Quantum Computing 5 – Simple quantum algorithms

Angelo Bassi

Algorithms with oracle

Suppose we are supplied with a quantum **oracle** – a black box whose internal workings are not important at this stage – with the ability to recognize solutions to a given problem by computing a suitable function f. More precisely, the oracle is a unitary operator, $U_{\rm f}$, defined by its action on the computational basis:

$$U_f$$
 : $|x,y\rangle \mapsto |x,y \oplus f(x)\rangle$

where \bigoplus is addition mod 2.

Suppose U_f acts on the input which is a **superposition of many states**. Since U_f is a linear operator, it acts simultaneously on all the vectors that constitute the superposition. Thus the output is also a superposition of all the results

$$U_f: \sum_x |x\rangle |0\rangle \mapsto \sum_x |x\rangle |f(x)\rangle.$$

All values of the function computed at once. Very easy!! But... measurements will make the wave function collapse giving only one output. No advantage.

The goal of a quantum algorithm is to operate in such a way that the particular outcome we want to observe has a larger probability to be measured than the other outcomes.

Deutsch Algorithm

Let $f:\{0,1\}\to\{0,1\}$ be a binary function. Note that there are only four possible f, namely

$$\begin{array}{c} f_1: 0 \mapsto 0, \ 1 \mapsto 0, \\ f_3: 0 \mapsto 0, \ 1 \mapsto 1, \end{array} \begin{array}{c} f_2: 0 \mapsto 1, \ 1 \mapsto 1, \\ f_4: 0 \mapsto 1, \ 1 \mapsto 0. \end{array}$$

The first two cases, f_1 and f_2 , are called <u>constant</u>, while the rest, f_3 and f_4 , are <u>balanced</u>. If we only have classical resources, we need to evaluate f twice to tell if f is constant or balanced. There is a quantum algorithm, however, with which it is possible to tell if f is constant or balanced with a single evaluation of f, as was shown by Deutsch [2].

First we need to turn the classical function f(x) into a quantum one. To this purpose we define the quantum oracle

$$U_f$$
 : $|x,y\rangle \mapsto |x,y \oplus f(x)\rangle$

The algorithm is structured as follows.

- 1. Start with the state $|01\rangle$.
- 2. Apply an Hadamard on both qubits: $\frac{1}{2}(|00\rangle |01\rangle + |10\rangle |11\rangle)$
- 3. Apply the operator U_f implementing the function

$$\frac{\frac{1}{2}(|0, f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, f(1)\rangle - |1, 1 \oplus f(1)\rangle)}{\frac{1}{2}(|0, f(0)\rangle - |0, \neg f(0)\rangle + |1, f(1)\rangle - |1, \neg f(1)\rangle)},$$

Quantum parallelism: all values computed at once

Deutsch Algorithm

4. Apply an Hadamard to the first qubit

 $\frac{1}{2\sqrt{2}}\left[(|0\rangle + |1\rangle)(|f(0)\rangle - |\neg f(0)\rangle) + (|0\rangle - |1\rangle)(|f(1)\rangle - |\neg f(1)\rangle)\right]$

If the function is constant, the two blue terms are equal, the state reduces to

$$\frac{1}{\sqrt{2}}|0\rangle(|f(0)\rangle-|\neg f(0)\rangle)$$

If the function is balanced, the two blue terms are opposite, the state reduces to

$$\frac{1}{\sqrt{2}}|1\rangle(|f(0)\rangle - |\neg f(0)\rangle)$$

Therefore the measurement of the first qubit tells us whether f is constant or balanced.

