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Relativistic kinematics - acceleration

We consider the simple case of acceleration
along the x (x) axis. t t

We start with the velocity at a given time:

The velocities u and u’ in the two frames are related by

L u—v _(@)-P) @

Cl—uw/e? T 1—uv/c?

(the equivalent form is just a bit of algebra to obtain a useful expression). Differentiating this with
respect to T gives
du’ 1—2v2/c® du

dr (1 —uwv/c?)? dr (6.22)



Relativistic kinematics - acceleration

The acceleration, a, in S is by definition du/dt and similarly for S” so

L
ot ; ¢
du’ dt/ A A
= — —_— OI
dr / dr 0 u a
o 1=0?/ du Jdt R —>
(1 —ww/c?)2dr/ dr u' a
1—v?/c® du 9, dt
- /= = 1 il
(1 —uv/c?)? dT/’Y( uv/e )dT -

(1-v?/e)?
(1 —uv/c2)3 ™

Acceleration is not absolute anymore! (Should not be a surprise)

Relativistic kinematics — uniform acceleration

How do we define constant acceleration?
Initial guess:

dv/dt = constant=a = v=v,+at

Does it make sense? No

Velocity will eventually exceed c. And
moreover it will not be true that a will be
constant in other frames

Frame S




Relativistic kinematics — uniform acceleration

We define uniform acceleration as “feeling constant to the object being
accelerated”. The accelerate observer can measure it with an accelerometer.

How doe we analyse this in terms of inertial frames?

We consider the instantaneous
reference frame, where the objectisas ‘
rest at that specific time. v+ Av

- v :
L

Relativistic kinematics — uniform acceleration

Let us consider the instantaneous rest frame of the accelerating observer:
u'=0andu=v. Then:

a=(1 u2/02)%a/ o | ¢ u a
Or: ’ .
a = 1_u_2 _3/2a = vig = i[’yu] a
c? dt >

a’ is called the proper acceleration (as measured by an instantaneous rest
frame).



Relativistic kinematics — uniform acceleration
d
a’ = constant — E[W] = constant = a

The solutionis: yy = ar (initial conditions: u = 0 for t = 0)

u . Classical answer
u2 e ;
1] —— Relativistic correction

We see that u remain always smaller than ¢, and approaches c for large times.

Relativistic kinematics — uniform acceleration

ro 2 ) 2 )
X = xp+ | udt' = xy+— l+——=1] = 1 +—
0 a c a c

With the choice Xy = cla

Then we have:




The diagram shows the trajectory. The dotted lines are the light cones. An event taking

e e . place within the dashed lines can influence an accelerated observer at the position shown, but

Re I at |V| St I C events taking place outside the dashed lines would have to move faster than the speed of light to do

80. As 7 — o0, the whole of the space-time to the left of the dotted line x = ¢t would be inaccessible

. M to the observer. This line is called the Rindler event horizon for the accelerated observer. In some

kl n e m at I CS T ways, it performs the same function as the event horizon of a black hole. In particular, the observer

. has to accelerate to avoid falling through it and anything happening on the other side would be

u n Ifo r m hidden to the observer. Of course, the accelerating observer could just stop accelerating whereas
the observer in a black hole space-time can do nothing to affect the event horizon.

acceleration i

Relativistic kinematics — momentum

Classically we have

/™
® O

Conservation of mass: A B
my+mg = me+mp Before

Conservation of momentum: \ P
mAuA + mBllB == mCuC + lelD c D

Conservation of energy: After

1 2 1 2 1 2 1 2



Relativistic kinematics — momentum

If these transformations hold true in a reference frame, Galilei’s transformation
laws make sure that they hold in any other (inertial) frame. In particular

1 1 1 1
5 Aui + EmBu% = Emcu% + EmDu% » u=u+v

1 2 1 2 1 2 1 2 2

—myu'y +—mpl'y = —m W+ —mpu'p — —=vVI[my + mg=me=nmp]

2 2 2 2 2 .
conservation of mass

—v[mu'y ¥+ mpu'p—ama'c — mpu'pl

conservation of momentum

Relativistic kinematics — momentum

mAllA + mBllB = mCllC + lelD » (u = u/ + V)

myu'y + mg'y = meW'c + mpu'p — V[my + mg=—mga— mp)]
conservation of mass

This is how conservation properties are linked to each other

In a relativistic context, given the transformation properties of velocities,
momentum as defined above is nor conserved in all inertial frames. If it is
conserved in one frame, it is not in the others.

