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The Postulates of Quantum Mechanics

We have reviewed the mathematics (complex linear algebra) necessary to 
understand quantum mechanics. We will now see how the physics of 
quantum mechanics fits into this mathematical framework.

We are really defining the structure of a quantum theory. All physical 
theories based on quantum mechanics share this common structure. Later 
in the course, we will see how this mathematical structure is realized for 
realistic systems. For now, we will use our simple example of the spin-1/2 
particle to illustrate these ideas.

Postulate 1: State space

Every physical system has an associated Hilbert space H of some 
dimension D,  known as the state space of that system; and the system 
is completely described by its state vector, which is a unit vector in the 
state space.

If we choose a particular basis for the Hilbert space |j⟩, j  =  1, . . . , D , 
a state can be written in the form

In the case of spin-1/2, we can write any state in terms of the basis “spin 
up” and “spin down” along the Z  axis:

|ψ⟩ =  α1| ↑Z  ⟩ +  α2| ↓Z  ⟩.

Postulate 1: State space

Every physical system has an associated Hilbert spaceH of some
dimensionD, known as the state space of that system; and the
system is completely described by its state vector, which is a unit
vector in the state space.

If we choose a particular basis for the Hilbert space |j〉,
j = 1, . . . , D, a state can be written in the form

|ψ〉 =
D
∑

j=1

αj |j〉, where
∑

j

|αj|2 = 1.

In the case of spin-1/2, we can write any state in terms
of the basis “spin up” and “spin down” along the Z axis:

|ψ〉 = α1| ↑Z〉+ α2| ↓Z〉.
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The overall phase of the state has no physical meaning, so |ψ⟩ and 
eiθ|ψ⟩ represent the same physical state.

The choice of basis relates to possible measurements of the system. 
As we will see, each basis is associated with a particular 
measurement (or group of compatible measurements), and each 
basis vector with a particular measurement outcome.

For spin-1/2 each basis is associated with a particular direction in 
space along which the component of the spin could be measured. 
So {| ↑ Z  ⟩, | ↓ Z  ⟩}  is associated with measurement of the 
component of spin along the Z axis, with the basis vectors 
corresponding to spin up or down. 

Similarly, the bases { | ↑X  ⟩, | ↓X  ⟩}  and {| ↑Y  ⟩, | ↓Y  ⟩}  represent 
other possible measurements.

Postulate 2: Unitary time evolution

The time-evolution of a closed system is described by a unitary 
transformation,

|ψ(t2)⟩ = U (t2, t1)|ψ(t1)⟩,

where U is independent of the initial state.

In fact, the time-evolution of the state is given by the Schrödinger equation

where H(t) is an Hermitian operator (the Hamiltonian) that describes the 
energy of the system. How does this relate to unitary transformations?

Postulate 2: Unitary time evolution

The time-evolution of a closed system is described by a unitary
transformation,

|ψ(t2)〉 = Û(t2, t1)|ψ(t1)〉,

where Û is independent of the initial state.

In fact, the time-evolution of the state is given by the
Schrödinger equation

i!
d|ψ〉
dt

= Ĥ(t)|ψ〉,

where Ĥ(t) is an Hermitian operator (the Hamiltonian)
that describes the energy of the system. How does this
relate to unitary transformations?
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This is easiest to see if H is a fixed operator (i.e., constant in time). In that 
case, a solution to Schrödinger’s equation is

The operator −H(t2 −  t1)/hbar is Hermitian, so the operator

is unitary, as asserted.

This is easiest to see if Ĥ is a fixed operator (i.e., constant
in time). In that case, a solution to Schrödinger’s equation is

|ψ(t2)〉 = exp(−iĤ(t2 − t1)/!)|ψ(t1)〉.

The operator −Ĥ(t2 − t1)/! is Hermitian, so the operator

Û(t2, t1) = exp(−iĤ(t2 − t1)/!)

is unitary, as asserted.
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Suppose there is a uniform magnetic field in the Z direction. Then states 
with spin up and down along the Z axis have different energies. This is
represented by a Hamiltonian

where E 0  is proportional to the strength of the magnetic field. If |ψ⟩ 
=  α| ↑ Z  ⟩ +  β| ↓ Z  ⟩ at t =  0, then

This type of evolution is equivalent to a steady rotation about the Z  
axis, called precession.