5. Measure the first qubit to determine f. The full algorithm is:

Deutsch-Jozsa Algorithm

Let us first define the **Deutsch-Jozsa problem**. Suppose there is a binary function

$$f: S_n \equiv \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}.$$

We require that f be either constant or balanced as before. When f is constant, it takes a constant value 0 or 1 irrespetive of the input value x. When it is balanaced the value f(x) for the half of $x \in S_n$ is 0, while it is 1 for the rest of x. In other words, $|f^{-1}(0)| = |f^{-1}(1)| = 2^{n-1}$, where |A| denotes the number

It is clear that we need at least $2^{n-1} + 1$ steps, in the worst case with classical manipulations, to make sure if f(x) is constant or balanced with 100% confidence. It will be shown below that the number of steps reduces to a single step if we are allowed to use a quantum algorithm.

The oracle for the Deutsch-Jozsa algorithm is always the same

$$U_f : |x, y\rangle \mapsto |x, y \oplus f(x)\rangle$$

- 1. Prepare an (n + 1)-qubit register in the state $|\psi_0\rangle = |0\rangle^{\otimes n} \otimes |1\rangle$. First n qubits work as input qubits, while the (n + 1)st qubit serves as a "scratch pad." Such qubits, which are neither input qubits nor output qubits, but work as a scratch pad to store temporary information are called **ancillas** or **ancillary qubits**.
- 2. Apply the Walsh-Hadamard transforamtion to the register. Then we have the state

$$U_{\mathrm{H}}^{\otimes n+1} |\psi_0\rangle = \frac{1}{\sqrt{2^n}} (|0\rangle + |1\rangle)^{\otimes n} \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$
$$= \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle).$$

3. Apply the oracle. The state changes into

$$= \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle \frac{1}{\sqrt{2}} (|f(x)\rangle - |\neg f(x)\rangle)$$
$$= \frac{1}{\sqrt{2^n}} \sum_{x} (-1)^{f(x)} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle).$$

Although the gate U_f is applied once for all, it is applied to all the *n*-qubit states $|x\rangle$ simultaneously.

Deutsch-Jozsa Algorithm

4. The Walsh-Hadamard transformation qubits next. We obtain

is applied on the first \boldsymbol{n}

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} (-1)^{f(x)} U_{\mathrm{H}}^{\otimes n} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle$$

On the Hadamard gate

It is instructive to write the action of the one-qubit Hadamard gate in the following form,

$$U_{\rm H}|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^x|1\rangle) = \frac{1}{\sqrt{2}}\sum_{y\in\{0,1\}}(-1)^{xy}|y\rangle,$$

where $x \in \{0, 1\}$, to find the resulting state. The action of the Walsh-Hadamard transformation on $|x\rangle = |x_{n-1} \dots x_1 x_0\rangle$ yields

$$\begin{split} W_n |x\rangle &= (U_H |x_{n-1}\rangle) (U_H |x_{n-2}\rangle) \dots (U_H |x_0\rangle) \\ &= \frac{1}{\sqrt{2^n}} \sum_{y_{n-1}, y_{n-2}, \dots, y_0 \in \{0, 1\}} (-1)^{x_{n-1}y_{n-1} + x_{n-2}y_{n-2} + \dots + x_0y_0} \\ &\times |y_{n-1}y_{n-2} \dots y_0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n - 1} (-1)^{x \cdot y} |y\rangle, \end{split}$$

here $x \cdot y = x_{n-1}y_{n-1} \oplus x_{n-2}y_{n-2} \oplus \dots \oplus x_0y_0.$

We then have

W

$$= \frac{1}{2^n} \left(\sum_{x,y=0}^{2^n - 1} (-1)^{f(x)} (-1)^{x \cdot y} |y\rangle \right) \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle).$$

Deutsch-Jozsa Algorithm

5. The first n qubits are measured. Suppose f(x) is constant. Then

$$\frac{1}{2^n}\sum_{x,y}(-1)^{x\cdot y}|y\rangle\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

up to an overall phase. Now let us consider the summation

$$\frac{1}{2^n} \sum_{x=0}^{2^n - 1} (-1)^{x \cdot y}$$

with a fixed $y \in S_n$. Clearly it vanishes since $x \cdot y$ is 0 for half of x and 1 for the other half of x unless y = 0. Therefore the summation yields δ_{y0} . Now the state reduces to

$$|0\rangle^{\otimes n} \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

and the measurement outcome of the first n qubits is always 00...0.

