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Algorithms with oracle

All values of the function computed at once. Very easy!!
But… measurements will make the wave function collapse giving 
only one output. No advantage.

Suppose we are supplied with a quantum oracle – a black box whose 
internal workings are not important at this stage – with the ability to 
recognize solutions to a given problem by computing a suitable function f. 
More precisely, the oracle is a unitary operator, Uf, defined by its action on 
the computational basis: 
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Simple Quantum Algorithms

Before we start presenting “useful” but rather complicated quantum algo-
rithms, we introduce a few simple quantum algorithms which will be of help
for readers to understand how quantum algorithms are different from and
superior to classical algorithms. We follow closely Meglicki [1].

5.1 Deutsch Algorithm

The Deutsch algorithm is one of the first quantum algorithms which showed
quantum algorithms may be more efficient than their classical counterparts.
In spite of its simplicty, full use of the superposition principle has been made
here.

Let f : {0, 1}→ {0, 1} be a binary function. Note that there are only four
possible f , namely

f1 : 0 "→ 0, 1 "→ 0, f2 : 0 "→ 1, 1 "→ 1,

f3 : 0 "→ 0, 1 "→ 1, f4 : 0 "→ 1, 1 "→ 0.

The first two cases, f1 and f2, are called constant, while the rest, f3 and f4,
are balanced. If we only have classical resources, we need to evaluate f twice
to tell if f is constant or balanced. There is a quantum algorithm, however,
with which it is possible to tell if f is constant or balanced with a single
evaluation of f , as was shown by Deutsch [2].

Let |0〉 and |1〉 correspond to classical bits 0 and 1, respectively, and consider
the state |ψ0〉 = 1

2 (|00〉− |01〉+ |10〉− |11〉). We apply f on this state in terms
of the unitary operator Uf : |x, y〉 "→ |x, y ⊕ f(x)〉, where ⊕ is an addition
mod 2. To be explicit, we obtain

|ψ1〉 = Uf |ψ0〉

=
1
2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(1)〉 − |1, 1⊕ f(1)〉)

=
1
2
(|0, f(0)〉 − |0,¬f(0)〉+ |1, f(1)〉 − |1,¬f(1)〉),

where ¬ stands for negation. Therefore this operation is nothing but the
CNOT gate with the control bit f(x); the target bit y is flipped if and only if
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where ⊕ is addition mod 2.

Suppose Uf acts on the input which is a superposition of many states. 
Since Uf is a linear operator, it acts simultaneously on all the vectors that 
constitute the superposition. Thus the output is also a superposition 
of all the results 
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4.7 Quantum Parallelism and Entanglement

Given an input x, a typical quantum computer computes f(x) in such a way
as

Uf : |x〉|0〉 "→ |x〉|f(x)〉, (4.61)

where Uf is a unitary matrix that implements the function f .
Suppose Uf acts on the input which is a superposition of many states. Since

Uf is a linear operator, it acts simultaneously on all the vectors that constitute
the superposition. Thus the output is also a superposition of all the results;

Uf :
∑

x

|x〉|0〉 "→
∑

x

|x〉|f(x)〉. (4.62)

Namely, when the input is a superposition of n states, Uf computes n values
f(xk) (1 ≤ k ≤ n) simultaneously. This feature, called the quantum paral-
lelism, gives a quantum computer an enormous power. A quantum computer
is advantageous compared to a classical counterpart in that it makes use of
this quantum parallelism and also entanglement.

A unitary transformation acts on a superposition of all possible states in
most quantum algorithms. This superposition is prepared by the action
of the Walsh-Hadamard transformation on an n-qubit register in the state
|00 . . . 0〉 = |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉 resulting in

1√
2n

(|00 . . . 0〉+ |00 . . .1〉+ . . . |11 . . . 1〉) =
1√
2n

2n−1∑

x=0

|x〉. (4.63)

This state is a superposition of vectors encoding all the integers between 0
and 2n − 1. Then the linearity of Uf leads to

Uf

(
1√
2n

2n−1∑

x=0

|x〉|0〉
)

=
1√
2n

2n−1∑

x=0

Uf |x〉|0〉 =
1√
2n

2n−1∑

x=0

|x〉|f(x)〉. (4.64)

Note that the superposition is made of 2n = en ln 2 states, which makes quan-
tum computation exponentially faster than the classical counterpart in a cer-
tain kind of computation.

What about the limitation of a quantum computer? Let us consider the
CCNOT gate, for example. This gate flips the third qubit if and only if the
first and the second qubits are both in the state |1〉, while it leaves the third
qubit unchanged otherwise. Let us fix the third input qubit to |0〉. It was
shown in §4.3.3 that the third output is |x∧ y〉, where |x〉 and |y〉 are the first
and the second input qubit states, respectively. Suppose the input state is a
superposition of all possible states while the third qubit is fixed to |0〉. This

The goal of a quantum algorithm is to operate in such a way that the 
particular outcome we want to observe has a larger probability to be 
measured than the other outcomes.



Deutsch Algorithm
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First we need to turn the classical function f(x) into a quantum one. 
To this purpose we define the quantum oracle
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The algorithm is structured as follows.

1. Start with the state         .

2. Apply an Hadamard on both qubits:

3. Apply the operator Uf implementing the function 
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Quantum parallelism: all values computed at once
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4. Apply an Hadamard to the first qubit

100 QUANTUM COMPUTING

f(x) = 1 and left unchanged otherwise. Subsequently we apply a Hadamard
gate on the first qubit to obtain

|ψ2〉 = (UH ⊗ I)|ψ1〉

=
1

2
√

2
[(|0〉+ |1〉)(|f(0)〉 − |¬f(0)〉) + (|0〉 − |1〉)(|f(1)〉 − |¬f(1)〉)] .

The wave function reduces to

|ψ2〉 =
1√
2
|0〉(|f(0)〉 − |¬f(0)〉) (5.1)

in case f is constant, for which |f(0)〉 = |f(1)〉, and

|ψ2〉 =
1√
2
|1〉(|f(0)〉 − |¬f(0)〉) (5.2)

if f is balanced, for which |¬f(0)〉 = |f(1)〉. Therefore the measurement of
the first qubit tells us whether f is constant or balanced.

Let us consider a quantum circuit which implements the Deutsch algorithm.
We first apply Walsh-Hadamard transformation W2 = UH ⊗ UH on |01〉 to
obtain |ψ0〉. We need to introduce a conditional gate Uf , i.e., the controlled-
NOT gate with the control bit f(x), whose action is Uf : |x, y〉 → |x, y⊕f(x)〉.
Then a Hadamard gate is applied on the first qubit before it is measured.
Figure 5.1 depicts this implementation.