A new definition is needed!!



Relativistic kinematics — momentum

Two criteria for a new definition of momentum:

1. Momentum should be conserved in every inertial frame
2. It reduces to classical momentum for low velocities

It clearly reduces to the classical definition for low velocities. We now consider
the issue of conservation

Relativistic kinematics — momentum




Relativistic kinematics — momentum

Then:

mu, [/ c? U, +v
Py = = m\y — 5
V1 —u?/c? V1—u?lc v /c
\/

my 1% m02

= ypety—

mu,
/4 e
V1—u?/c? V1—u?/c? V1= u2/c2

/ v /
=7 px+ZE

Relativistic kinematics — momentum

Then:

miu,, [ uy/c? U,
p, = =m|vy /
Y 1 = u2/c? 1= u?/c? y(=ku/c?)

= m :py

V1—u?/c?

And same for the z-component



Relativistic kinematics — momentum

To summarize we have:

4 v 4 v
P = y<p;+—2E’) Py = y(px——2E>
C C
Py = P} < B=n
\P: = P; \pz’ = p,
2
ith- mc
With: o

V1 —=u?/c?

Relativistic kinematics — momentum

Coming back to conservation of momentum, conservation along the y and z
directions is trivial. Along the x direction:

Pxa +pr = Pxc +pr »

1% 1% 1% 1%
Y <p;A + —2EA> +7 (p;B + —ZE}g) =7 <p;c + —2E6> +7 (p;D + —zEb>
C C C C
/ / / / v / / / /
DPxa TP = PrctPip— P (EA +Ep—Ec— ED)

Therefore momentum is conserved if also E is conserved.



Relativistic kinematics — energy

What is E?

l l E = total energy

Constant Relativistic
. T=E-mc2
term corrections . .
\ 4 Kinetic energy
Classical
kinetic
term

Relativistic kinematics — energy

The transformation properties of E are:

mc? ) 1+ uv/c?
E = = mc“y = y[E’+vp)’C]

V1= u?/c? \V1—u?/c?

It is easy to show that the following relation holds:

It takes the same value
* in all reference frames



Relativistic kinematics — energy and momentum

If we want to have that momentum is conserved in all frames, then also the

energy must be conserved. Then

Pxa +pr
E,+Ep

= pxC+pr
E-+ Ej

in one frame implies

Piat P = Pic+ P — (VICA)E} + E

E, +E}

in any other frame

— E¢c — Ep]
Ec+ Ep —vIpis + Pig — Prc — Prp)

Prc+ Prp
E-+ Ej

Pea T Dp =
E, + Ej

>

Relativistic kinematics — energy and momentum

Conservation of energy and momentum in one frame implies conservation in

all other frames.

But are they conserved?

Postulate: for every closed system (no external forces) energy an momentum

are conserved.

It is experimentally verified (so far)



Relativistic kinematics — mass

And what about the mass?

The conservation of the mass is not necessary anymore - as it was in classical
mechanics - to have conservation of energy and momentum.

And in fact in special relativity the mass is not conserved any more.

Relativistic kinematics — mass

Uz u2
@ > <o o-
m ma m2
Classically
1 2 2
m = m;+m, 0 = mpu, +myu, 0 = E(mlul + myu;

Impossible



Relativistic kinematics — mass

U1 u2
@ + o o>
m ma m2
In special relativity
2 2
m,c m,C
E = mc? = E,+E, = 1 + 2 0 =p+p,
\/1—uglc? /1 —u3/c?
2 2
m;c m,C
(m —m; —my)c? = mlczl 1 — 1] + mzcz[ 2 — 1] =T1+T1

\/ 1 —uflc? \/1—uz/c?