Suppose f(x) is balanced next. The probability amplitude of $|y = 0\rangle$ in $|\psi_3\rangle$ is proportional to

$$\sum_{x=0}^{2^{n}-1} (-1)^{f(x)} (-1)^{x \cdot 0} = \sum_{x=0}^{2^{n}-1} (-1)^{f(x)} = 0.$$

Therefore the probability of obtaining measurement outcome 00...0 for the first *n* qubits vanishes. In conclusion, the function *f* is constant if we obtain 00...0 upon the measurement of the first *n* qubits in the state $|\psi_3\rangle$, and it is balanced otherwise.

Example with 3 qubits.			
Take y = 110. Then			
$x \cdot y = x_2 \oplus x_1$			
x	$x_2 \oplus x_1$		
000	0		
001	0		
010	1		
011	1		
100	1		
101	1		
110	0		
111	0		

Bernstein-Vazirani Algorithm

The **Bernstein-Vazirani algorithm** is a special case of the Deutsch-Jozsa algorithm, in which f(x) is given by $f(x) = c \cdot x$, where $c = c_{n-1}c_{n-2} \dots c_0$ is an *n*-bit binary number [4]. Our aim is to find *c* with the smallest number of evaluations of *f*. If we apply the Deutsch-Jozsa algorithm with this *f*, we obtain

$$|\psi_{3}\rangle = \frac{1}{2^{n}} \left[\sum_{x,y=0}^{2^{n}-1} (-1)^{c \cdot x} (-1)^{x \cdot y} |y\rangle \right] \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle).$$

Let us fix y first. If we take y = c, we obtain

$$\sum_{x} (-1)^{c \cdot x} (-1)^{x \cdot c} = \sum_{x} (-1)^{2c \cdot x} = 2^{n}.$$

If $y \neq c$, on the other hand, there will be the same number of x such that $c \cdot x = 0$ and x such that $c \cdot x = 1$ in the summation over x and, as a result, the probability amplitude of $|y \neq c\rangle$ vanishes. By using these results, we end up with

$$|\psi_3\rangle = |c\rangle \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

We are able to tell what c is by measuring the first n qubits.

Exercise

EXERCISE 5.1 Let us take n = 2 for definiteness. Consider the following cases and find the final wave function $|\psi_3\rangle$ and evaluate the measurement outcomes and their probabilities for each case.

(1) $f(x) = 1 \ \forall x \in S_2.$

(2) f(00) = f(01) = 1, f(10) = f(11) = 0.

(3) f(00) = 0, f(01) = f(10) = f(11) = 1. (This function is neither constant nor balanced.)

EXERCISE 5.2 Consider the Bernstein-Vazirani algorithm with n = 3 and c = 101. Work out the quantum circuit depicted in Fig. 5.2 to show that the measurement outcome of the first three qubits is c = 101.

Suppose there is a stack of $N = 2^n$ files, randomly placed, that are numbered by $x \in S_n \equiv \{0, 1, \ldots, N-1\}$. Our task is to find an algorithm which picks out a particular file which satisfies a certain condition.

In mathematical language, this is expressed as follows. Let $f:S_n\to\{0,1\}$ be a function defined by

$$f(x) = \begin{cases} 1 & (x=z) \\ 0 & (x \neq z), \end{cases}$$

where z is the address of the file we are looking for. It is assumed that f(x) is *instantaneously* calculable, such that this process does not require any computational steps. A function of this sort is often called an oracle as noted in Chapter 5. Thus, the problem is to find z such that f(z) = 1, given a function $f: S_n \to \{0, 1\}$ which assumes the value 1 only at a single point.