FIGURE 5.1
Implementation of the Deutsch algorithm.

In the quauntum circuit, we assume the gate Uf is a black box for which
we do not ask the explicit implementation. We might think it is a kind of
subroutine. Such a black box is often called an oracle. The gate Uf is called
the Deutsch oracle. Its implementation is given only after f is specified.

Then what is the merit of the Deutsch algorithm? Suppose your friend
gives you a unitary matrix Uf and asks you to tell if f is constant or balanced.
Instead of applying |0〉 and |1〉 separately, you may construct the circuit in
Fig. 5.1 with the given matrix Uf and apply the circuit on the input state
|01〉. Then you can tell your friend whether f is constant or balanced with a
single use of Uf .
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If the function is constant, the two blue terms 
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Therefore the measurement of the first qubit tells us whether f is 
constant or balanced. 

5. Measure the first qubit to determine f. The full algorithm is:

|1〉

|0〉 H

H
𝑈!

H 4. Measurement

2. Calculate the function 
on both input values 
simultaneously

3. Interfere the result

1. Create the superposition 
of all states
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5.2 Deutsch-Jozsa Algorithm and Bernstein-Vazirani
Algorithm

The Deutsch algorithm introduced in the previous section may be generalized
to the Deutsch-Jozsa algorithm [3].

Let us first define the Deutsch-Jozsa problem. Suppose there is a binary
function

f : Sn ≡ {0, 1, . . . , 2n − 1}→ {0, 1}. (5.3)

We require that f be either constant or balanced as before. When f is constant,
it takes a constant value 0 or 1 irrespetive of the input value x. When it is
balanaced the value f(x) for the half of x ∈ Sn is 0, while it is 1 for the rest of
x. In other words, |f−1(0)| = |f−1(1)| = 2n−1, where |A| denotes the number
of elements in a set A, known as the cardinality of A. Although there are
functions which are neither constant nor balanced, we will not consider such
cases here. Our task is to find an algorithm which tells if f is constant or
balanced with the least possible number of evaluations of f .

It is clear that we need at least 2n−1 + 1 steps, in the worst case with
classical manipulations, to make sure if f(x) is constant or balanced with
100% confidence. It will be shown below that the number of steps reduces to
a single step if we are allowed to use a quantum algorithm.

The algorithm is divided into the following steps:

1. Prepare an (n + 1)-qubit register in the state |ψ0〉 = |0〉⊗n ⊗ |1〉. First
n qubits work as input qubits, while the (n + 1)st qubit serves as a
“scratch pad.” Such qubits, which are neither input qubits nor output
qubits, but work as a scratch pad to store temporary information are
called ancillas or ancillary qubits.

2. Apply the Walsh-Hadamard transforamtion to the register. Then we
have the state

|ψ1〉 = U⊗n+1
H |ψ0〉 =

1√
2n

(|0〉+ |1〉)⊗n ⊗ 1√
2
(|0〉 − |1〉)

=
1√
2n

2n−1∑

x=0

|x〉 ⊗ 1√
2
(|0〉 − |1〉). (5.4)

3. Apply the f(x)-controlled-NOT gate on the register, which flips the
(n + 1)st qubit if and only if f(x) = 1 for the input x. Therefore
we need a Uf gate which evaluates f(x) and acts on the register as
Uf |x〉|c〉 = |x〉|c⊕ f(x)〉, where |c〉 is the one-qubit state of the (n+1)st
qubit. Observe that |c〉 is flipped if and only if f(x) = 1 and left
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x. In other words, |f−1(0)| = |f−1(1)| = 2n−1, where |A| denotes the number
of elements in a set A, known as the cardinality of A. Although there are
functions which are neither constant nor balanced, we will not consider such
cases here. Our task is to find an algorithm which tells if f is constant or
balanced with the least possible number of evaluations of f .

It is clear that we need at least 2n−1 + 1 steps, in the worst case with
classical manipulations, to make sure if f(x) is constant or balanced with
100% confidence. It will be shown below that the number of steps reduces to
a single step if we are allowed to use a quantum algorithm.

The algorithm is divided into the following steps:

1. Prepare an (n + 1)-qubit register in the state |ψ0〉 = |0〉⊗n ⊗ |1〉. First
n qubits work as input qubits, while the (n + 1)st qubit serves as a
“scratch pad.” Such qubits, which are neither input qubits nor output
qubits, but work as a scratch pad to store temporary information are
called ancillas or ancillary qubits.

2. Apply the Walsh-Hadamard transforamtion to the register. Then we
have the state

|ψ1〉 = U⊗n+1
H |ψ0〉 =

1√
2n

(|0〉+ |1〉)⊗n ⊗ 1√
2
(|0〉 − |1〉)

=
1√
2n

2n−1∑

x=0

|x〉 ⊗ 1√
2
(|0〉 − |1〉). (5.4)

3. Apply the f(x)-controlled-NOT gate on the register, which flips the
(n + 1)st qubit if and only if f(x) = 1 for the input x. Therefore
we need a Uf gate which evaluates f(x) and acts on the register as
Uf |x〉|c〉 = |x〉|c⊕ f(x)〉, where |c〉 is the one-qubit state of the (n+1)st
qubit. Observe that |c〉 is flipped if and only if f(x) = 1 and left
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unchanged otherwise. We then obtain a state

|ψ2〉 = Uf |ψ1〉

=
1√
2n

2n−1∑

x=0

|x〉 1√
2
(|f(x)〉 − |¬f(x)〉)

=
1√
2n

∑

x

(−1)f(x)|x〉 1√
2
(|0〉 − |1〉). (5.5)

Although the gate Uf is applied once for all, it is applied to all the
n-qubit states |x〉 simultaneously.

