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The Qubit

The bit is the fundamental concept of classical computation and classical
information. Just as a classical bit has a state — either 0 or 1 — a qubit also
has a state. Two possible states for a qubit are the states |0) and | 1), which
as you might guess correspond to the states O and 1 for a classical bit. The
difference between bits and qubits is that a qubit can be in a state other
than |0) or | 1). It is also possible to form linear combinations of states,
often called superpositions:

) = alo) + 8 ]1) aff + (8P =1

The special states |0) and | 1) are known as computational basis states,
and form an orthonormal basis for this vector space .

Because |a|?+ |B|? =1, we may rewrite the above relation as
0 , 0
1) = cos §|0> + e'? sin §|1>

Up to an global phase factor, which has no physical significance. The
numbers 6 and ¢ define a point on the unit three-dimensional sphere,
often called the Bloch sphere.




Multiple Qubits

Suppose we have two qubits. If these were two classical bits, then there
would be four possible states, 00, 01, 10, and 11. Correspondingly, a two
qubit system has four computational basis states denoted
|00),]01),]10),|11). A pair of qubits can also exist in superpositions of
these four states, so the quantum state of two qubits involves associating a
complex coefficient — sometimes called an amplitude — with each

computational basis state, such that the state vector describing the two
qubits is

’¢> = Oé()()|00> + Q01‘01> + ()410‘10> + 0411‘11>.

Similar to the case for a single qubit, the measurement result x (= 00, 01,
10 or 11) occurs with probability |o,|?, with the state of the qubits after
the measurement being |x). The condition that probabilities sum to one
is therefore expressed by the normalization condition

ZxE{O,l}Z ‘O‘m’2 =1

More generally, we may consider a system of n qubits. The computational
basis states of this system are of the form |x;x, . .. X,), and so a quantum
state of such a system is specified by 2" amplitudes.

Two ways of denoting the qubits

Binary basis: sequence of 0 and 1, i.e. |Xpq Xp ... Xg)
Decimal basis: |x), with x = X1 2" + X 272 + .. + Xg

Examples
|10y = | 1x21+0x20) =|2)
|101) = | 1 x22+0x21+1x20) =|6)



The set

{|le") = (|00> 11)), |®7) = (|00> 11)),

%I
%I

(@) = —=(|01) + [10)), [¥7) = —=(|01) — [10))}

75 ﬁ
is an orthonormal basis of a two-qubit system and is called the Bell basis.
Each vector is called the Bell state or the Bell vector. Note that all the Bell
states are entangled.

EXERCISE. The Bell basis is obtained from the binary basis {|00), |01),
|10), | 11)} by a unitary transformation. Write down the unitary
transformation explicitly.

Among three-qubit entangled states, the following two states are
important for various reasons and hence deserve special names. The
state

IGHZ) = —=(|000) +[111))

Sl

is called the Greenberger-Horne-Zeilinger state and is often
abbreviated as the GHZ state. Another important three-qubit state
is the W state

(W) = (\100> +1010) + |001))

%\



Quantum Computation

A quantum computation is a collection of the following three elements:
= A register or a set of registers,

= A unitary matrix U, which is tailored to execute a given quantum
algorithm

= Measurements to extract information we need.

More formally, we say a quantum computation is the set {H,U,{M}},
where H = C?" is the Hilbert space of an n-qubit register, U € U(2")
represents the quantum algorithm and {M,} is the set of measurement
operators. The hardware along with equipment to control the qubits is
called a quantum computer.

Single Qubit Quantum Gates

I=0)(0] +1)(1| = ((1) (1)) . Y = [0)(1] — [1)(0] = (? —01) -
x =i +oai=(15) = z=0-mai=(§ %) =o

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = X Z the combination of them. It
is easily verified that these gates are unitary.

Exercise: Find the Hamiltonian that implements these gates, and show
how they are implemented.