Clearly we have to check one file after another in a classical algorithm, and it will take O(N) steps on average. It is shown below that it takes only $O(\sqrt{N})$ steps with Grover's algorithm. This is accomplished by *amplifying* the amplitude of the vector $|z\rangle$ while cancelling that of the vectors $|x\rangle$ ($x \neq z$).

We first needs to implement the function f(x) quantum mechanically. The **oracle** U_f is defined in the usual way

$$U_f|x,y\rangle = |x,y \oplus f(x)\rangle$$
 with $f(x) =$ either 0 or 1

In particular we have

$$U_f|x\rangle \frac{1}{\sqrt{2}}[|0\rangle - |1\rangle] = (-1)^{f(x)}|x\rangle \frac{1}{\sqrt{2}}[|0\rangle - |1\rangle]$$

Therefore, without loss of generality, we can neglect the last qubit and assume

$$U_f|x\rangle = (-1)^{f(x)}|x\rangle$$

on the computational basis. We see that if x is an unmarked item, the oracle does nothing to the state. It flips the phase for the marked item. It is easy to see that

$$U_f = I - 2|z\rangle\langle z|$$

Step 1: Create an initially **equal weighted superposition** of all states (this is done with N Hadamard gates):

Step 2: Apply the oracle U_f . Geometrically this corresponds to a reflection of the state $|z\rangle$ about $|s\rangle$. This transformation means that the amplitude in front of the $|z\rangle$ state becomes negative, which in turn means that the average amplitude has been lowered.

Step 3: Apply the gate

$$D = -I + 2|\varphi_0\rangle\langle\varphi_0|.$$

The action of the gate is the following

$$\begin{array}{c} \omega_x - \bar{\omega} \\ \omega_x - \bar{\omega} \\ \bar{\omega$$

$$\begin{split} |\varphi\rangle &= \sum_{x=0}^{N-1} \omega_x |x\rangle \ \to \ D|\varphi\rangle = \left[\frac{2}{N} \sum_{x,y=0}^{N-1} |x\rangle \langle y|\right] \sum_{z=0}^{N-1} \omega_z |z\rangle - \sum_{x=0}^{N-1} \omega_x |x\rangle \\ &= \frac{2}{N} \left[\sum_{x=0}^{N-1} |x\rangle\right] \left[\sum_{y=0}^{N-1} \omega_y\right] - \sum_{x=0}^{N-1} \omega_x |x\rangle = \sum_{x=0}^{N-1} (2\bar{\omega} - \omega_x) |x\rangle \end{split}$$

with
$$\bar{\omega} = \frac{1}{N} \sum_{x=0}^{N-1} \omega_x$$
 average

In our case we get

Since the average amplitude has been lowered by the first reflection, this transformation boosts the negative amplitude of $|z\rangle$ to roughly three times its original value, while it decreases the other amplitudes.

) Herns

Step 3: go to step 2 an repeat the application of U_f and D a sufficient number of times. Let us call $G_f = D U_f$.

PROPOSITION 7.2 Let us write

$$G_{f}^{k}|\varphi_{0}\rangle=a_{k}|z\rangle+b_{k}\sum_{x\neq z}|x\rangle$$

with the initial condition

$$a_0 = b_0 = \frac{1}{\sqrt{N}}.$$

Then the coefficients $\{a_k, b_k\}$ for $k \ge 1$ satisfy the recursion relations

$$a_k = \frac{N-2}{N}a_{k-1} + \frac{2(N-1)}{N}b_{k-1},$$
(7.18)

$$b_k = -\frac{2}{N}a_{k-1} + \frac{N-2}{N}b_{k-1} \tag{7.19}$$

for k = 1, 2, ...