4. The Walsh-Hadamard transformation (4.11) is applied on the first n
qubits next. We obtain

|ψ3〉 = (Wn ⊗ I)|ψ2〉 =
1√
2n

2n−1∑

x=0

(−1)f(x)U⊗n
H |x〉 1√

2
(|0〉 − |1〉). (5.6)

It is instructive to write the action of the one-qubit Hadamard gate in
the following form,

UH|x〉 =
1√
2
(|0〉+ (−1)x|1〉) =

1√
2

∑

y∈{0,1}

(−1)xy|y〉,

where x ∈ {0, 1}, to find the resulting state. The action of the Walsh-
Hadamard transformation on |x〉 = |xn−1 . . . x1x0〉 yields

Wn|x〉 = (UH|xn−1〉)(UH|xn−2〉) . . . (UH|x0〉)

=
1√
2n

∑

yn−1,yn−2,...,y0∈{0,1}

(−1)xn−1yn−1+xn−2yn−2+...+x0y0

×|yn−1yn−2 . . . y0〉

=
1√
2n

2n−1∑

y=0

(−1)x·y|y〉, (5.7)

where x ·y = xn−1yn−1⊕xn−2yn−2⊕ . . .⊕x0y0. Substituting this result
into Eq. (5.6), we obtain

|ψ3〉 =
1
2n

(
2n−1∑

x,y=0

(−1)f(x)(−1)x·y|y〉
)

1√
2
(|0〉 − |1〉). (5.8)

5. The first n qubits are measured. Suppose f(x) is constant. Then |ψ3〉
is put in the form

|ψ3〉 =
1
2n

∑

x,y

(−1)x·y|y〉 1√
2
(|0〉 − |1〉)

5

Simple Quantum Algorithms

Before we start presenting “useful” but rather complicated quantum algo-
rithms, we introduce a few simple quantum algorithms which will be of help
for readers to understand how quantum algorithms are different from and
superior to classical algorithms. We follow closely Meglicki [1].

5.1 Deutsch Algorithm

The Deutsch algorithm is one of the first quantum algorithms which showed
quantum algorithms may be more efficient than their classical counterparts.
In spite of its simplicty, full use of the superposition principle has been made
here.

Let f : {0, 1}→ {0, 1} be a binary function. Note that there are only four
possible f , namely

f1 : 0 "→ 0, 1 "→ 0, f2 : 0 "→ 1, 1 "→ 1,

f3 : 0 "→ 0, 1 "→ 1, f4 : 0 "→ 1, 1 "→ 0.

The first two cases, f1 and f2, are called constant, while the rest, f3 and f4,
are balanced. If we only have classical resources, we need to evaluate f twice
to tell if f is constant or balanced. There is a quantum algorithm, however,
with which it is possible to tell if f is constant or balanced with a single
evaluation of f , as was shown by Deutsch [2].

Let |0〉 and |1〉 correspond to classical bits 0 and 1, respectively, and consider
the state |ψ0〉 = 1

2 (|00〉− |01〉+ |10〉− |11〉). We apply f on this state in terms
of the unitary operator Uf : |x, y〉 "→ |x, y ⊕ f(x)〉, where ⊕ is an addition
mod 2. To be explicit, we obtain

|ψ1〉 = Uf |ψ0〉

=
1
2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(1)〉 − |1, 1⊕ f(1)〉)

=
1
2
(|0, f(0)〉 − |0,¬f(0)〉+ |1, f(1)〉 − |1,¬f(1)〉),

where ¬ stands for negation. Therefore this operation is nothing but the
CNOT gate with the control bit f(x); the target bit y is flipped if and only if

99

The oracle for the Deutsch-Jozsa algorithm is always the same



Deutsch-Jozsa Algorithm

102 QUANTUM COMPUTING
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On the Hadamard gate
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We then have
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up to an overall phase. Now let us consider the summation

1
2n

2n−1∑

x=0

(−1)x·y

with a fixed y ∈ Sn. Clearly it vanishes since x · y is 0 for half of x and
1 for the other half of x unless y = 0. Therefore the summation yields
δy0. Now the state reduces to

|ψ3〉 = |0〉⊗n 1√
2
(|0〉 − |1〉),

and the measurement outcome of the first n qubits is always 00 . . .0.
Suppose f(x) is balanced next. The probability amplitude of |y = 0〉 in
|ψ3〉 is proportional to

2n−1∑

x=0

(−1)f(x)(−1)x·0 =
2n−1∑

x=0

(−1)f(x) = 0.

Therefore the probability of obtaining measurement outcome 00 . . .0 for
the first n qubits vanishes. In conclusion, the function f is constant if
we obtain 00 . . .0 upon the meaurement of the first n qubits in the state
|ψ3〉, and it is balanced otherwise.

EXERCISE 5.1 Let us take n = 2 for definiteness. Consider the following
cases and find the final wave function |ψ3〉 and evaluate the measurement
outcomes and their probabilities for each case.
(1) f(x) = 1 ∀x ∈ S2.
(2) f(00) = f(01) = 1, f(10) = f(11) = 0.
(3) f(00) = 0, f(01) = f(10) = f(11) = 1. (This function is neither constant
nor balanced.)

The above exercise shows that the measurement gives |00〉 with probability
1 if f is constant and with probability 0 if balanced. If f is neither constant
nor balanced |ψ3〉 is a superposition of several states including |00〉, which is
attributed to “incomplete” interference.

A quantum circuit which implements the Deutsch-Jozsa algorithm is given
in Fig. 5.2. The gate Uf is called the Deutsch-Jozsa oracle.

The Bernstein-Vazirani algorithm is a special case of the Deutsch-Jozsa
algorithm, in which f(x) is given by f(x) = c · x, where c = cn−1cn−2 . . . c0

is an n-bit binary number [4]. Our aim is to find c with the smallest number
of evaluations of f . If we apply the Deutsch-Jozsa algorithm with this f , we
obtain

|ψ3〉 =
1
2n

[
2n−1∑

x,y=0

(−1)c·x(−1)x·y|y〉
]

1√
2
(|0〉 − |1〉).

Example with 3 qubits.

Take y = 110. Then
x·y = x2⊕x1

x x2⊕x1
000 0

001 0

010 1

011 1

100 1

101 1

110 0

111 0
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up to an overall phase. Now let us consider the summation
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FIGURE 5.2
Quantum circuit implementing the Deutsch-Jozsa algorithm. The gate Uf is
the Deutsch-Jozsa oracle.

Let us fix y first. If we take y = c, we obtain

∑

x

(−1)c·x(−1)x·c =
∑

x

(−1)2c·x = 2n.

If y "= c, on the other hand, there will be the same number of x such that
c · x = 0 and x such that c · x = 1 in the summation over x and, as a result,
the probability amplitude of |y "= c〉 vanishes. By using these results, we end
up with

|ψ3〉 = |c〉 1√
2
(|0〉 − |1〉). (5.9)

We are able to tell what c is by measuring the first n qubits. Note that this
is done by a single application of the circuit in Fig. 5.2.

