOT are their own inverse. If applied twice, they
give the identity. This is not always the case.



Universal reversible gates

CCNOT can be used to simulate NAND and DUPE

X1 X1 Ancilla 1 1 Garbage
Garbage
X2 X2 Xy Xy
Ancilla 1 NAND(x4,X5) Ancilla O X2
U vz N

Theorem: The CCNOT gate is universal, assuming that ancilla inputs and
garbage outputs are allowed. Any standard Boolen circuit can be
efficiently transformed into a reversible circuit.

Reversible circuit

So far ancillas were sometimes 0 sometimes 1. They can be initialized
to the same value, let’s say 1, by means of a NOT gate. A reversible
circuit computing f: {0,1}" = {0,1}™will then look as follows

X1 ] - f(x);
Input X2 — f(X)Z Output

X, Reversible circuit £(X)..,

1 — computing f A
Ancillas 1 —— EE— Garbage
1 r

The number of inputs and outputs is the same; the number of wires
never changes. In fact, we can stop thinking about wires and think

about each bit being carried in its own register, keeping its identity
throughout the computation.




Probabilistic (randomized)
computation

We can open to the possibility that the value of a bit is not known with
certainty

Oor1 N { 0 with probability p;

1 with probability p,

deterministic bit random bit

Note: the physics has not changed, we simply do not know the value of
the bit.

The mathematical model changes, though. There are some
computational tasks which we know how to provably solve efficiently

using randomized computation (like generating prime numbers) but
which we do not know how to provably solve efficiently using
deterministic computation.

However there should not be any fundamental difference between the
two models of computation, since they are based on the same physics.

We will introduce a new notation to deal with probabilistic
computation, which will bring us a bit closer to quantum computation.

Basic notation Vector notation Abstract (Dirac) notation
rlx
0 | 0>
\OJ
rox
1 1>
\14 |
0 with probability p; (p
1 with probability p, p P1|0> + p,|1>

S



Gates in the new notation: the
NOT gate

In the new notation, gates are represented by matrices

01

Then

For all other gates, we need to understand how to represent two and more bits.



Two (and more) random bits

With two bits, we have four possible states

00 =p

10 =

4 )

1
0
0
\OJ

A

R O O

\OJ

g
|

1
0

0
1

J o
J o

1
0

1
0

J
J

01 =

11 =

Tensor product (we’ll come back on this soon)

:ocm—\o

A}
J

R O OO



Two-bit gates: the AND gate

A= 1110 Note: it is not a square matrix, because the
~Looo01 gate is not reversible
N Y N N
1 1 0 1
0 1110 0 1 1 1110 0 1
Oo'o+(0001]o=[o}=° 01'o+(0001]0=[oJ=0
\OJ \OJ \04 \OJ
N ) N N
1 0 0 0
0 1110 0 1 0 1110 0 0
10'0"(0001)1=[0J=0 11'0"(0001]0{1}=1
0 0 1 1
. J . J \. ./ . J

Two-bit gates: the CNOT gate

1000

0100 Note: it is a square matrix, because the gate is
CNOT= | 5501 reversible

0010
(1] (1000)(1] (2] (0) (1000)(1] (o)

0 0100 0 0 1 0100 0 1
0=19]P| 0001 ||o]=]o]=% =g 0001 ||o||o]=02
0) \0010JL0J) (O] 0 0010 J10) (0]

(1) (1000)[0] (0 (0) (1000 )[0] (o]

0 0100 0 0 0 0100 0 0
10=5|Pl o001 |[1]=[o]|= =|o|P o001 ||lo]=[1]=0
\O/ \OO 10) \OJ \11 \11 \00 10) \14 \OJ




A truly probabilistic gate

We introduce two new gates

COIN= |S | -}[VZ}

2

It has no input and a single bit output. It generates randomly eithera O or a
1, with probability %2 each. It is like fair coin tossing.

1%
1COIN = 15 = (01/2)

If the input bitis O, it is left unchanged. If it is 1, it is replaced by a COIN.

Example 1

3 With probability 72 the input bit 00 and with

l probability %2 it is 10. In the first case the CNOT
| 0> @ will leave in unchanged, in the second case it
will changed into 11.

In mathematical terms

Y 1000 ) [ % 1 0
) (1) _ o o100 |[o] _lo| __lo| . |o
[VJ‘X’[OJ‘ sl P ooor ||| T o] =%[o] * %[0

0 0010 )0 % 0 1



Example 2

Z 1000 (% Z 1%00 \[% Z
2 1] _ o o100 |[|of _]oO 0%00 |[o] _|oO
[VJ®[O}_ % > o001 ||%| |o > 001% [|oO %
0 0010 )|0 % 000% J|% %

H_/

10 1%
(62)els7)

Using the Dirac notation (|0> @ |0> = |00>, and same for others)

% 100>+ % |10> = % |00>+% [11> =% |00>+ % (% |10>+ % |11>)

= % 00>+ % [10>+ % [11>= (4,



Example 3

S l 1%
|0

% |000> + % | 100> => % |000> + % |110>

[=)
iV
€

=> 7% |000>+ % (% |100> + 7% |110>) =% |000> + % | 100> + % | 110>
=> % |000>+ % |100> + % |111>
=> % |000>+ % (7% |000>+ % |100>) + % (% |011>+ %% |111>)

= 5/4]000> + 1/ | 100> + 1/, 011> + 1/ |111>

Comment 1

We used the formalism of linear algebra for probabilistic computation
because “ignorance propagates linearly”.

If a physical system is either in state x with probability p or in state y with
probability g, and x evolves into X and y into Y, then at the end the
system will be in state X with probability p or in state Y with probability
g. In Dirac notation:

plx>+qly> = p|X>+q|Y> =pT[|x>] +qT[|y>] =Tlp|x>+ql|y>]

The evolution operator T is linear, and can be represented by a matrix.