Relativistic kinematics — mass

Uz u2

@ > <o o>
m

mi mz

T+ T,

c2

m =

We see that this process is consistent with the theory: mass is lost in favour
of kinetic energy.

Also, the amount of kinetic energy is equal to Amc?, which is very large



Relativistic kinematics — mass

U1 u2

@ » o o>
m

mi mz

From the conceptual point of view, what is remarkable is that all this comes
from the structure of space and time, and this structure affects the
properties of matter: how fat they can travel, how their mass and energy
behaves.

Relativistic kinematics — massless particles

From the relation

Ez—pzc2 = m-°c

Taking m =0, we have: E = |p|c.

Relativity opens to the possibility of particles of zero mass. They have to
travel at the sped of light.

Classically, without mass there is no momentum and no kinetic energy.



Relativistic dynamics

Newton’s first law of inertia: ok

Newton’s second law: g _ dp
dt

It remains valid, provided that with p we use the relativistic momentum.

Remembering that p = myu and that the proper acceleration is

a’ = d(yu)/dt, we see that a constant force exerts a constant proper
acceleration, thus a hyperbolic motion.

Work & Energy

Work, as always, is the line integral of the force:

W= /F-dl. (12.62)

The work-energy theorem (“the net work done on a particle equals the increase
in its kinetic energy”) holds relativistically:

dp dp dl /a’p
Y T P B L PR B
W [dz ar dt ar

while

dp o d mu u
dt T dt J1 —uz/(;2
mu da d ( mc? ) dE

— | =—, (12.63
N (1269

T A —w?22 dr  dt dt



Transformation rules for the Force

Because F is the derivative of momentum with respect to ordinary time, it
shares the ugly behavior of (ordinary) velocity, when you go from one inertial
system to another: both the numerator and the denominator must be transformed.

Thus,'8
- dp dp,/dt F.
Fy= % . dpyﬂ = py/ﬂ y =49 2 ,  (12.65)
o a-Y y(l___x) y(1 — Bu/c)
c c dt ’
t t
and similarly for the z component: A A
y p 0 o’
_ F,
Fp= ————
© vy - Buy/o) v,

v

Transformation rules for the Force

The x component is even worse:

0
dpr _dp’ _E("_E)

- a;i _ ydpi— ygdp" _ _ﬁﬂdﬁf’ _ *1 c\ar
g ydt—dex I_EZ ~ Buxfe
We calculated d E /dt in Eq. 12.63; putting that in, . v
ﬂ=§f%&%ﬁ. CLUNEE I e
In one special case these equations are reasonably tractable: If the particle is (in- v

stantaneously) af rest in S, so that u = 0, then

— 1 -
Fo=_Fi, Fi=F (12.67)

A 4




Relativistic dynamics

Newton’s third law:

It does not extend to relativistic motion, because it is incompatible with the
relativity of simultaneity. It holds only for contact interactions.

In relativity, forces are rep by fields mediating the interaction.

@ — O * Q@) O

. N

Geometry of spacetime - vectors

What does it mean that a vector is a vector? r Y
It means that it has magnitude and a direction. \

It can be expressed by its components, which

however are not intrinsic, but relative to the

reference frame.

xX

Mathematically, a vector is expressed by three components (since space is three
dimensional)

i

r €<r

withi=1,2,3



Geometry of spacetime - vectors

In another frame the components are \

e ¥

rt = Oj’rf

where O‘ is an orthogonal rotation matrix. ‘
We used’Einstein’s summation: repeated indices are summed.

The components of the vector change when changing the reference frame.