EXERCISE 5.2 Consider the Bernstein-Vazirani algorithm with n = 3 and
c = 101. Work out the quantum circuit depicted in Fig. 5.2 to show that the
measurement outcome of the first three qubits is c = 101.
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Grover’s Search Algorithm

Suppose there is a stack of N unstructured files and we want to find a par-
ticular file (or files) out of the N files. To find someone’s phone number in a
telephone directory is an easy structured datebase search problem, while to
find a person’s name who has a particular phone number is a more difficult
unstructured database seach problem, with which we are concerned in this
chapter. It is required to take O(N) steps on average if a classical algorithm
is employed. If we check the files one by one, we will hit the right file with
probability 1/2 after N/2 files are examined. It turns out that this takes only
O(
√

N) steps with a quantum algorithm, first discovered by Grover [1, 2, 3].
Our presentation in this chapter closely follows [4] and [5].

7.1 Searching for a Single File

Suppose there is a stack of N = 2n files, randomly placed, that are numbered
by x ∈ Sn ≡ {0, 1, . . . , N − 1}. Our task is to find an algorithm which picks
out a particular file which satisfies a certain condition.

In mathematical language, this is expressed as follows. Let f : Sn → {0, 1}
be a function defined by

f(x) =
{

1 (x = z)
0 (x &= z), (7.1)

where z is the address of the file we are looking for. It is assumed that
f(x) is instantaneously calculable, such that this process does not require any
computational steps. A function of this sort is often called an oracle as noted
in Chapter 5. Thus, the problem is to find z such that f(z) = 1, given a
function f : Sn → {0, 1} which assumes the value 1 only at a single point.

Clearly we have to check one file after another in a classical algorithm,
and it will take O(N) steps on average. It is shown below that it takes only
O(
√

N) steps with Grover’s algorithm. This is accomplished by amplifying
the amplitude of the vector |z〉 while cancelling that of the vectors |x〉 (x &= z).

We describe the algorithm in several steps.

STEP 1 (Selective phase rotation transform; see §6.6.)
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We first needs to implement the function f(x) quantum mechanically. The 
oracle Uf is defined in the usual way

Uf |x, yi = |x, y � f(x)i with f(x) = either 0 or 1

<latexit sha1_base64="lkAmFW/UGDn3944iJiKcGSoyBps="></latexit>

In particular we have

Uf |xi
1p
2
[|0i � |1i] = (�1)f(x)|xi 1p

2
[|0i � |1i]

<latexit sha1_base64="rtD+6FrGRCs08vOphE+O5tsfi9U="></latexit>
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Therefore, without loss of generality, we can neglect the last qubit and 
assume

Uf |xi = (�1)f(x)|xi

<latexit sha1_base64="iybepAqcvuBunJpUQEbE5W7XoH0=">AAACGXicbVDLSgNBEJyN7/iKevQyGIR4MOyKoB4E0YtHBfOAJIbeSScOzs4uM72irPkCP8Gv8Konb+LVkwf/xd0YUKN1Kqq66a7yIyUtue67kxsbn5icmp7Jz87NLywWlparNoyNwIoIVWjqPlhUUmOFJCmsRwYh8BXW/MujzK9dobEy1Gd0E2ErgJ6WXSmAUqldWK+0u/z2umlA9xTyfV7a9DbOk27peqP/LbcLRbfsDsD/Em9IimyIk3bho9kJRRygJqHA2obnRtRKwJAUCvv5ZmwxAnEJPWykVEOAtpUM4vT5emyBQh6h4VLxgYg/NxIIrL0J/HQyALqwo14m/uc1YuruthKpo5hQi+wQyTRddsgKI9OekHekQSLIPkcuNRdggAiN5CBEKsZpcfm0D280/V9S3Sp72+W90+3iweGwmWm2ytZYiXlshx2wY3bCKkywO/bAHtmTc+88Oy/O69dozhnurLBfcN4+AQyOn0s=</latexit>

Uf = I � 2|zihz|

<latexit sha1_base64="AAwp35eBI/Ymmu36bBucO0sdIUE=">AAACEnicbVC7SgNBFJ31GeNr1VKQwSDYGHaDoBaCaKNdBBMDSQh3x5s4ZHZ2mbkrmMTOT/ArbLWyE1t/wMJ/cTemUONp5nDOvdw5J4iVtOR5H87E5NT0zGxuLj+/sLi07K6sVm2UGIEVEanI1AKwqKTGCklSWIsNQhgovAy6J5l/eYPGykhf0G2MzRA6WralAEqllrtRabX5IT/jO7w06DUM6I7Chho+vDdouQWv6A3Bx4k/IgU2QrnlfjauIpGEqEkosLbuezE1+2BICoV3+UZiMQbRhQ7WU6ohRNvsD3Pc8a3EAkU8RsOl4kMRf270IbT2NgzSyRDo2v71MvE/r55Qe7/ZlzpOCLXIDpFM82WHrDAyLQj5lTRIBNnPkUvNBRggQiM5CJGKSdpYPu3D/5t+nFRLRX+3eHC+Wzg6HjWTY+tsk20zn+2xI3bKyqzCBLtnj+yJPTsPzovz6rx9j044o5019gvO+xfiG5yX</latexit>

on the computational basis. We see that if 𝑥 is an unmarked item, the 
oracle does nothing to the state. It flips the phase for the marked item. It 
is easy to see that 

Step 1: Create an initially equal weighted superposition of all states (this 
is done with N Hadamard gates):
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Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

126 QUANTUM COMPUTING

Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

126 QUANTUM COMPUTING

Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

|si

<latexit sha1_base64="TzlYZT+jeC85HY/99u60LFJ1kLI=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGRO2INpaYyEcEQuaWATfs7V1250wI4q+w1crO2PpfLPwv3p0UCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl6jfv0VgZ6hsaR9gNYKjlQAqgRLp9sB0Deqiw0CuW3LKbgS8Sb0ZKbIZar/jV6YciDlCTUGBt23Mj6k7AkBQKp4VObDECMYIhthOqIUDbnWSJp/wotkAhj9BwqXgm4u+NCQTWjgM/mQyA7uy8l4r/ee2YBmfdidRRTKhFeoikwuyQFUYmVSDvS4NEkCZHLjUXYIAIjeQgRCLGSTdpH97894ukcVL2KuXz60qpejFrJs8O2CE7Zh47ZVV2xWqszgTT7Ik9sxfn0Xl13pz3n9GcM9vZZ3/gfHwDHb6VPQ==</latexit>

Step 2: Apply the oracle Uf . Geometrically this corresponds to a 
reflection of the state |z⟩ about |𝑠⟩. This transformation means that the 
amplitude in front of the |z⟩ state becomes negative, which in turn means 
that the average amplitude has been lowered.
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where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

|'1i = Uf |'0i
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Grover’s search algorithm

Step 3: Apply the gate

The action of the gate is the following

126 QUANTUM COMPUTING

Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)
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around the 
average

In our case we get

126 QUANTUM COMPUTING

Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)
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126 QUANTUM COMPUTING

Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

|'2i = DUf |'0i

<latexit sha1_base64="BlaihvOdD6VQpA6Fz6jfUuaS1FE=">AAACH3icbVDLSgNBEJz1GeMr6tHLYBAEIexKQD0Ioh48RjAaSMLSO3bi4OzsMtMbkJiP8BP8Cq968iZec/Bf3I2LaGKdiqpuuquCWElLrjt0pqZnZufmCwvFxaXlldXS2vqVjRIjsC4iFZlGABaV1FgnSQobsUEIA4XXwd1p5l/30FgZ6Uu6j7EdQlfLjhRAqeSXdh9aPTDxrfT3WgZ0VyE/4me87nf4j+Pmjl8quxV3BD5JvJyUWY6aX/ps3UQiCVGTUGBt03NjavfBkBQKB8VWYjEGcQddbKZUQ4i23R+FGvDtxAJFPEbDpeIjEX9v9CG09j4M0skQ6NaOe5n4n9dMqHPQ7ksdJ4RaZIdIprGzQ1YYmbaF/EYaJILsc+RScwEGiNBIDkKkYpLWV0z78MbTT5KrvYpXrRxeVMvHJ3kzBbbJttgO89g+O2bnrMbqTLBH9sxe2Kvz5Lw5787H9+iUk+9ssD9whl8V0aKT</latexit>

|'1i = Uf |'0i

<latexit sha1_base64="nhTnmpwB0Uuat4tYb8odF4HsDgg=">AAACHXicbVBNS8NAEN34bf2KevSyWAS9lEQK6kEoevGoYFuhLWGyndbFzSbsTgSp/Q3+BH+FVz15E6/iwf9iUoNo9Z0e780w816YKGnJ896dicmp6ZnZufnSwuLS8oq7utawcWoE1kWsYnMRgkUlNdZJksKLxCBEocJmeHWc+81rNFbG+pxuEuxE0NeyJwVQJgXuzm37GkxyKQO/bUD3FfJDXg96/Fv3Cj1wy17FG4H/JX5ByqzAaeB+tLuxSCPUJBRY2/K9hDoDMCSFwmGpnVpMQFxBH1sZ1RCh7QxGkYZ8K7VAMU/QcKn4SMSfGwOIrL2JwmwyArq0414u/ue1UurtdwZSJymhFvkhklno/JAVRmZdIe9Kg0SQf45cai7AABEayUGITEyz8kpZH/54+r+ksVvxq5WDs2q5dlQ0M8c22CbbZj7bYzV2wk5ZnQl2xx7YI3ty7p1n58V5/RqdcIqddfYLztsnFniiGg==</latexit>

Since the average 
amplitude has been 
lowered by the first 
reflection, this 
transformation boosts 
the negative amplitude 
of |z⟩ to roughly three 
times its original value, 
while it decreases the 
other amplitudes.



Grover’s search algorithm

Step 3: go to step 2 an repeat the application of Uf and D a sufficient 
number of times. Let us call Gf = D Uf . 
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where
∑N−1

x=0 |wx|2 = 1 and

w̄ =
1
N




N−1∑

x=0,x "=z

wx − wz



 (7.16)

is the average value of the coefficients of the state Rf |ϕ〉.
This result shows that the amplitude of |z〉 has increased upon the operation

of Uf while that of |x〉 (x #= z) has decreased, assuming that all the weights
wx are positive. Thus repeated applications of Uf increase the amplitude of
|z〉 so that this particular state is observed with probability close to 1 when
the system is measured. Let us find the state obtained after Uf is applied k
times on the initial state |ϕ0〉.

PROPOSITION 7.2 Let us write

Uk
f |ϕ0〉 = ak|z〉+ bk

∑

x "=z

|x〉 (7.17)

with the initial condition
a0 = b0 =

1√
N

.

Then the coefficients {ak, bk} for k ≥ 1 satisfy the recursion relations
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N
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2(N − 1)
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bk−1, (7.18)

bk = − 2
N
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N
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for k = 1, 2, . . ..

Proof. It is easy to see the recursion relations are satified for k = 1 by making
use of Eqs. (7.15) and (7.16). Let Uk−1
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is the average value of the coefficients of the state Rf |ϕ〉.
This result shows that the amplitude of |z〉 has increased upon the operation

of Uf while that of |x〉 (x #= z) has decreased, assuming that all the weights
wx are positive. Thus repeated applications of Uf increase the amplitude of
|z〉 so that this particular state is observed with probability close to 1 when
the system is measured. Let us find the state obtained after Uf is applied k
times on the initial state |ϕ0〉.

PROPOSITION 7.2 Let us write

Uk
f |ϕ0〉 = ak|z〉+ bk

∑

x "=z

|x〉 (7.17)

with the initial condition
a0 = b0 =

1√
N

.

Then the coefficients {ak, bk} for k ≥ 1 satisfy the recursion relations

ak =
N − 2

N
ak−1 +

2(N − 1)
N

bk−1, (7.18)

bk = − 2
N

ak−1 +
N − 2

N
bk−1 (7.19)

for k = 1, 2, . . ..

Proof. It is easy to see the recursion relations are satified for k = 1 by making
use of Eqs. (7.15) and (7.16). Let Uk−1

f |ϕ0〉 = ak−1|z〉+ bk−1
∑

x "=z |x〉. Then

Uk
f |ϕ0〉 = Uf



ak−1|z〉+ bk−1

∑

x "=z

|x〉





= (−I + 2|ϕ0〉〈ϕ0|)



−ak−1|z〉+ bk−1

∑

x "=z

|x〉





= −bk−1

∑

x "=z

|x〉+ ak−1|z〉+
2√
N

(N − 1)bk−1|ϕ0〉 −
2ak−1√

N
|ϕ0〉

= −bk−1

∑

x "=z

|x〉+ ak−1|z〉+
2
N

(N − 1)bk−1

∑

x

|x〉 − 2ak−1

N

∑

x

|x〉

=
[
N − 2

N
ak−1 +

2(N − 1)
N

bk−1

]
|z〉
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+
[
− 2

N
ak−1 +

N − 2
N

bk−1

]∑

x "=z

|x〉,

and proposition is proved.

PROPOSITION 7.3 The solutions of the recursion relations in Proposition
7.2 are explicitly given by

ak = sin[(2k + 1)θ], bk =
1√

N − 1
cos[(2k + 1)θ], (7.20)

for k = 0, 1, 2, . . ., where

sin θ =
√

1
N

, cos θ =
√

1− 1
N

. (7.21)

Proof. Let ck =
√

N − 1bk. The recursion relations (7.18) and (7.19) are
written in a matrix form,
(

ak

ck

)
= M

(
ak−1

ck−1

)
, M =

(
(N − 2)/N 2

√
N − 1/N

−2
√

N − 1/N (N − 2)/N

)
=
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)
.