Suppose there is a uniform magnetic field in the Z direction.
Then states with spin up and down along the Z axis have
different energies. This is represented by a Hamiltonian

Ĥ =

(

E0 0

0 −E0

)

≡ E0Ẑ,

where E0 is proportional to the strength of the magnetic
field. If |ψ〉 = α| ↑Z〉+ β| ↓Z〉 at t = 0, then

|ψ(t)〉 = αe−iE0t/!| ↑Z〉+ βeiE0t/!| ↓Z〉.

This type of evolution is equivalent to a steady rotation
about the Z axis, called precession.
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2.2 Some Examples

We now give some examples to clarify the axioms introduced in the previous
section. They turn out to have relevance to certain physical realizations of a
quantum computer.

EXAMPLE 2.1 Let us consider a time-independent Hamiltonian

H = −!
2
ωσx. (2.8)

Suppose the system is in the eigenstate of σz with the eigenvalue +1 at time
t = 0;

|ψ(0)〉 =
(

1
0

)
.

The wave function |ψ(t)〉 (t > 0) is then found from Eq. (2.5) to be

|ψ(t)〉 = exp
(
i
ω

2
σxt
)
|ψ(0)〉. (2.9)

The matrix exponential function in this equation is evaluated with the help
of Eq. (1.44) and we find

|ψ(t)〉 =

(
cosωt/2 i sinωt/2

i sinωt/2 cosωt/2

)(
1
0

)
=

(
cosωt/2

i sinωt/2

)
. (2.10)

Suppose we measure the observable σz . Note that |ψ(t)〉 is expanded in terms
of the eigenvectors of σz as

|ψ(t)〉 = cos
ω

2
t|σz = +1〉+ i sin

ω

2
t|σz = −1〉.

Therefore we find the spin is in the spin-up state with the probability P↑(t) =
cos2(ωt/2) and in the spin-down state with the probability P↓(t) = sin2(ωt/2)
as depicted in Fig. 2.1. Of course, the total probability is independent of time
since cos2(ωt/2) + sin2(ωt/2) = 1. This result is consistent with classical
spin dynamics. The Hamiltonian (2.8) depicts a spin under a magnetic field
along the x-axis. Our initial condition signifies that the spin points the z-
direction at t = 0. Then the spin starts precession around the x-axis, and the
z-component of the spin oscillates sinusoidally as is shown above.

Next let us take the initial state

|ψ(0)〉 =
1√
2

(
1
1

)
,

The state oscillates among the two eigenstates. Why? What should happen to 
not have the oscillation? What are the probabilities of outcomes of 
measurements? 
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FIGURE 2.1
Probability P↑(t) with which a spin is observed in the ↑-state and P↓(t) ob-
served in the ↓-state.

which is an eigenvector of σx (and hence the Hamiltonian) with the eigenvalue
+1. We find |ψ(t)〉 in this case as

|ψ(t)〉 =
(

cosωt/2 i sinωt/2
i sinωt/2 cosωt/2

)
1√
2

(
1
1

)
=

eiωt/2

√
2

(
1
1

)
. (2.11)

Therefore the state remains in its initial state at an arbitrary t > 0. This is an
expected result since the system at t = 0 is an eigenstate of the Hamiltonian.

EXERCISE 2.2 Let us consider a Hamiltonian

H = −!
2
ωσy. (2.12)

Suppose the initial state of the system is

|ψ(0)〉 =
(

0
1

)
. (2.13)

(1) Find the wave function |ψ(t)〉 at later time t > 0.
(2) Find the probability for the system to have the outcome +1 upon mea-
surement of σz at t > 0.
(3) Find the probability for the system to have the outcome +1 upon mea-
surement of σx at t > 0.