Three other quantum gates will play a large part in what follows, the Hadamard gate
(denoted H), phase gate (denoted S), and 7/8 gate (denoted T):

11 1] . 10l .._[1 0
=il A=l 2] T=o epimn |- o2

A couple of useful algebraic facts to keep in mind are that H = (X + Z)/ V2and S = T7.
You might wonder why the T gate is called the 7/8 gate when it is /4 that appears in
the definition. The reason is that the gate has historically often been referred to as the

7 /8 gate, simply because up to an unimportant global phase 7" is equal to a gate which
has exp(Z£27/8) appearing on its diagonals.

exp(—im/8) 0
0 exp(im/8) |-

T = exp(im/8) 4.3)

Nevertheless, the nomenclature is in some respects rather unfortunate, and we often refer
to this gate as the T’ gate.

The Pauli matrices give rise to three useful classes of unitary matrices when they are
exponentiated, the rotation operators about the Z, 7, and 2 axes, defined by the equations:

. 0 0 cos & —isin 2
= _7’9X/2 = _J — 7qin — — 2 2
R.(0)=e Cos 2[ isin 2X [ _idind el ] (4.4)
. 0 0 cos? —sin?
— _—ifY/2 — Vr v = 2 2
R,0)=e Cos 2] 7 sin ZY [ sin% cos g ] 4.5)
| 0 0 e/
R.(0) = e 02/2 = ¢og EI — 7 sin EZ = l c 0 61'8/2 ] (4.6)

The Hadamard gate or the Hadamard transformation H is an important
unitary transformation defined by

Un s 10) = —=(10) + 1)

%

1
1) — ﬁ<|0> — ).

It is used to generate a superposition state from |0) or |1). The matrix repre-
sentation of H is

(4.9)

1 1

1 11
U = s(0) + D00l + (0 -l =5 (1 1) @)

A Hadamard gate is depicted as




Hadamard-Walsh Gate

There are numerous important applications of the Hadamard transforma-

tion. All possible 2™ states are generated, when Uy is applied on each qubit
of the state |00...0):

(H®H® .® H)[00...0)
1
(|0>+\1>)®ﬁ(|0>+\1>>® 7(|0>+|1>)

5

=S ") (.11

Therefore, we produce a superposition of all the states |x) with 0 < x < 2" —1
simultaneously. This action of H on an n-qubit system is called the Walsh

transformation, or Walsh-Hadamard transformation, and denoted as
W,,. Note that

Wy = Uy, Wn_|_1 =Ug @ W,. (4.12)

Exercises

Exercise 4.7: Show that XY X = —Y and use this to prove that
XR, ()X = R,(—0).

Exercise 4.8: An arbitrary single qubit unitary operator can be written in the form
U = exp(ta) R (0) 4.9)

for some real numbers « and 6, and a real three-dimensional unit vector 7.

1. Prove this fact.
2. Find values for «, 0, and 7 giving the Hadamard gate H.
3. Find values for «, 8, and n giving the phase gate

710
S—lo Z] (4.10)

Exercise 4.13: (Circuit identities) It is useful to be able to simplify circuits by
inspection, using well-known identities. Prove the following three identities:

HXH=7, HYH=-Y; HZH=X. (4.18)

Exercise 4.14: Use the previous exercise to show that HT'H = R,(7/4), up to a
global phase. 6



Two qubit gates: CNOT Gate

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
1), while leaving the second bit unchanged when the first qubit state is |0).

Ucnor : |00) — |00, [01) — [01), |10} [11), [11) — |10).

1000 control bit
0100

Ucnot =[0)(0] ® I + [1)(1] ® X, Uonor = | npo1 |-
0010 target bit

Let {|i)} be the basis vectors, where ¢ € {0,1}. The action of CNOT on
the input state [¢)|7) is written as |7)|7 @ 7), where ¢ @ j is an addition mod 2,
thatis, 000 =000l =1100=land 1®1=0.

The following identity holds

CNOT = [0)(0]®@ I+ |1){1]® X
1 1
= JU+D)el+ (I-2)oX

1 1
= Jle(+X)+5Z2e (- X)

Control-U Gate

More generally, we consider a controlled-U gate,
V=10)(0|® I+ |1){1|xU, (4.7)

in which the target bit is acted on by a unitary transformation U only when
the control bit is |1). This gate is denoted graphically as

control bit T

target bit U




Swap Gate

The SWAP gate acts on a tensor product state as

Uswap|¥1, ¥2) = |12, 91). (4.14)

The explict form of Uswap is given by

Uswap = [00)(00] + |01)(10[ + [10)(01[ + [11){11]
1000

0010
o100l (4.15)

0001

Needless to say, it works as a linear operator on a superposition of states. The
SWAP gate is expressed as

[41) [2)

[¢2) [41)

Note that the SWAP gate is a special gate which maps an arbitrary tensor
product state to a tensor product state. In contrast, most two-qubit gates
map a tensor product state to an entangled state.