Let us see that the length and direction do not change

Geometry of spacetime - vectors

0
0
1

Let us introduce the metric i = l

o O =
(=T S e

Then we define

Scalar product: p-q = piﬂijqj
Norm: [[plI* = p'np’
Distance: ||p — q|

These objects are defined by the metric tensor. It reflects the structure of
Euclidean space



Geometry of spacetime - vectors

Now we can prove that the length of a vector is the same in every frame
Ir||> = riggr! = OIirknl-jinr'f = [O,i;yijOZﬂ]rkr”ﬂ = [OIJCO;]rkr'“ﬂ

= [(OHTONH*r" = ryer” = |Ir|?

Same for the direction of a vector relative to another vector (scalar product)

Geometry of spacetime - Minkowski space

Minkowski: relativistic space has a different geometric structure. One should
consider it has a four-dimensional space (space-time = space and time) with
the following metric:

o O O

o O = O
o = O O
= O © O

e It is not Euclidean anymore. It is Minkowski space
e Space and time are put together (but not unified)
e Conventions with opposite signs are allowed



Geometry of spacetime - Minkowski space

In analogy with Euclidean geometry, we define 4-vectors
p < p*
where the components p# depend on the reference frame and are related to

those in another frame by Lorentz transformations: p* = A p*

Then we define again

Scalar product: p - g = p”nﬂyq”
‘Norm’: p? = p”nﬂyp” (not always positive)

Distance: (p — ¢)? (not always positive)

Geometry of spacetime - Minkowski space

We show that length and direction of 4-vectors do not change:

Ipl* = p'nup® = IPI1° = prn,p® = Nopn, N pP = (N, A )pp”

= (A"qN)yp®p” = np°p” = llpI?
Same for scalar product and distance

Let us show that A’yA = # (matrix identity)



Geometry of spacetime - Minkowski space

vy -8 00 |
Let us rewrite  pu _ [T 7 00 y = ——— p = v
0 0 1 0 ,/71_ﬁ2 c
0 0 0 1
Then:
y =Br 0 0)Y(=1 0 00Y(7r -pr 00
- 00ll0o 1O0O0||-Br v 00
ATgn = | 7Pr 7
0 o 1 0(l0 O 1O0)|| o 0 10
0 o o 1)\0 00 1)\ o 0 01
y =Py 0 0)(-y Br 00 -V+py 0 00 -1 00 0
_|-pr r O O||-pr v O O _ 0 vP=py 0ol _10 100
o 0 10llo o010 0 0 1 0 0 010
o o0 o1JLo o0 01 0 0 0 1 0 001

Geometry of spacetime - four vectors

Spacetime event: x* = (ct, X).
Its components transform with the Lorentz trnafotremahions, thereforeitis a
4-vector.

The metric does not have a definite signature, therefore three types of events
are possible.

Let us consider two events x, and xp and let I = x5 — x,.



Geometry of spacetime - four vectors

1. Space-like separated events: I’>0

Example: I = (0,Ax,0,0): two events that occur simultaneously (A = 0) in
frame O, at a distance Ax along the x axis. Then in another frame O’:
At' = yAt — fAx/c = — fAx/c #0

They are not simultaneous anymore.

The order of events depends on the reference frame. This does not conflict
with causality because the two events cannot be connected. In fact the

average speed would be (Ax/Af)? > ¢?since I > 0

Geometry of spacetime - four vectors

2. Time-like separated events: I’<0

Example: I = (At,0,0,0): two events that occur in the same place (Ax = 0) in
frame O, at different times. Then in another frame O’:

At' = yAt — fAx/c = yAt

The time ordering is preserved. No problem with causality, it is a fact that one
occurs before the other.

3. Light-like separated events: I* = 0
Events that are connect by a ray of light



Geometry of spacetime
- spacetime diagram

Subdivision of Minkowski
spacetime with respect to an
event in four disjoint sets. The OBSERVER — 3
light cone, the absolute future,
the absolute past, and
elsewhere.