Now let us formulate Example 2.1 and Exercise 2.2 in the most general
form. Consider a Hamiltonian

H = −!
2
ωn̂ · σ, (2.14)

where n̂ is a unit vector in R3. The time-evolution operator is readily ob-
tained, by making use of the result of Proposition 1.2, as

U(t) = exp(−iHt/!) = cos
ω

2
t I + i(n̂ · σ) sin

ω

2
t. (2.15)
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Suppose the initial state is

|ψ(0)〉 =
(

1
0

)
,

for example. Then we find

|ψ(t)〉 = U(t)|ψ(0)〉 =
(

cos(ωt/2) + inz sin(ωt/2)
i(nx + iny) sin(ωt/2)

)
. (2.16)

The reader should verify that |ψ(t)〉 is normalized at any instant of time t > 0.

EXAMPLE 2.2 (Rabi oscillation) This example is often employed for a
quantum gate implementation as will be shown later. We will take the natural
unit ! = 1 to simplify our notation throughout this example. Let us consider
a spin-1/2 particle in a magnetic field along the z-axis, whose Hamiltonian is
given by

H0 = −ω0

2
σz . (2.17)

Suppose the particle is irradiated by an oscillating magnetic field of angular
frequency ω, which introduces transitions between two energy eigenstates of
H0. Then the perturbed Hamiltonian is modelled as

H = −ω0

2
σz +

ω1

2

(
0 eiωt

e−iωt 0

)
=

1
2

(
−ω0 ω1eiωt

ω1e−iωt ω0

)
, (2.18)

where ω1 > 0 is a parameter proportional to the amplitude of the oscillating
field. Let us evaluate the wave function |ψ(t)〉 at time t > 0 assuming that
the system is in the ground state of the unperturbed Hamiltonian

|ψ(0)〉 =
(

1
0

)
(2.19)

at t = 0. Note that we cannot simply exponentiate the Hamiltonian since it
is time-dependent. Surprisingly, however, the following trick makes it time-
independent. Let us consider the following “gauge transformation”:

|φ(t)〉 = e−iωσzt/2|ψ(t)〉. (2.20)

A straightforward calculation shows that |φ(t)〉 satisfies

i
d

dt
|φ(t)〉 = H̃ |φ(t)〉, (2.21)

where

H̃ = e−iωσzt/2Heiωσzt/2 − ie−iωσzt/2 d

dt
eiωσzt/2 =

1
2

(
−ω0 + ω ω1

ω1 ω0 − ω

)

= − δ
2
σz +

ω1

2
σx (2.22)



If |ψ⟩ is an eigenstate of H, |↑ Z ⟩ or | ↓ Z ⟩, the only effect is a change in 
the global phase of the state which has no physical consequences:

Because of this, we call these stationary states. Similarly, we could 

have a uniform field in the X direction or the Y direction. In these 

cases, the Hamiltonians would be E0X or E0Y, and the stationary
states would be the X or Y eigenstates.

If the Hamiltonian H(t) is not constant, the situation is more complicated; 
but the time evolution in every case is still given by a unitary 
transformation.

If |ψ〉 is an eigenstate of Ĥ, | ↑Z〉 or | ↓Z〉, the only effect
is a change in the global phase of the state which has
no physical consequences:

|ψ(t)〉 = e−iE0t/!| ↑Z〉 or e+iE0t/!| ↓Z〉

Because of this, we call these stationary states.
Similarly, we could have a uniform field in the X
direction or the Y direction. In these cases, the
Hamiltonians would be E0X̂ or E0Ŷ , and the stationary
states would be the X̂ or Ŷ eigenstates.
If the Hamiltonian Ĥ(t) is not constant, the situation is
more complicated; but the time evolution in every case
is still given by a unitary transformation.
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Controlling the Hamiltonian

A common situation in quantum information is when we have some 
control over the Hamiltonian of the system. For instance, we could 
turn on a uniform magnetic field in the Z direction, leave it on for a 
time τ , and then turn it off. In that case, the state will have evolved 
by

where θ = − E 0 τ / h b a r .  In this case, we say we have “performed a 
unitary transformation U on n the system.” The Hamiltonian has 
the time dependence H (t)  =  f  (t)E 0 Z ,  where f  (t)  =  1 for 0 ≤  t 
≤  τ and f  (t)  =  0 otherwise.