Exercise

EXERCISE 4.1 Show that the UcnoT cannot be written as a tensor prod-
uct of two one-qubit gates.

EXERCISE 4.2 Let (a|0) 4 b/1)) ® |0) be an input state to a CNOT gate.
What is the output state?

EXERCISE 4.3 (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {|00),]01),|10),|11)}

A a2 l
N T
(2) (b)

(2) Find the matrix representation of the circuit (b)
(3) Find the matrix representation of the circuit (c¢). Find the action of the,
circuit on a tensor product state |1)1) ® [12).




Given the outcome of Exercise 4.3(c) and the mathematical expression of
the CNOT gate, one can write

SWAP = CNOT CNOT CNOT
1 1
= JUel+Ze2)+ XeX(Iel-29Z)

This expression (using the relation Y = XZ) can be rewritten as:

1
SWAP = _(I@l+X@X-YaY+202)

Given the relation between the gates X, Y, Z and the Pauli matrices, we
have also:

1 1
SWAP = 5([@[4—5@6):§(I®I—I—Ux®0x—i—ay®ay—i—az®az)

Exercise

EXERCISE 4.5 Show that the two circuits below are equivalent:

H mi ‘, H l
This exercise shows that the control bit and the target bit in a CNOT gate
are interchangeable by introducing four Hadamard gates.

EXERCISE 4.6 Let us consider the following quantum circuit

ql_HT
q2

\N (4.13)

where ¢; denotes the first qubit, while go denotes the second. What are the
outputs for the inputs |00), |01),]10) and |11)7



3 qubit gate: CCNOT (Toffoli) Gate

The CCNOT (Controlled-Controlled-NOT) gate has three inputs, and
the third qubit flips when and only when the first two qubits are both in the
state |1). The explicit form of the CCNOT gate is

Uccenor = (|00)(00] + [01)(01] + [10)(10)) ® T + [11){(11| ® X.  (4.8)

This gate is graphically expressed as

x> —e— [x>

ly> —e—  |y>

|2> —p—  [z2D(xy)>

The CCNOT gate is also known as the Toffoli gate.

Fredkin Gate

The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third
(bottom) qubits when and only when the first (top) qubit is in the state |1).
Its explicit form is

Ukredkin = |0)(0] ® Iy + |1)(1| ® Uswap- (4.17)

10



Exercise

_@

L 2 @
- 77| l Tk
{ | I_[_ il
—|H [ T A\ T [ TT T — H |

Figure 4.9. Implementation of the Toffoli gate using Hadamard, phase, controlled-NOT and 7/8 gates.

Exercise 4.24: Verify that Figure 4.9 implements the Toffoli gate.

Exercise 4.25: (Fredkin gate construction) Recall that the Fredkin

(controlled-swap) gate performs the transform

rl1 0 0
010
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
LO 0 O

0

S o oo = OO

0 0
0 0
0 0
0 0
1 0
0 0
0 1
0 0

SO = OO O oo

—_0 O O O oo O
1

(1) Give a quantum circuit which uses three Toffoli gates to construct the

Fredkin gate (Hint: think of the swap gate construction — you can control

each gate, one at a time).

(2) Show that the first and last Toffoli gates can be replaced by CNOT gates.
(3) Now replace the middle Toffoli gate with the circuit in Figure 4.8 to obtain
a Fredkin gate construction using only six two-qubit gates.

(4) Can you come up with an even simpler construction, with only five

two-qubit gates?

(4.30)

11



Exercise

Exercise 4.26: Show that the circuit:

R, —m/ R, —7m/ F

A%

— R, 7/ Ry m/ I(

differs from a Toffoli gate only by relative phases. That is, the circuit takes

1, ¢, 1) to e?CreeDcy ¢y t @ ;- ¢;), where e is some relative phase
factor. Such gates can sometimes be useful in experimental implementations,
where it may be much easier to implement a gate that is the same as the Toffoli
up to relative phases than it is to do the Toffoli directly.