Proof. It is easy to see the recursion relations are satified for
$$k = 1$$

Let $G_f^{k-1} |\varphi_0\rangle = a_{k-1} |z\rangle + b_{k-1} \sum_{x \neq z} |x\rangle$. Then
 $G_f^k |\varphi_0\rangle = G_f \left(a_{k-1} |z\rangle + b_{k-1} \sum_{x \neq z} |x\rangle \right)$
 $= (-I+2|\varphi_0\rangle\langle\varphi_0|) \left(-a_{k-1} |z\rangle + b_{k-1} \sum_{x \neq z} |x\rangle \right)$
 $= -b_{k-1} \sum_{x \neq z} |x\rangle + a_{k-1} |z\rangle + \frac{2}{\sqrt{N}} (N-1)b_{k-1} |\varphi_0\rangle - \frac{2a_{k-1}}{\sqrt{N}} |\varphi_0\rangle$
 $= -b_{k-1} \sum_{x \neq z} |x\rangle + a_{k-1} |z\rangle + \frac{2}{N} (N-1)b_{k-1} \sum_x |x\rangle - \frac{2a_{k-1}}{N} \sum_x |x\rangle$
 $= \left[\frac{N-2}{N} a_{k-1} + \frac{2(N-1)}{N} b_{k-1} \right] |z\rangle + \left[-\frac{2}{N} a_{k-1} + \frac{N-2}{N} b_{k-1} \right] \sum_{x \neq z} |x\rangle,$

and proposition is proved.

PROPOSITION 7.3 The solutions of the recursion relations in Proposition 7.2 are explicitly given by

$$a_k = \sin[(2k+1)\theta], \quad b_k = \frac{1}{\sqrt{N-1}}\cos[(2k+1)\theta],$$
 (7.20)

for k = 0, 1, 2, ..., where

$$\sin \theta = \sqrt{\frac{1}{N}}, \quad \cos \theta = \sqrt{1 - \frac{1}{N}}.$$
(7.21)

Proof. Let $c_k = \sqrt{N-1}b_k$. The recursion relations (7.18) and (7.19) are written in a matrix form,

$$\begin{pmatrix} a_k \\ c_k \end{pmatrix} = M \begin{pmatrix} a_{k-1} \\ c_{k-1} \end{pmatrix}, \ M = \begin{pmatrix} (N-2)/N & 2\sqrt{N-1}/N \\ -2\sqrt{N-1}/N & (N-2)/N \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}.$$

Note that M is a rotation matrix in \mathbb{R}^2 , and its kth power is another rotation matrix corresponding to a rotation angle $2k\theta$. Thus the above recursion relation is easily solved to yield

$$\begin{pmatrix} a_k \\ c_k \end{pmatrix} = M^k \begin{pmatrix} a_0 \\ c_0 \end{pmatrix} = \begin{pmatrix} \cos 2k\theta & \sin 2k\theta \\ -\sin 2k\theta & \cos 2k\theta \end{pmatrix} \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} = \begin{pmatrix} \sin[(2k+1)\theta] \\ \cos[(2k+1)\theta] \end{pmatrix}.$$

Replacing c_k by b_k proves the proposition.

.

We have proved that the application of $G_f \; k$ times on $|\varphi_0\rangle$ results in the state

$$G_f^{k}|\varphi_0\rangle = \sin[(2k+1)\theta]|z\rangle + \frac{1}{\sqrt{N-1}}\cos[(2k+1)\theta]\sum_{x\neq z}|x\rangle.$$
(7.22)

Measurement of the state $U_f^k |\varphi_0\rangle$ yields $|z\rangle$ with the probability $P_{\pm} = \sin^2[(2k \pm 1)\theta]$

$$P_{z,k} = \sin^2[(2k+1)\theta].$$
(7.23)

STEP 4 Our final task is to find the k that maximizes $P_{z,k}$. A rough estimate for the maximizing k is obtained by putting

$$(2k+1)\theta = \frac{\pi}{2} \to k = \frac{1}{2}\left(\frac{\pi}{2\theta} - 1\right).$$
 (7.24)