Controlling the Hamiltonian

A common situation in quantum information is when we
have some control over the Hamiltonian of the system.
For instance, we could turn on a uniform magnetic field
in the Z direction, leave it on for a time τ , and then turn
it off. In that case, the state will have evolved by

|ψ〉 → exp(iθẐ)|ψ〉 ≡ Û |ψ〉,

where θ = −E0τ/!. In this case, we say we have
“performed a unitary transformation Û on the system.”
The Hamiltonian has the time dependence
Ĥ(t) = f(t)E0Ẑ where f(t) = 1 for 0 ≤ t ≤ τ and f(t) = 0
otherwise.
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Postulate 3: Measurement

An observable is a measurable quantity, which is associated with an 
Hermitian operator O = O†. In measuring an observable O, the possible 
measurement outcomes are given by the eigenvalues λ j ;  these 
occur with probabilities equal to the square of the amplitude
for that outcome, and the system is left in an eigenstate of O.

Suppose one is given a system in a state |ψ⟩, and wishes to make a 
measurement of an observable O.̂ By the spectral theorem

M ≤ D and the projectors Pj  are a decompostion of the identity.

Postulate 3: Measurement

An observable is a measurable quantity, which is associated with
an Hermitian operator Ô = Ô†. In measuring an observable Ô, the
possible measurement outcomes are given by the eigenvalues λj ;
these occur with probabilities equal to the square of the amplitude
for that outcome, and the system is left in an eigenstate of Ô.

Suppose one is given a system in a state |ψ〉, and
wishes to make a measurement of an observable Ô. By
the spectral theorem

Ô =
M
∑

j=1

λjP̂j ,
M
∑

j=1

P̂j = Î , P̂jP̂k = δjkP̂j .

where M ≤ D and the projectors P̂j are a
decomposition of the identity.
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The outcome λ j occurs with probability pj = ⟨ψ| Pj |ψ⟩
⟨ Pj⟩, and the system is left in the (renormalized) state

This is called Born’s Rule. The expectation value of the 
measurement outcomes is ⟨ O⟩ =  ⟨ψ | O|ψ⟩.

If M =  D ,  so the Pj are projectors |φj ⟩⟨φj | onto eigen- vectors of 
O, then we can write |ψ⟩ in the eigenbasis:

Outcome λ j  occurs with probability pj  = |α j  |2 and the system is 
afterwards left in the state |φj ⟩.

The outcome λj occurs with probability pj = 〈ψ|P̂j|ψ〉
= 〈P̂j〉, and the system is left in the (renormalized) state

|ψ′〉 = P̂j|ψ〉/
√
pj .

This is called Born’s Rule. The expectation value of the
measurement outcomes is 〈Ô〉 = 〈ψ|Ô|ψ〉.
If M = D, so the P̂j are projectors |φj〉〈φj | onto eigen-
vectors of Ô, then we can write |ψ〉 in the eigenbasis:

|ψ〉 =
∑

αj|φj〉.

Outcome λj occurs with probability pj = |αj |2 and the
system is afterwards left in the state |φj〉.
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Expectation values.

Given a state |ψ⟩ and an opertor O, we can calculate a number

which is called the expectation value of Oin the state |ψ⟩. Given a 
particular choice of basis, we can express this number in terms of the 
elements of O and|ψ⟩:

As we will see, when O is Hermitian, its expectation value gives the 
average result of some measurement on a system in the state |ψ⟩.

Expectation values

Given a state |ψ〉 and an operator Ô, we can calculate a
number

〈Ô〉 ≡ 〈ψ|Ô|ψ〉 = 〈ψ|
(

Ô|ψ〉
)

which is called the expectation value of Ô in the state |ψ〉. Given a
particular choice of basis, we can express this number in
terms of the elements of Ô and |ψ〉:

〈Ô〉 =
∑

i,j

α∗
i aijαj .

As we will see, when Ô is Hermitian, its expectation value
gives the average result of some measurement on a system
in the state |ψ〉.
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Postulate 4: Composite systems

If a composite system is composed of subsystems A and B which
have associated Hilbert spaces H A  and H B ,  then the associated Hilbert 
space of the joint system is the tensor product space

H A  ⊗ H B .