Exercise 4.27: Using just CNOTs and Toffoli gates, construct a quantum circuit to
perform the transformation

1 0 0 0 0 0 0 07

000 0 0 O0O01

0 1.0 0 0 0 0 O

001 00 000

0001 0000 (+31)
000 01000

0000 0 T1TTUO0O

L0000 0 0 1 0

This kind of partial cyclic permutation operation will be useful later, in
Chapter 7.

12



Recovering classical Gates

The (classical) Toffoli gate is universal, therefore it reproduces all
reversible and irreversible classical gates. Its quantum version generalizes
the classical gates into quantum gates.

In general:
1. Take a classical gate. If irreversible, consider its reversible variant.

2. Define the quantum counterpart so that on the computational basis it
acts as the reversible classical gate.

3. Extend it by linearity to the whole space.

The gate thus obtained is the quantum generalization of the classical gate.

In summary, we have shown that all the classical logic gates, NOT, AND,
OR, XOR and NAND gates, may be obtained from the CCNOT gate. Thus
all the classical computation may be carried out with a quantum computor.

Note, however, that these gates belong to a tiny subset of the set of unitary
matrices.

13



Exercise

Exercise 4.36: Construct a quantum circuit to add two two-bit numbers x and y
modulo 4. That is, the circuit should perform the transformation
7, y) — |z, 2 +y mod 4).

What the circuit should do is the following

4 )
0 1 2 3
Y1 Yo Y1 Yo Y1 Yo Y1 Yo
0 0 0 1 1 0 1 1
X1 Xg
0 O 0 0 0 0 1 1 0 1 1
1 0 1 0 1 1 0 1 1 0 0
2 1 0 1 0 1 1 0 0 0 1
3 1 1 1 1 0 0 0 1 1 0
\_ _J
We see that:
Xo 9 Xo
X1 9 X1
Yo =~ Xo D Yo This is implemented by a CNOT gate

V1=~ X1 D y1 D (Xo Vo) V1D (XoYo) is implemented by a CCNOT gate
the rest by a CNOT gate

The circuit then is

X0 ® I

X1 v

Yo ®

Y1 > 3 14




Universal Quantum Gates

Like in the classical case, there exist a universal set of guantum gates.

We will now show that
* Single qubit gates
* CNOT gate

are universal for quantum computation.

Two-level unitary matrix

We will prove the following Lemma before stating the main theorem. Let
us start with a definition. A two-level unitary matrix is a unitary matrix

which acts non-trivially only on two vector components. Suppose V' is a two-
level unitary matrix. Then V has the same matrix elements as those of the
unit matrix except for certain four elements V4, Vap, Vie and Vpp. An example
of a two-level unitary matrix is

a* 00 3"
|l o100 s i

600 «

where ¢ =1 and b = 4.

LEMMA 4.1 Let U be a unitary matrix acting on C?. Then there are
N < d(d —1)/2 two-level unitary matrices Uy, Us, ..., Uy such that

U=UU;...Un. (4.46)

15



Proof of lemma: d =3

Proof. The proof requires several steps. It is instructive to start with the case
d=3. Let

adg
U=\|beh
cfi

be a unitary matrix. We want to find two-level unitary matrices Uy, Us, Us
such that

UsUU U = 1.
Then it follows that
U =ululul.

(Never mind the daggers! If Uy is two-level unitary, U,I is also two-level
unitary.) We prove the above decomposition by constructing Uy, explicitly.

(i) Let
el
=2 o).
0 01

where u = y/|a|? + |b|2. Verify that U; is unitary. Then we obtain

a/ d/ gl
ULU=|(0¢ehn |,
/ ! sl
< f
where a’, ..., j" are some complex numbers, whose details are not necessary.

Observe that, with this choice of Uy, the first component of the second row
vanishes.

(ii) Let
‘L/,* 0 cu;j a™ 0c*
Uy=| 010 |=[010],
_5_', 0 Z_i —c0ad
where v’ = \/|a’|? 4+ |/|? = 1. Then
1d" g" 10 0
UUU=10e"h" | =10e"n" ],
0 f// j// 0 f// j//

where the equality d’ = ¢” = 0 follows from the fact that UsU U is unitary,
and hence the first row must be normalized.