PROPOSITION 7.4 Let $N \gg 1$ and let

$$m = \left\lfloor \frac{\pi}{4\theta} \right\rfloor,\tag{7.25}$$

where $\lfloor x \rfloor$ stands for the floor of x. The file we are searching for will be obtained in $U_{f_{f}}^{m} |\varphi_{0}\rangle$ with the probability

 $m = O(\sqrt{N}).$

This is the number of times we repeat the algorithm, which grows with the square root of N

$$P_{z,m} \ge 1 - \frac{1}{N} \tag{7.26}$$

and

(7.27)

Proof. Equation (7.25) leads to the inequality $\pi/4\theta - 1 < m \le \pi/4\theta$. Let us define \tilde{m} by

$$(2\tilde{m}+1)\theta = \frac{\pi}{2} \to \tilde{m} = \frac{\pi}{4\theta} - \frac{1}{2}.$$

Observe that m and \tilde{m} satisfy

$$|m - \tilde{m}| \le \frac{1}{2},\tag{7.28}$$

from which it follows that

$$|(2m+1)\theta - (2\tilde{m}+1)\theta| = \left|(2m+1)\theta - \frac{\pi}{2}\right| \le \theta.$$
(7.29)

Considering that $\theta \sim 1/\sqrt{N}$ is a small number when $N \gg 1$ and $\sin x$ is monotonically increasing in the neighborhood of x = 0, we obtain

$$0 < \sin|(2m+1)\theta - \pi/2| < \sin\theta$$

 $\bullet = \cos[(2m+1)\theta]$

or

$$\cos^2[(2m+1)\theta] \le \sin^2\theta = \frac{1}{N}.$$
(7.30)

Thus it has been shown that

$$P_{m,z} = \sin^2[(2m+1)\theta] = 1 - \cos^2[(2m+1)\theta] \ge 1 - \frac{1}{N}.$$
 (7.31)

It also follows from $\theta > \sin \theta = 1/\sqrt{N}$ that

$$m = \left\lfloor \frac{\pi}{4\theta} \right\rfloor \le \frac{\pi}{4\theta} \le \frac{\pi}{4}\sqrt{N}.$$
(7.32)

It is important to note that this quantum algorithm takes only $O(\sqrt{N})$ steps and this is much faster than the classical counterpart which requires O(N) steps.

We now show how to implement the gates

Selective Phase Rotation Transform

DEFINITION 6.2 (Selective Phase Rotation Transform) Let us define a kernel

$$K_n(x,y) = e^{i\theta_x} \delta_{xy}, \quad \forall x, y \in S_n,$$
(6.43)

Selective phase rotation is then defined by the following unitary operator

$$U|x\rangle = \sum_{y=0}^{N-1} K(y,x)|y\rangle.$$

The matrix representations for K_1 and K_2 are

$$K_1 = \begin{pmatrix} e^{i\theta_0} & 0\\ 0 & e^{i\theta_1} \end{pmatrix}, \quad K_2 = \begin{pmatrix} e^{i\theta_0} & 0 & 0 & 0\\ 0 & e^{i\theta_1} & 0 & 0\\ 0 & 0 & e^{i\theta_2} & 0\\ 0 & 0 & 0 & e^{i\theta_3} \end{pmatrix}.$$

Selective Phase Rotation Transform

The implementation of K_n is achieved with the universal set of gates as follows. Take n = 2, for example. The kernel K_2 has been given above. This is decomposed as a product of two two-level unitary matrices as

$$K_2 = A_0 A_1, (6.45)$$

where

$$A_{0} = \begin{pmatrix} e^{i\theta_{0}} & 0 & 0 & 0\\ 0 & e^{i\theta_{1}} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, A_{1} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & e^{i\theta_{2}} & 0\\ 0 & 0 & 0 & e^{i\theta_{3}} \end{pmatrix}.$$
 (6.46)