Note that M is a rotation matrix in R2, and its kth power is another rota-
tion matrix corresponding to a rotation angle 2kθ. Thus the above recursion
relation is easily solved to yield
(

ak

ck

)
= Mk

(
a0

c0

)
=
(

cos 2kθ sin 2kθ
− sin 2kθ cos 2kθ

)(
sin θ
cos θ

)
=
(

sin[(2k + 1)θ]
cos[(2k + 1)θ]

)
.

Replacing ck by bk proves the proposition.

We have proved that the application of Uf k times on |ϕ0〉 results in the
state

Uk
f |ϕ0〉 = sin[(2k + 1)θ]|z〉+ 1√

N − 1
cos[(2k + 1)θ]

∑

x "=z

|x〉. (7.22)

Measurement of the state Uk
f |ϕ0〉 yields |z〉 with the probability

Pz,k = sin2[(2k + 1)θ]. (7.23)

It is instructive to visualize what is going on with a simple example. Let
us take n = 4, for which N = 2n = 16. The probabilities (ak, bk) are given by

a2
0 = b2

0 = 1/16, a2
k = sin2[(2k + 1)θ], b2

k =
cos2[(2k + 1)θ]

16− 1
,

where θ = sin−1(1/4). Figure 7.1 shows the probability distributions for
k = 1, 2, 3 and 4 where we have chosen z = 10.
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where
∑N−1

x=0 |wx|2 = 1 and

w̄ =
1
N




N−1∑

x=0,x "=z

wx − wz



 (7.16)

is the average value of the coefficients of the state Rf |ϕ〉.
This result shows that the amplitude of |z〉 has increased upon the operation

of Uf while that of |x〉 (x #= z) has decreased, assuming that all the weights
wx are positive. Thus repeated applications of Uf increase the amplitude of
|z〉 so that this particular state is observed with probability close to 1 when
the system is measured. Let us find the state obtained after Uf is applied k
times on the initial state |ϕ0〉.

PROPOSITION 7.2 Let us write

Uk
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.
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+
[
− 2

N
ak−1 +

N − 2
N

bk−1

]∑

x "=z

|x〉,

and proposition is proved.

PROPOSITION 7.3 The solutions of the recursion relations in Proposition
7.2 are explicitly given by

ak = sin[(2k + 1)θ], bk =
1√

N − 1
cos[(2k + 1)θ], (7.20)

for k = 0, 1, 2, . . ., where

sin θ =
√

1
N

, cos θ =
√

1− 1
N

. (7.21)

Proof. Let ck =
√

N − 1bk. The recursion relations (7.18) and (7.19) are
written in a matrix form,
(

ak

ck

)
= M

(
ak−1

ck−1

)
, M =

(
(N − 2)/N 2

√
N − 1/N

−2
√

N − 1/N (N − 2)/N

)
=
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)
.

Note that M is a rotation matrix in R2, and its kth power is another rota-
tion matrix corresponding to a rotation angle 2kθ. Thus the above recursion
relation is easily solved to yield
(

ak

ck

)
= Mk

(
a0

c0

)
=
(

cos 2kθ sin 2kθ
− sin 2kθ cos 2kθ

)(
sin θ
cos θ

)
=
(

sin[(2k + 1)θ]
cos[(2k + 1)θ]

)
.

Replacing ck by bk proves the proposition.

We have proved that the application of Uf k times on |ϕ0〉 results in the
state

Uk
f |ϕ0〉 = sin[(2k + 1)θ]|z〉+ 1√

N − 1
cos[(2k + 1)θ]

∑

x "=z

|x〉. (7.22)

Measurement of the state Uk
f |ϕ0〉 yields |z〉 with the probability

Pz,k = sin2[(2k + 1)θ]. (7.23)

It is instructive to visualize what is going on with a simple example. Let
us take n = 4, for which N = 2n = 16. The probabilities (ak, bk) are given by

a2
0 = b2

0 = 1/16, a2
k = sin2[(2k + 1)θ], b2

k =
cos2[(2k + 1)θ]

16− 1
,

where θ = sin−1(1/4). Figure 7.1 shows the probability distributions for
k = 1, 2, 3 and 4 where we have chosen z = 10.
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We have proved that the application of Uf k times on |ϕ0〉 results in the
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Measurement of the state Uk
f |ϕ0〉 yields |z〉 with the probability
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k = sin2[(2k + 1)θ], b2

k =
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where θ = sin−1(1/4). Figure 7.1 shows the probability distributions for
k = 1, 2, 3 and 4 where we have chosen z = 10.
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where θ = sin−1(1/4). Figure 7.1 shows the probability distributions for
k = 1, 2, 3 and 4 where we have chosen z = 10.
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FIGURE 7.1
Probability distribution of Uk

f |ϕ0〉, where z is chosen as 10. The number k of
iteration is (a) 1, (b) 2, (c) 3 and (d) 4. Observe that Pz,k takes its maximum
value " 1 when k = 3.

It should be noted that ak does not increase monotonically with k, but
there is a k (= 3 in the present case) that maximizes Pz,k = a2

k.

STEP 4 Our final task is to find the k that maximizes Pz,k. A rough estimate
for the maximizing k is obtained by putting

(2k + 1)θ =
π

2
→ k =

1
2

( π
2θ
− 1
)

. (7.24)

The previous example gave k = 3, which is consistent with this estimate:

θ = sin−1(1/4) " 0.25268→ k " 2.6.

This can be refined as the following proposition.

PROPOSITION 7.4 Let N % 1 and let

m =
⌊ π
4θ

⌋
, (7.25)



Grover’s search algorithm

Grover’s Search Algorithm 131

FIGURE 7.1
Probability distribution of Uk

f |ϕ0〉, where z is chosen as 10. The number k of
iteration is (a) 1, (b) 2, (c) 3 and (d) 4. Observe that Pz,k takes its maximum
value " 1 when k = 3.

It should be noted that ak does not increase monotonically with k, but
there is a k (= 3 in the present case) that maximizes Pz,k = a2

k.
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2
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1
2

( π
2θ
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)

. (7.24)

The previous example gave k = 3, which is consistent with this estimate:

θ = sin−1(1/4) " 0.25268→ k " 2.6.