16



(iii) Finally let
10 0
Us = (UUhU)F = | 0 e f*
O h//* j//*

Then, by definition, UsUsU,U = I is obvious. This completes the proof for
d=3.

The moral of the lemma is that with N two-level unitary matrices there are
enough degrees of freedom to play with, to reproduce any unitary matrix
of dimension d.

Proof of lemma: any d

Suppose U is a unitary matrix acting on C¢ with a general dimension d.
Then by repeating the above arguments, we find two-level unitary matrices
Ui,Us,...,Uz_1 such that

100

0% * *
Ud_l...UQUlUI 0% x* * ,

0% * *

namely the (1,1) component is unity and other components of the first row
and the first column vanish. The number of matrices {Ux} to achieve this
form is the same as the number of zeros in the first column, hence (d — 1).

We then repeat the same procedure to the (d — 1) x (d — 1) block unitary
matrix using (d—2) two-level unitary matrices. After repeating this, we finally
decompose U into a product of two-level unitary matrices

U=WVs...Vx,

where N < (d—1)+(d—2)+...+1=d(d—1)/2. 1

17



Exercise

EXERCISE 4.12 Let U be a general 4 x 4 unitary matrix. Find two-level
unitary matrices Uy, Us and Ujz such that

1000
0 * * %
UsUxhU = 0 * % *
0 * % %
EXERCISE 4.13 Let
11 1 1
114 —1—4
U—§ 1211 -1 |- (4.47)
1 —i -1 34
Decompose U into a product of two-level unitary matrices. Esercizio 4.37 del Nielsen Chuang

18



Universality theorem

THEOREM 4.2 (Barenco et al.)

Proof. Thanks to the previous
lemma, it suffices to prove the
theorem for a two-level unitary
matrix, acting non trivially on

two qubits s and t.

In the example (23 dim matrix):

s=000andt=111

The set of single qubit gates and
CNOT gate are universal. Namely, any unitary gate acting on an n-qubit
register can be implemented with single qubit gates and CNOT gates.

§=58,12""1 4+ ...+ 52+ 50

(a000000c\
01000000
00100000
00010000
00001000
00000100
00000010

v v

\ 60000004/

, (a,b,c,d e C)

t=t, 12" 4.+ t124+1

Step 1. The two-level unitary matrix U can be reduced to a 2x2 unitary
matrix.

01000000
00100000
00010000
00001000
00000100
00000010

(aOOOOOOc\

\ 60000004

»

h
I
VR

ac
bd

19



aOOOOOOc\
01000000
00100000
00010000
00001000
00000100
00000010

b000000d)

Define the Gray code connecting s and t. It is
a sequence of binary numbers such that
adjacent numbers differ only by one bit. In
our case s =000 and t=111; an example of
Gray code is

1 92 g3
gg=000
g2:1 00
g3:1 10
gp=111

If s and t differ in p bits, the shortest Gray code is made of p+1 elements

The strategy now is to find gates providing the sequence of state changes

15) = |g1) — l92) = ... = |gm—1)

Then g1 and g, differ only in one bit, which is identified with the single
qubit on which U acts. After having applied the U gate, we bring things

back. In our example:

s) = |000) — |100) — [110) = [11) ®||0)

N

\ J

7)

~

11) ®|[1) o

DO the Gary code - UNDO the Gary code

Act with the 2x2 gate U

20



Universality theorem: d = 3 example

/aOOOOOOc\

01000000 Q1
00100000
00010000 .
U=100001000 - @
00000100
00000010 s

\b000000d/

Where we defined

N
\V

o——o——p
&P ®

o——o——p

Fany
VUV

Q1 T ®
q2 I

g3

Fany
VUV

‘,,/’

It changes
|x00> => |x~00>
It changes
DO |1x0> = |1x70>

L)
I} A d

]
|

It changes
| 1x0> => | 1x"0>

It changes
| 1x0> => | 1x"0>

UNDO

T

a000000¢
01000000
00100000
00010000
00001000
00000100
00000010
b000000d

g1
92
g3
94

— o
—_—o o
- o o of

21



Let us consider the effect on a qubit different from |s>and |t>, for

example the qubit |101>

q1

q2

q3

1101)

1101)

101)

1101)

1101) |101)

\J

f\

I
[

1
B

Ch

Or the qubit| 100>

100) [000) |000) |000> 000) |100)
qi1 & - Pany
q2 \{ o & \{
4 © o— U [—™ 5
DO UNDO
While on |000>
000)  [100) [110) §%T T ot
q1 & L @ Fan
q2 \{ an) 2 \{
s ° o— [ —> 5
O . | . UNDO

The gate acts only on the third qubit

22



Exercises

EXERCISE 4.14 (1) Find the shortest Gray code which connects 000 with
110.