Note that

$$A_{0} = |0\rangle\langle 0| \otimes U_{0} + |1\rangle\langle 1| \otimes I, \quad U_{0} = \begin{pmatrix} e^{i\theta_{0}} & 0\\ 0 & e^{i\theta_{1}} \end{pmatrix},$$
$$A_{1} = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes U_{1}, \quad U_{1} = \begin{pmatrix} e^{i\theta_{2}} & 0\\ 0 & e^{i\theta_{3}} \end{pmatrix}.$$

Thus A_1 is realized as an ordinary controlled- U_1 gate while the control bit is negated in A_0 . Then what we have to do for A_0 is to negate the control bit first and then to apply ordinary controlled- U_0 gate and finally to negate the control bit back to its input state. In summary, A_0 is implemented as in

Fig. 6.5. In fact, it can be readily verified that the gate in Fig. 6.5 is written as

$$\begin{aligned} (X \otimes I)(|0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes U_0)(X \otimes I) \\ &= X|0\rangle\langle 0|X \otimes I + X|1\rangle\langle 1|X \otimes U_0 = |1\rangle\langle 1| \otimes I + |0\rangle\langle 0| \otimes U_0 = A_0. \end{aligned}$$

Thus these gates are implemented with the set of universal gates. In fact, the order of A_i does not matter since $[A_0, A_1] = 0$.

Back on Grover's search algorithm

We need to prove that the D gate used to perform the quantum search can be implemented efficiently. We now show that

$$D = W_n R_0 W_n, (7.6)$$

where W_n is the Walsh-Hadamard transform,

$$W_n(x,y) = \frac{1}{\sqrt{N}} (-1)^{x \cdot y}, \quad (x,y \in S_n)$$
 (7.7)

and R_0 is the selective phase rotation transform defined by

$$R_0(x,y) = e^{i\pi(1-\delta_{x0})}\delta_{xy} = (-1)^{1-\delta_{x0}}\delta_{xy}.$$
(7.8)

Proof

$$\langle x|D|y\rangle = \langle x|\left[-I+2|\varphi_o\rangle\langle\varphi_0|\right]|y\rangle = -\delta_{xy} + \frac{2}{N} \qquad \qquad |\varphi_0\rangle = \frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}|x\rangle$$

$$\langle x|W_n R_0 W_n|y\rangle = \sum_{u,v} \langle x|W_n|u\rangle \langle u|R_0|v\rangle \langle v|W_n|y\rangle = \frac{1}{N} \sum_{u,v} (-1)^{x \cdot u} (-1)^{1-\delta_{u0}} \delta_{uv} (-1)^{v \cdot y}.$$

$$= \frac{1}{N} \sum_{u} (-1)^{x \cdot u} (-1)^{y \cdot u} (-1)^{1-\delta_{u0}}$$

$$= \frac{1}{N} \left[1 - \sum_{u \neq 0} (-1)^{x \cdot u} (-1)^{y \cdot u} \right] = A$$

x = y:
$$A = \frac{1}{N} \left[1 - \sum_{u \neq 0} \right] = \frac{1}{N} \left[1 - (N-1) \right] = -1 + \frac{2}{N}$$

 $x \neq y$. As discussed in relation to the Deutsch-Jozsa algorithm

$$\sum_{u=0}^{N-1} (-1)^{x \cdot u} = 0 \rightarrow \sum_{u \neq 0}^{N-1} (-1)^{x \cdot u} = -1$$

Therefore: $A = \frac{1}{N} [1 - (-1)] = \frac{2}{N}$

Back on Grover's search algorithm

Therefore the D gate can be implemented efficiently. The overall circuit is

We are not interested on how to implement the oracle U_f since this is supposed to be given

Optimality of Grover's algorithm. We have shown that a quantum computer can search N items, consulting the search oracle only O(VN) times. One can prove that no quantum algorithm can perform this task using fewer than

 $O({\sf VN})$ accesses to the search oracle, and thus the algorithm we have demonstrated is optimal.

For a proof, see e.g. Nielsen – Chuang p. 269.