Everything we have already learned about quantum mechanics generalizes 
to the case where the system is part of a composite system. Let’s go 
through them point by point.

Acting on a Subsystem

1. If subsystem A is in state |ψ⟩ and subsystem B is in state |φ⟩, then the 
joint system is in the product state |ψ⟩ ⊗|φ⟩.

2. If UA is a unitary transformation which acts on subsystem A, then 
UA⊗ I 

is the corresponding unitary for the joint system. Similarly, if UB acts on B,
then I⊗UB is the unitary for the joint system.

3. If A is an observable for subsystem A, then A⊗ I is the corresponding 
observable for the joint system.

Acting on a Subsystem

1. If subsystem A is in state |ψ〉 and subsystem B is in
state |φ〉, then the joint system is in the product state
|ψ〉 ⊗ |φ〉.

2. If ÛA is a unitary transformation which acts on
subsystem A, then ÛA ⊗ Î is the corresponding unitary
for the joint system. Similarly, if ÛB acts on B, then
Î ⊗ ÛB is the unitary for the joint system.

(ÛA ⊗ Î)(|ψ〉 ⊗ |φ〉) = (ÛA|ψ〉)⊗ |φ〉.

(Î ⊗ ÛB)(|ψ〉 ⊗ |φ〉) = |ψ〉 ⊗ (ÛB|φ〉).

3. If Â is an observable for subsystem A, then Â⊗ Î is the
corresponding observable for the joint system.
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Note that A ⊗ I and I⊗ B always commute, and therefore are compatible 
observables. Physically, this means that measurements on different 
subsystems can always be done simultaneously.



Treating Subsystems Jointly

While we can extend the results for single systems to composite 
systems, there are many more possible states, evolutions and 
measurements that are allowed.

Most states |Ψ⟩ of a composite system are not product states. For an 
example with two spin-1/2 systems,

is not a product state. For this joint state, we cannot assign well-
defined states to the subsystems. Such a joint state is called entangled.

A consequence of entanglement is that measurements on the 
subsystems will in general be correlated.

Treating Subsystems Jointly

While we can extend the results for single systems to
composite systems, there are many more possible
states, evolutions and measurements that are allowed.
Most states |Ψ〉 of a composite system are not product
states. For an example with two spin-1/2 systems,

|Ψ〉 =
1√
2
| ↑↓〉 −

1√
2
| ↓↑〉

is not a product state. For this joint state, we cannot
assign well-defined states to the subsystems. Such a
joint state is called entangled.
A consequence of entanglement is that measurements
on the subsystems will in general be correlated.
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We can also perform joint unitaries U on both systems at once. If the 
initial state is a product |ψ⟩ ⊗ |φ⟩, then after applying a joint unitary 
the system will in general be entangled. Correlations are produced by 
interaction between the spins.

For example, we might have a Hamiltonian of the form

The unitary operators exp(iθH) produced by this Hamiltonian will not 
be product operators, even though H itself is a product operator. So 
initial product states will evolve to become entangled.

Interactions

We can also perform joint unitaries Û on both systems
at once. If the initial state is a product |ψ〉 ⊗ |φ〉, then
after applying a joint unitary the system will in general
be entangled. Correlations are produced by interaction
between the spins.
For example, we might have a Hamiltonian of the form

Ĥ = E0Ẑ ⊗ Ẑ.

The unitary operators exp(iθĤ) produced by this
Hamiltonian will not be product operators, even though
Ĥ itself is a product operator. So initial product states
will evolve to become entangled.

– p. 21/23



Joint Measurements

Finally, we can measure observables O which are not product 
operators. The measurement process follows the same rules we 
have already seen: an eigenvalue of O will occur with some 
probability, and the system will be left in the corresponding 
eigenstate of O. However, since O is not a product operator, the 
eigenstates of O will in general be entangled states.

This means that entanglement can be produced by joint 
measurements even if the initial state |ψ⟩ ⊗ |φ⟩ was a  product.