(2) Use this result to find a quantum circuit, such as Fig. 4.5, implementing
a two-level unitary gate

@00000c0
01000000
00100000
00010000 | ~_fac

U=100001000 ’l]:<bd)€U@)
00000100
500000d0
00000001

Exercise 4.39: Find a quantum circuit using single qubit operations and CNOTSs to
implement the transformation

1

(4.60)

S oo~ oo oo
S o= O O O oo
SR OO oo oo O

S oo oo oo

S oo oo o~ o
ST oo o Q oo
S o oo~ O oo
QL O o oo 0 o O

It will be shown next that all the gates in the above circuit can be
implemented with single-qubit gates and CNOT gates, which proves the
universality of these gates.

23



Step 2. The controlled-U gate is decomposed in the CNOT gate and single
qubit gates

-
I
9
€
S8
€
2
I

LEMMA 4.2 Let U € SU(2). Then there exist a, 3,7 € R such that U =
R.(a)Ry(B)R=(7), where

e

_ : _ [ cos(8/2) sin(3/2)
Ry(B) = exp(ifio,/2) = <_Sin(ﬁ/2) 008(6/2)> '

Proof. After some calculation, we obtain

i(a+y)/2 ) i(a—v)/2 g )
R.(0)Ry(B)R:(v) = <_Zi<_a+7)/gossi(nﬁ(g />2) ee_l-(aﬂ) /28222(5 é /2))) . (4.53)

Any U € SU(2) may be written in the form

a b cosfet*  sin fett
s (50)( .

— sinfe"* cosfe

' eia/2 0
R.(a) = exp(iao,/2) = 0 e—ia/2 |

where we used the fact that detU = |a|? + |b|*> = 1. Now we obtain U =
R.(a)Ry(B)R.(y) by making identifications
o+ 7y o —y

s A\ = = i 4.
2’ 2 ' 2 ( 55)

0=

24



LEMMA 4.3 Let U € SU(2). Then there exist A, B,C € SU(2) such that
U=AXBXC and ABC = I, where X = o,.

Proof. Lemma 4.2 states that U = R,(a)Ry(8)R. () for some «, 3,7 € R.
Let

A=R.(a)R, <§> ,B=R, <—§> R. (—%”) C=R. (—“;7)

Then

AXBXC = R.(a)R, <§> XR, <_§> R. (_a—2w> XR. (_a;7>
= R.(a)R, <§> lXRy <_§> X] lXRz< a+’y) X] R (_a 2 v)
= R.(a)R, (g) R, (g) R. (O‘Tﬂ> R. (_a ; 7)
= R.(a)Ry(B)R:(v) = U,

where use has been made of the identities X2 = I and X Oy X = —0y. -
It is also verified that

o= on () (£)a.(55) (27)

= R.(a)Ry(0)R.(~a) = I.

This proves the Lemma. ]

LEMMA 4.4 Let U € SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 4.8).

Proof. The proof is almost obvious. When the control bit is 0, the target bit
|1) is operated by C, B and A in this order so that

) — ABCly) = |),

while when the control bit is 1, we have

) > AXBXC|¢) = Ul).




From SU(2) to (2)

So far, we have worked with U € SU(2). To implement a general U-gate
with U € U(2), we have to deal with the phase. Let us first recall that any
U € U(2) is decomposed as U = ¢V, V € SU(2),a € R.