AAST [IGHT CON:

Geometry of spacetime - four velocity

The velocity dx*/dt it is not a good definition of 4-velocity because it does not
have the right transformation properties. A good definition is:

dx*

dr
where 7 is the proper time of the particle. The relation to the usual velocity is:

nt =

, A’ di dx

= = ¢c— = yc (nothing new) and = —
n o ye | g new) n o

- = yu
dr 4

It is easy to see that: 712 = — cz, which is invariant.



Geometry of spacetime - four momentum
The 4-momentum is defined as: p* = (E/c, p) = mn* = mdx"/dr

The previous calculations show that it is a 4-vector, i.e. that its components
transform as: p# = A¥ p*

(it is not for granted that every object with 4 components si a 4-vector)

The length is:p2 =—E?/c? + p2 = —m?c?
which is invariant.

Geometry of spacetime - Minkowski force

The Minkowski force is defined as:

g o=
dt
Then:
1 dE d
0= ———= an K=y—p:yF
c dt dt



Electromagnetism

To begin with, I'd like to show you why there had to be such a thing as mag-
netism, given electrostatics and relativity, and how, in particular, you can calculate
the magnetic force between a current-carrying wire and a moving charge with-
out ever invoking the laws of magnetism.Z> Suppose you had a string of positive
charges moving along to the right at speed v. I'll assume the charges are close
enough together so that we may treat them as a continuous line charge A. Super-
imposed on this positive string is a negative one, —A proceeding to the left at the
same speed v. We have, then, a net current to the right, of magnitude

I =2Av. (12.76)

Meanwhile, a distance s away there is a point charge g traveling to the right

at speed # < v (Fig. 12.34a). Because the two line charges cancel, there is no

electrical force on g in this system (S).

Electromagnetism

However, let’s examine the same situation from the point of view of system S,
which moves to the right with speed u (Fig. 12.34b). In this reference frame, g
is at rest. By the Einstein velocity addition rule, the velocities of the positive and
negative lines are now

vFu

= T (12.77)

Ut

Because v_ is greater than v, the Lorentz contraction of the spacing between
negative charges is more severe than that between positive charges; in this frame,
therefore, the wire carries a net negative charge! In fact,

Ax = £(y+)Ao, (12.78)

where

1

yi = —’
J1-vi/e?

(12.79)




Electromagnetism

Because v_ is greater than vy, the Lorentz contraction of the spacing between
negative charges is more severe than that between positive charges; in this frame,
therefore, the wire carries a net negative charge! In fact,

Az = £(ys)Ao, (12.78)

where

Y+ = S — (12.79)

,ll—vi/cz'

and Aq is the charge density of the positive line in its own rest system. That’s not
the same as A, of course—in S they’re already moving at speed v, so

A=y, (12.80)

where

1

(Y ey

(12.81)

Electromagnetism

It takes some algebra to put y. into simple form:

y 1 2 Fuv
iy = =
\/1 — L Fu)2( Fou/c?)?2 V(€ Fuv)? —c2(v Fu)?
2 1 2
- ¢ Fuy _ A Fw/e (12.82)
V@ - -u?) " J1-u?/c
The net line charge in S, then, is
—2Auv
Mot = Ay + Ao =Aolys —y-) = (12.83)

2 /1 —u2/c?

A




Electromagnetism

Conclusion: As a result of unequal Lorentz contraction of the positive and nega-
tive lines, a current-carrying wire that is electrically neutral in one inertial system
will be charged in another.

Now, a line charge A« sets up an electric field

ot
2megs’

so there is an electrical force on ¢ in S, to wit:

- Av qu

F=qgE=— .
1 mwegc?s V1 —u?/c?

(12.84)

Electromagnetism

But if there’s a force on g in &, there must be one in S; in fact, we can calcu!atc
it by using the transformation rules for forces. Since g is at rest in S, and F is
perpendicular to «, the force in S is given by Eq. 12.67:

AV qu

. (12.85)
TTEQC” §

F=y1-u?/c®F = -

The charge is attracted toward the wire by a force that is purely electrical in S
(where the wire is charged, and g is at rest), but distinctly nonelectrical in S

(where the wire is neutral). Taken together, then, electrostatics and relativity im-
ply the existence of another force. This “other force” is, of course, magnetic. In
fact, we can cast Eq. 12.85 into more familiar form by using ¢? = (gpo)~" and
expressing Av in terms of the current (Eq. 12.76):

F=—qu (”—"I) . (12.86)

2s

The term in parentheses is the magnetic field of a long straight wire, and the

force is precisely what we would have obtained by using the Lorentz force law in
system S.