Comment 2

Measurements simply reveal the true state of the system, which was
unknown to us before the measurement. After the measurement, the
information about the state of the system changes, and with it the
probability distribution. With reference to the previous example

1. We measure the three bits and find 000:
5/g |000>+ 1/5 | 100> + 1/g |011> + 1/g | 111> = |000>

This happens with probability /g

2. We measure the first bit and find O; this happens with probability
>[g+Ys=3/4

5/¢|000>+1/ |011>

5/ 1000> + 1/g |100> + /g |011> + 1/ | 111> = =
4

= 5/, 1000>+ 1/, |011>

We can call it “collapse” of the probability. It is not a real physical
phenomenon. It is Bayes rule: P(A|B) = P(B|A) P(A) / P(B). In our case:

P(]000>|“0") = P(“0” | |000>) P(|000>) / P("0”) = 1 x 5/¢ 3/, = 5/,



Rules of probabilistic classical
computation

1. The state of a single probabilistic bit is given by a vector in R?, or in
Dirac notation:

|x>=p|0>+q|1> withp,g€ R, and p+g=1.
The coefficients give the probabilities for the bit to have that value.

States for multiple bits are constructed via tensor product of R?
Two bits: |xy> = |x> Q |y>
Three bits: |xyz>= |x> Q|y> & |z>, and so on

Why tensor products, and not — for example — Cartesian product?

Take for example three bits. There are 8 possible configurations: 000,
001, 010, 011, 100, 101, 110, 111. The register can be in any of these 8
states, and the information propagates linearly (without interference
among the states), therefore they behave like linearly independent
states.

This means that one needs 8 basis states in the vector space, which is
what is provided by the tensor product, not by the Cartesian product.



Rules of probabilistic classical
computation

2. Gates are implemented by linear operators, i.e. matrices.

Gates can be either reversible (square invertible matrices) or
irreversible (for example rectangular matrices).

As we saw that computation can always be made reversible, without
loss of generality we can say that gates are implemented by linear
invertible operators (NxN invertible stochastic matrices).

Of course, they have to preserve probabilities.

3. Measurements are updates of information. The states changes
according to Bayes rule (“collapse” of the state)

As we will see, the rules of quantum computation are almost similar,
but with fundamental differences.



Preview of Quantum Computation

Beam splitters (BS) are optical devices, which split the path of a photon in
two: once a photon has entered, there is ¥ probability that it goes one

way, and % probability that it goes the other way. It is a probabilistic gate.

If we associate the value of the bit
|O> to the path of the photon (instead
of the voltage as in standard

computers), then we have
|0> — — |1>
|0> = % [0>+7 | 1>
|1> |1> = % |[0>+ 7 | 1>

Then

—BS| =|S|I x> = % |0>+7% |1>

Whatever the input state, it generates an equal weighted distributions
of 0 and 1. The matrix representation is:

Y Vs
Y Vs
V22 P Y
I f t: = 1 =
n fac (%%)[Q} [VJ since p+qg=1



Preview of Quantum Computation

But now we can do the following optical construction:

|$> This is equivalent to the following
circuit

Since

In a classical picture (coin tossing), this makes perfectly sense

1>

But this is not what happens. What happens it:

0> 10> = |0>
|1> = |1>

10> — z ............. 7 ror How is this possible? The answer is
that photons are quantum: they
t cannot be thought as particles which
follow one path or the other. They
are more like waves, which split in
two, interfere and then recombine

| 1>



Preview of Quantum Computation

We will see how this is described by quantum mechanics, but the
essence is the following: how can we destroy probabilities?

We have to justify

|0> = % [0>+% |1>= |0>
first BS second BS

Instead of

|0> = B |0>+% |1>=> K |0>+% 1>

first BS second BS

We destroy probabilities with negative (in general, complex) numbers.
But what does it mean to have negative probabilities? The solution of
QM is:

Bit = p|0>+q|1> with p,g € R*"and p+g=1

probabilities

changed into

Qubit = a|0>+b|1> witha,b € C and |a|?+ |b]|?=1

amplitudes Probabilities
(they remain always positive)




Preview of Quantum Computation

The BS is mathematically described by

11
—BS|— = | H I Hadamardgate H= %(1—1)

R

Then
0> = 1. |0>+1, [1> In both cases,
— H |- probabilities are 50% of
1> = 1y |0>- 1 |1> getting the value O or 1
But now

| 411 %11)_(10)
= = B ﬁ(l—l) 2 1-1) o1

After the second BS, the bit takes the initial value

What happens physically is that the photon behaves like a wave. There
can be constructive interference, which mathematically is expressed
by amplitudes adding, and destructive interference, which
mathematically is expressed by amplitudes subtracting. This is the role
of negative numbers.



Preview of Quantum Computation

The surprising thing is that if we measure the photon right after the
first BS and before it enters the second one, we will not find it half here
and half there, as it would happen with classical waves. It will always be
either here or there, and the wave behaviour is destroyed.

faser} [\ N\

Understanding what this means brings into the foundations of
guantum mechanics, which is beyond the scope of the present course.



Quantum Computation

The essence of a quantum computation is the following

5. Read the
output

4. Make the state

mirrc% ........... z interfere so that the This is the

correct answer has difficult part
0> 1 s r

higher probability
3. Compute the function (trivial one, in the example)

1. Initialize the state 2. Create the

superposition of all states
Like parallel processing

The art of guantum computing is to make the different terms of the
superposition interfere in such a way to maximize the correct answer, in
a number of steps which is smaller than for any classical algorithm.