LEMMA 4.5 Let ”
i e'? 0
ai e (% 1)

¢ —i¢/2 /2 10
D =R.(—¢)® (§> = <€ 0 eiqb/Q) (e 0 eiqb/Z) = (Oem)'

Then the controlled-®(¢) gate is expressed as a tensor product of single qubit
gates as

and

UC<I>(¢) =D®I. (456)

Proof. The LHS is

Ucw(g) = 0){0] @ I + [1){(1] @ &(¢) = [0)(0] ® I +[1){1] @ 1

= 10)0| ® T+ €)1 ® 1,

D
while the RHS is =

D®I:<1 0)@[ ()

0 ei®

= [10)(0] + e”[1)(1]] @ I = Uca(g),

which proves the lemma. I

EXERCISE 4.15 Let us consider the controlled-V; gate Ucy, and the
controlled-V, gate Ucy,. Show that the controlled-V; gate followed by the
controlled-V, gate is the controlled-V2V; gate Uc(v,v,) as shown in Fig. 4.10.

[T - 1T
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FIGURE 4.10
Equality Ucv,Ucv, = Ucv,1y)- B



Controlled-U gate with U in U(2)

PROPOSITION 4.1 Let U € U(2). Then the controlled-U gate Ucy can
be constructed by at most four single-qubit gates and two CNOT gates.

Proof. Let U = ®(¢p)AXBXC. According to the exercise above, the
controlled-U gate is written as a product of the controlled-®(¢) gate and the
controlled-AX BXC' gate. Moreover, Lemma 4.5 states that the controlled-
®(¢p) gate may be replaced by a single-qubit phase gate acting on the first
qubit. The rest of the gate, the controlled-AX BX C' gate is implemented with
three SU(2) gates and two CNOT gates as proved in Lemma 4.3. Therefore
we have the following decomposition:

Ucy = (D & A)UCNOT(I & B)UCNOT(I ® C), (4.57)

where
D = R.(—¢)®(¢/2)
and use has been made of the identity (D ® I)(I ® A) = D ® A. I

[T - —

d(G)AXBXC  AXBXC @(0)

FIGURE 4.11
Controlled-U gate is implemented with at most four single-qubit gates and
two CNOT gates.
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Step 3. The CCNOT gate and its variants are implemented with CNOT gates
and its variants

.1

U 14 4 v

LEMMA 4.6 The two quantum circuits in Fig. 4.12 are equivalent, where
U="V2

Proof. If both the first and the second qubits are 0 in the RHS, all the gates
are ineffective and the third qubit is unchanged; the gate in this subspace
acts as |00)(00| ® I. In case the first qubit is 0 and the second is 1, the
third qubit is mapped as |[¢) — VIV|h) = |[); the gate is then [01)(01| ® I.
When the first qubit is 1 and the second is 0, the third qubit is mapped as
[9) = VVT|y) = |); hence the gate in this subspace is [10)(10| ® I. Finally
let both the first and the second qubits be 1. Then the action of the gate on
the third qubit is |¢) — V'V |¢)) = Uly); namely the gate in this subspace is
|11)(11| ® U. Thus it has been proved that the RHS of Fig. 4.12 is

(100){(00] + |01)(01| + [10)(10]) @ I + |11){11| ® U, (4.58)
namely the controlled-controlled-U gate. I
— e = —D——
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EXERCISE 4.17 Show that the circuit in Fig. 4.13 is a controlled-U gate
with three control bits, where U = V2.

| J{I
& oo

PROPOSITION 4.2 The quantum circuit in Fig. 4.14 with U = V? is a
decomposition of the controlled-U gate with n — 1 control bits.

The proof of the above proposition is very similar to that of Lemma 4.6
and Exercise 4.17 and is left as an exercise to the readers.
Theorem 4.2 has been now proved. 1

I I ariv v

——9

order. The above controlled-U gate with (n — 1) control bits requires ©(n?)
elementary gates.*T Let us write the number of the elementary gates required

to construct the gate in Fig. 4.14 by C(n). Construction of layers I and III
requires elementary gates whose number is independent of n. It can be shown

the number of the elementary gates required to construct the controlled
NOT gate with (n — 2) control bits is ©(n) [14]. Therefore layers II and IV
require O(n) elementary gates. Finally the layer V, a controlled-V gate with
(n — 2) control bits, requires C'(n — 1) basic gates by definition. Thus we
obtain a recursion relation

C(n)—C(n—1)=06(n). (4.59)
The solution to this recursion relation is
C(n) = O(n?). (4.60)

Therefore, implementation of a controlled-U gate with U € U(2) and (n — 1)
control bits requires ©(n?) elementary gates.