This can be refined as the following proposition.
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where !x" stands for the floor of x. The file we are searching for will be
obtained in Um

f |ϕ0〉 with the probability

Pz,m ≥ 1− 1
N

(7.26)

and
m = O(

√
N). (7.27)

Proof. Equation (7.25) leads to the inequality π/4θ − 1 < m ≤ π/4θ. Let us
define m̃ by

(2m̃ + 1)θ =
π

2
→ m̃ =

π

4θ
− 1

2
.

Observe that m and m̃ satisfy

|m− m̃| ≤ 1
2
, (7.28)

from which it follows that

|(2m + 1)θ − (2m̃ + 1)θ| =
∣∣∣(2m + 1)θ − π

2

∣∣∣ ≤ θ. (7.29)

Considering that θ ∼ 1/
√

N is a small number when N * 1 and sinx is
monotonically increasing in the neighborhood of x = 0, we obtain

0 < sin |(2m + 1)θ − π/2| < sin θ

or
cos2[(2m + 1)θ] ≤ sin2 θ =

1
N

. (7.30)

Thus it has been shown that

Pm,z = sin2[(2m + 1)θ] = 1− cos2[(2m + 1)θ] ≥ 1− 1
N

. (7.31)

It also follows from θ > sin θ = 1/
√

N that

m =
⌊ π
4θ

⌋
≤ π

4θ
≤ π

4
√

N. (7.32)

It is important to note that this quantum algorithm takes only O(
√

N)
steps and this is much faster than the classical counterpart which requires
O(N) steps.

Figure 7.2 shows the quantum circuit which implements Grover’s search
algorithm. We gave working space for oracles explicitly.
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Integer numbers

This is the number of times we 
repeat the algorithm, which 
grows with the square root of N 
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It is important to note that this quantum algorithm takes only O(
√

N)
steps and this is much faster than the classical counterpart which requires
O(N) steps.

Figure 7.2 shows the quantum circuit which implements Grover’s search
algorithm. We gave working space for oracles explicitly.
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It is important to note that this quantum algorithm takes only O(
√

N)
steps and this is much faster than the classical counterpart which requires
O(N) steps.

Figure 7.2 shows the quantum circuit which implements Grover’s search
algorithm. We gave working space for oracles explicitly.
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It is important to note that this quantum algorithm takes only O(
√

N)
steps and this is much faster than the classical counterpart which requires
O(N) steps.

Figure 7.2 shows the quantum circuit which implements Grover’s search
algorithm. We gave working space for oracles explicitly.
We now show how to implement the gates

Selective Phase Rotation 
Transform
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6.6 Selective Phase Rotation Transform

DEFINITION 6.2 (Selective Phase Rotation Transform) Let us de-
fine a kernel

Kn(x, y) = eiθxδxy, ∀x, y ∈ Sn, (6.43)

where θx ∈ R. The discrete integral transform

f̃(y) =
N−1∑

x=0

K(x, y)f(x) =
N−1∑

x=0

eiθxδxyf(x) = eiθyf(y) (6.44)

with the kernel Kn is called the selective phase rotation transform.

EXERCISE 6.7 Show that Kn defined above is unitary. Write down the
inverse transformation K−1

n .

The matrix representations for K1 and K2 are

K1 =
(

eiθ0 0
0 eiθ1

)
, K2 =





eiθ0 0 0 0
0 eiθ1 0 0
0 0 eiθ2 0
0 0 0 eiθ3



 .

The implementation of Kn is achieved with the universal set of gates as
follows. Take n = 2, for example. The kernel K2 has been given above. This
is decomposed as a product of two two-level unitary matrices as

K2 = A0A1, (6.45)

where

A0 =





eiθ0 0 0 0
0 eiθ1 0 0
0 0 1 0
0 0 0 1



 , A1 =





1 0 0 0
0 1 0 0
0 0 eiθ2 0
0 0 0 eiθ3



 . (6.46)

Note that

A0 = |0〉〈0|⊗ U0 + |1〉〈1|⊗ I, U0 =
(

eiθ0 0
0 eiθ1

)
,

A1 = |0〉〈0|⊗ I + |1〉〈1|⊗ U1, U1 =
(

eiθ2 0
0 eiθ3

)
.

Thus A1 is realized as an ordinary controlled-U1 gate while the control bit
is negated in A0. Then what we have to do for A0 is to negate the control
bit first and then to apply ordinary controlled-U0 gate and finally to negate
the control bit back to its input state. In summary, A0 is implemented as in
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The definition of DIT then reduces to the ordinary multiplication of a matrix
on a vector as

f̃ = Kf.

PROPOSITION 6.1 Suppose the kernel K is unitary: K† = K−1. Then
the inverse transform f̃ → f of a DIT exists and is given by

f(x) =
N−1∑

y=0

K†(x, y)f̃(y). (6.4)

Proof. By substituting Eq. (6.2) into Eq. (6.4), we prove
N−1∑

y=0

K†(x, y)f̃(y) =
N−1∑

y=0

K†(x, y)

[
N−1∑

z=0

K(y, z)f(z)

]

=
N−1∑

z=0

[
N−1∑

y=0

K†(x, y)K(y, z)

]
f(z)

=
N−1∑

z=0

δxzf(z) = f(x).

Let U be an N × N unitary matrix which acts on the n-qubit space H =
(C2)⊗n. Let {|x〉 = |xn−1, xn−2 . . . , x0〉} (xk ∈ {0, 1}) be the standard binary
basis of H, where x = xn−12n−1 + xn−22n−2 + . . . + x020. Then

U |x〉 =
N−1∑

y=0

|y〉〈y|U |x〉 =
N−1∑

y=0

U(y, x)|y〉. (6.5)

The complex number U(x, y) = 〈x|U |y〉 is the (x, y)-component of U in this
basis.

PROPOSITION 6.2 Let U be a unitary transformation, acting on H =
(C2)⊗n. Suppose U acts on a basis vector |x〉 as

U |x〉 =
N−1∑

y=0

K(y, x)|y〉. (6.6)

Then U computes∗ the DIT f̃(y) =
∑N−1

x=0 K(y, x)f(x) for any y ∈ Sn, in the
sense that

U

[
N−1∑

x=0

f(x)|x〉
]

=
N−1∑

y=0

f̃(y)|y〉. (6.7)

∗The proposition claims that U maps a state with the probability amplitude f(x) to another
state with the probability amplitude f̃(y) that is related with f(x) through the kernel K.
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Fig. 6.5. In fact, it can be readily verified that the gate in Fig. 6.5 is written
as

(X ⊗ I)(|0〉〈0|⊗ I + |1〉〈1|⊗ U0)(X ⊗ I)
= X |0〉〈0|X ⊗ I + X |1〉〈1|X ⊗ U0 = |1〉〈1|⊗ I + |0〉〈0|⊗ U0 = A0.