The Field Tensor

A (second-rank) tensor is an object with
two indices, which transforms with two factors of A (one for each index):

™ = AFALL. (12.115)

A tensor (in 4 dimensions) has 4 x 4 = 16 components, which we can display in
a4 x 4 array:

(00 401 02 403
10 1 412 13

v
th = 20 21 2 23
30 31 32 33

Like for 4-vectors, components change, but the generalization of length and
direction remains invariant (for example t””tW)

The Field Tensor

However, the 16 elements need not all be different. For instance, a symmetric
tensor has the property

t* = t"* (symmetric tensor). (12.116)

In this case there are 10 distinct components; 6 of the 16 are repeats (1°' =
110, 02 =420 03 — 4300 412 — 21 43 — 31 425 — 432y Similarly, an
antisymmetric tensor obeys

t*Y = —t"* (antisymmetric tensor). (12.117)

Such an object has just 6 distinct elements—of the original 16, six are repeats
(the same ones as before, only this time with a minus sign) and four are zero
(%, ¢'1,£22, and 33). Thus, the general antisymmetric tensor has the form

0 (01 02 40
I L 2 413
=1 2 _42 g 2

4B 3 23

Y



The Field Tensor

0 Ei/c E,[c E./c
Let us define puw ) —E:zfc 0 B, -—By
—E,Jc —-B, 0 B

Then it is not difficult to see that under a boost along the x direction

E, = E,, F:y = V(Ey —vB,), EZ =y(E.+ vBy),

- v - v
B, =B, Byzy(By+C—2Ez), B, = (Bz—c—zEy).

This is the way E and B transform according to special relativity

The Field Tensor

0 Ei/c E,[c E./c
puv_ )| —EsJc 0 B, B,
—Ey/C —Bz 0 Bx

The lesson here is that E and B are not independent quantities, but

components of the same object, which is the electromagnetic tensor F**.
What is E in one frame can be B in another frame - as we saw before - as it
happens from any component of a vector/tensor.



The Field Tensor

0 Ei/c E,/c E/c
—E,/c O B, -B,
—E,/c —B, 0 B,
—-E,/c By, —B; 0

Fi =

Question: if E and B are components of a larger tensor, and can mix with each
other, why did people think they were independent 3-vectors?

The Field Tensor

0 Ei/c E,[c E./c
—E,/c O B, -B,
—E,/c —B, 0 B,
—-E;/c By —B; 0

Fi =

Answer: because they behave like independent three vectors under rotations



The Field Tensor

Le us consider a rotation along the z axis: A¥ | =

Then (c=1):

E,=F" - E =F"=A A" F¥

— A0 Al 01 0 Al 02
= A% A! FO' 4+ A0 AL F

= E,cos0+ E sin0

which is how 3-vectors behave under rotations

0 0O O
cos@® sinf O

—sinf@ cos@ 0
0 0 1

SO O

Electrodynamics in relativistic notation

Charge density and current

1 u

p=

po,/l —u2jc I po\/l —ujc®

N

TE = (cp, Jes Iy, To).

N

JH = pon*

aJ*
oxk




Electrodynamics in relativistic notation

Maxwell’s equations

aFm 3GH
— n —
axv Kod%, axv 0,
0 E;/c E,/c E.c 0 B, By B,
P — —E,/c O B, -B, GH — —B, 0 —E,/c E,/c
—E,/c —B, 0 B, -B, E;/c 0 —E,/c
—E;/c By —B; 0 —B, —Ey/c Ei/c 0

Electrodynamics in relativistic notation

Foru =0 Foru =1 (and i)
qF%» gF® gF0l  jF2 F® OF _F" 9F"  9F?  9F®
3x’  ox0 + dax! + 9x2 + dx3 dxv ~ 9x0 ox! 0x2 0x3
1 0E B B 1 0E
1 (3E, OE, OE,\ |1 __13E z__y=(___+vXB>
= - = —(V.E 2 2
c(3x+ay+32 c( ) c* ot dy 0z c? ot .
0 =ILOJI = poJy.
= pod" = Kocp,
Combining this with the corresponding results for 4 = 2 and p = 3 gives
1 JE
V.E=—p. VXB=M0J+M0606—,
€0 t




Electrodynamics in relativistic notation

Foru=20 Foru =1
3G» aG"™ 3G" 3G  3G™ aG 3G aG"  3G? 3GV
9’ 9x0 | ox! | 9x2 ' 9x3 axv — ax0 " ax! | ax2 | 9x?
3B, 9B, B _ 138, 19E.  13E, 1
=axx+ayy+azz=m ¢ ooy oo

— +VxE

Combining this with the corresponding results for 4 = 2 and p = 3 gives

5B
VxE=_-2
x ot

Electrodynamics in relativistic notation

Lorentz force law K* = gqn,F*,

Forif 4 = 1, we have

Kl — qT’vFlv =q(_n0F|0+ ﬂIF” + n2Fl2 + '73F13)

—4 —c (—Ex) + uy (
J1—=u?/2 \ ¢ V1—u?/c?

=—2 _[E+@xB),

V1—u2/c?

with a similar formula for 4 = 2 and u = 3. Thus,

B) +

Uz
V1 —u?/c? (_By)]

K=—2 __[E+@xB)], (12.129)

V1 —u2/c?
and therefore, referring back to Eq. 12.69,
F =g[E + (u x B)],



Electrodynamics in relativistic notation

Relativistic potentials

dA
E=—VV—§, B=VxA. (12.131)

As you might guess, V and A together constitute a 4-vector:

A = (V]e, Ay, Ay, AL). (12.132)

In terms of this 4-vector potential, the field tensor can be written

_aAY jan

Fv = o PP (12.133)
i v

Electrodynamics in relativistic notation

Relativistic potentials

The potential formulation automatically takes care of the homogeneous Max-
well equation (dG*' /3x” = 0). As for the inhomogeneous equation (3 F*¥ /9x" =

uoJ ™), that becomes

0 0AY d dAH

KR (_) _9 ( ) = upJ". (12.134)
dax, dxy \ 0x

This is an intractable equation as it stands. However, you will recall that the poten-
tials are not uniquely determined by the fields—in fact, it’s clear from Eq. 12.133
that you could add to A* the gradient of any scalar function A:

A

Al — AW = AF 4+ Pyt (12.135)
Tu

without changing F*¥. This is precisely the gauge invariance



Example: Field generated by a moving charge

In O’ the particle is at rest: A A
E' = %(X’,y’, Z) r = \/x'2 +y? +72 v, .
B'=0

The charge is assumed to sit at the origin of O'.

We compute the fields when the charge passes at the origin of O:

Example: Field generated by a moving charge

In O: We need to express r’ in terms of r:

szB;c Bx=0 ‘O o’

B, =y(B, - BE/c) wp B, = —yvE./c* . =
B, =y(B, - PEy/c) B, = yvE)/c? > X
E =FE, E = gx'/r3 = ygx/r>

E=vE+vB) W g —yE—yquir® B =yt /i

— r_ / , _ 2
E, = y(E, - VB)) E. = yE' = yqz)r° B=vxE/



Example: Field generated by a moving charge

We need to express r’ in terms of r: R
r/2=}/2x2+y2+z2= 0
v
=yt - - DO+ = ;v
= y2r’[1 — (v?/c?)sin? 0]

In conclusion:

_ gr " X E
y?r3[1 — (v3/c?)sin? 0132 c2