Thus these gates are implemented with the set of universal gates. In fact, the
order of Ai does not matter since [A0, A1] = 0.

FIGURE 6.5
Implementation of A0.

EXERCISE 6.8 Repeat the above arguments for n = 3. In this case K3 is
written as a product of four two-level unitary matrices. Write down these ma-
trices and find the quantum circuits similar to that in Fig. 6.5 that implements
these two-level unitary matrices.
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Back on Grover’s search algorithm
We need to prove that the D gate used to perform the quantum search 
can be implemented efficiently. We now show that
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Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

Proof

hx|D|yi = hx| [�I + 2|'oih'0|] |yi = ��xy +
2

N
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is the avarage of wx over Sn.

Proof. Let us evaluate the matrix elements of the RHS of Eq. (7.10). We
obtain from

−I + 2|ϕ0〉〈ϕ0| = −I +
2
N

∑

x

|x〉
∑

y

〈y| = −I +
2
N

∑

x,y

|x〉〈y|

that the (x, y)-component of the RHS is

〈x|RHS|y〉 = −δxy +
2
N

. (7.13)

Let us turn to the LHS next. The (x, y)-component of D = WnR0Wn is

〈x|WnR0Wn|y〉 =
∑

u,v

〈x|Wn|u〉〈u|R0|v〉〈v|Wn|y〉

=
1
N

∑

u,v

(−1)x·u

×(−1)1−δu0δuv(−1)v·y.

The summation over u is evaluated as

N−1∑

u=0

(−1)x·u(−1)1−δu0δuv

= (−1)0(−1)0δ0v −
N−1∑

u=1

(−1)x·uδuv

= 2δ0v −
N−1∑

u=0

(−1)xn−1un−1+...+x1u1+x0u0δun−1vn−1 . . . δu1v1δu0v0

= 2δ0v −




1∑

un−1=0

(−1)xn−1un−1δun−1vn−1



 . . .

[
1∑

u1=0

(−1)x1u1δu1v1

]

×
[

1∑

u0=0

(−1)x0u0δu0v0

]
.

Then the LHS becomes

〈x|D|y〉 =
1
N

N−1∑

v=0



2δ0v −




1∑

un−1=0

(−1)xn−1un−1δun−1vn−1





. . .

(
1∑

u0=0

(−1)x0u0δu0v0

)]
(−1)v·y
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]
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[
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]
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Then the LHS becomes

〈x|D|y〉 =
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N
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2δ0v −
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. . .

(
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=
1

N

X

u

(�1)x·u(�1)y·u(�1)1��u0
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=
1

N

2

41�
X

u 6=0

(�1)x·u(�1)y·u

3

5
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126 QUANTUM COMPUTING

Define the kernel of the selective phase rotation transform Rf by

Kf(x, y) = eiπf(x)δxy = (−1)f(x)δxy, (7.2)

where x, y ∈ Sn. Since Rf maps |z〉 $→ −|z〉, while leaving all the other vectors
unchanged, it can be expressed as

Rf = I − 2|z〉〈z|. (7.3)

Let us consider a state

|ϕ〉 =
N−1∑

x=0

wx|x〉,
∑

x

|wx|2 = 1. (7.4)

Then it is easy to verify

Rf |ϕ〉 = w0|0〉+ . . . + (−1)wz|z〉+ . . . + wN−1|N − 1〉. (7.5)

(In other words, Rf changes the sign of wz while leaving all other coefficients
unchanged.)

STEP 2 Define a unitary matrix

D = WnR0Wn, (7.6)

where Wn is the Walsh-Hadamard transform,

Wn(x, y) =
1√
N

(−1)x·y, (x, y ∈ Sn) (7.7)

and R0 is the selective phase rotation transform defined by

R0(x, y) = eiπ(1−δx0)δxy = (−1)1−δx0δxy. (7.8)

PROPOSITION 7.1 Let

|ϕ0〉 =
1√
N

N−1∑

x=0

|x〉. (7.9)

Then
D = −I + 2|ϕ0〉〈ϕ0|. (7.10)

Moreover

D|ϕ〉 =
N−1∑

x=0

(w̄ − (wx − w̄)) |x〉, (7.11)

where |ϕ〉 is given in Eq. (7.4) and

w̄ =
1
N

N−1∑

x=0

wx (7.12)

x = y:

x ≠ y. As discussed in relation to the Deutsch-Jozsa algorithm

Therefore:  

N�1X

u=0

(�1)x·u = 0 !
N�1X

u 6=0

(�1)x·u = �1

<latexit sha1_base64="o1Ou6Em3pGtyB5f1Yj2o2P6YCKQ="></latexit>

A =
1

N

2

41�
X

u 6=0

3

5 =
1

N
[1� (N � 1)] = �1 +

2

N
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A =
1

N
[1� (�1)] =

2

N
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1

N

2

41�
X

u 6=0

(�1)x·u(�1)y·u

3

5 = A
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Back on Grover’s search 
algorithm

Therefore the D gate can be implemented efficiently. The overall circuit is 
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FIGURE 7.2
Implementation of Grover’s search algorithm. Details of the box denoted by
Uf = DRf are given in the lower diagram. The box Uf is repeated m times to
maximize Pz,k. The gate Rf is the oracle, and working qubits to implement
the oracle are given explicitly.

7.2 Searching for d Files

Suppose there are d (1 < d ≤ N) files that satisfy a given condition and we
are asked to find all of them. This problem is formulated with a help of an
oracle

f(x) =
{

1 (x ∈ A)
0 (x #∈ A). (7.33)

where A is the subset of Sn, whose elements satisfy the given condition. The
subset A is of course unknown to us beforehand.

This problem is solved similarly to the single-file searching problem. Let us
define

Rf = I − 2
∑

z∈A

|z〉〈z|. (7.34)

Then an application of Rf on |ϕ〉 =
∑N−1

x=0 wx|x〉 (
∑

x |wx|2 = 1) yields

Rf |ϕ〉 =
∑

x #∈A

wx|x〉 −
∑

z∈A

wz |z〉. (7.35)

Gf Gf Gf

Gf

Uf

We are not interested on how to 
implement the oracle Uf since this 
is supposed to be given

Optimality of Grover’s algorithm. We have shown that a quantum 
computer can search N items, consulting the search oracle only O(√N) 
times. One can prove that no quantum algorithm can perform this task 
using fewer than 
O(√N) accesses to the search oracle, and thus the algorithm we have 
demonstrated is optimal. 

For a proof, see e.g. Nielsen – Chuang p. 269.


