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Teleportation
We now present the quantum teleportation protocol. Again, this 
involves two parties, Alice and Bob, who share an entangled state of two 
qubits. Alice also has a further qubit in a generic state |ΨT>, a state that 
she wants to teleport to Bob, by means of local measurements and 
classical communication. 

For a two qubit system, let us introduce the following states: 

Alice Bob

Entangled state
|ΨT>

To be teleported to Bob

|�+i =
1p
2
(|00i+ |11i)

|��i =
1p
2
(|00i � |11i)

| +i =
1p
2
(|01i+ |10i)

| �i =
1p
2
(|01i � |10i)

<latexit sha1_base64="Gn8FJve4okeBqNOBahAW8dKAol4="></latexit>

|00i =
1p
2
(|�+i+ |��i)

|01i =
1p
2
(| +i+ | �i)

|10i =
1p
2
(| +i � | �i)

|11i =
1p
2
(|�+i � |��i)

<latexit sha1_base64="RKalaoggjsXnvY9zmuXe6iTKlIM="></latexit>

Bell basis Computational basis

Assume that the entangled state shared by Alice and Bob is |φ+>. The 
total three-qubit state is

| T i|�+
ABi = (↵|0T i+ �|1T i)

1p
2
(|0Ai|0Bi+ |1Ai|1Bi)

<latexit sha1_base64="E9PGzstDzwrpVrGWIvbfITOZuxU=">AAAChHicbVFdb9MwFHUCjBG+OnjkxaJCdBqq4sIEL6CtvPBYpHWbVIfoxnVaa46T2TdIVZpfwr/ijX+D25UVNq5k6eice67tc7NKK4dx/CsI79y9t3N/90H08NHjJ087e89OXVlbIcei1KU9z8BJrYwco0Itzysroci0PMsuPq/0s+/SOlWaE1xUMilgZlSuBKCn0s4PPomWvHIqPeEWzExLuuSjufp2kDbHw/YP95H2OOhqDnQZbzsPKM8keo5dc/uU5xZEw9qGu0uLzaBtac+bjq/Hx+lwO8BbtwrbKvsRT9JON+7H66K3AduALtnUKO385NNS1IU0KDQ4N2FxhUkDFpXQso147WQF4gJmcuKhgUK6pFmH2NJXnpnSvLT+GKRr9m9HA4VziyLznQXg3N3UVuT/tEmN+YekUaaqURpxdVFea4olXW2ETpWVAvXCAxBW+bdSMQcfIvq9RT4EdvPLt8HpoM/e9Q+/DrpHw00cu+QFeUl6hJH35Ih8ISMyJiIIgtdBHLBwJ3wTvg0Pr1rDYON5Tv6p8NNvbvG/0g==</latexit>
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The qubits whose states are labelled by A and T belong to Alice, the 
one labelled by B belongs to Bob. 

The state ca be rewritten as follows:

| T i|�+
ABi =

1

2

⇥
|�+

TAi(↵|0Bi+ �|1Bi) + |��
TAi(↵|0Bi � �|1Bi)

+| +
TAi(↵|1Bi+ �|0Bi) + | �

TAi(↵|1Bi � �|0Bi)
⇤

<latexit sha1_base64="/e48X9UKiP1I7Uq/ZetSEC9Szj8="></latexit>

Nothing has changed, we have simply rewritten the state in a different 
form, by pairing together two states of the two qubits A and T by Alice. 

Now assume that Alice performs a measurement in the Bell basis; 
Then with probability 1/4 each, she will find the system in one of the 
four basis states and the post-measurement state will be 

|�+
TAi(↵|0Bi+ �|1Bi)

|��
TAi(↵|0Bi � �|1Bi)

| +
TAi(↵|1Bi+ �|0Bi)

| �
TAi(↵|1Bi � �|0Bi)

<latexit sha1_base64="iTkCqTxZq/qNaUelwa8UK4j+BuM="></latexit>

We note two things. Due to the measurement, entanglement has been 
moved from the AB pair to the AT pair. Bob’s qubit is now factorized. At 
this stage, Bob cannot recover any piece of information, because - as the 
no-signaling theorem has shown - Bob cannot even realize whether or not 
Alice has performed the measurement. 

Given this, Alice needs to communicate classically with Bob, in order to 
tell him what to do in order to recover the state |Ψ>. The sets of orders 
she sends depend on the outcome of her experiment and are: 
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Outcome: |�+i Instruction from Alice to Bob: apply I

Outcome: |��i Instruction from Alice to Bob: apply Z

Outcome: | +i Instruction from Alice to Bob: apply X

Outcome: | �i Instruction from Alice to Bob: apply Y = ZX

<latexit sha1_base64="wnnT2IEqSDxQhq+sm8WKsbE4L40="></latexit>

with

I =

✓
1 0
0 1

◆
, Z =

✓
1 0
0 �1

◆
= �z, X =

✓
0 1
1 0

◆
= �x, Y =

✓
0 1
�1 0

◆
= i�y

<latexit sha1_base64="WWulQRz5VdiVq5KqmGUL3g7fbw8="></latexit>

The teleportation protocol is achieved, and after implementing Alice’s 
instructions, Bob’s state is: 

| Bi = ↵|0Bi+ �|0Bi

<latexit sha1_base64="d1nYF7iHjeQu2PPnuPKEZjYk+F0=">AAACJnicbZBNSwMxEIazftb1q+rRS7AIglB2RdFLQerFYwVrC92lzKbTNpjNLklWKNVf48W/4sVDRcSbP8W0LmirLwRenplhMm+UCq6N5304c/MLi0vLhRV3dW19Y7O4tX2jk0wxrLNEJKoZgUbBJdYNNwKbqUKII4GN6PZiXG/codI8kddmkGIYQ0/yLmdgLGoXK0HLvQ9SzdvVQIHsCaQVGoBI+0DvvR94SIMIzRRzg7BdLHllbyL61/i5KZFctXZxFHQSlsUoDROgdcv3UhMOQRnOBD64QaYxBXYLPWxZKyFGHQ4nZz7QfUs6tJso+6ShE/p7Ygix1oM4sp0xmL6erY3hf7VWZrpn4ZDLNDMo2feibiaoSeg4M9rhCpkRA2uAKW7/SlkfFDBjk3VtCP7syX/NzVHZPy6fXB2Vzqt5HAWyS/bIAfHJKTknl6RG6oSRR/JMRuTVeXJenDfn/bt1zslndsiUnM8viDyj9w==</latexit>

Some comments: 
• After teleportation, Alice’s initial qubit in the state |Ψ> becomes 

part of an entangled state. There has been no copying of the state. 
We will come back on this later. 

• No transfer of matter or energy is involved, only the transfer of a 
state. 

• The whole protocol is subluminal, since Alice first needs to 
measure and then to communicate to Bob. This is a restriction 
imposed by the no signaling condition (and complies with 
relativity) 

• For every qubit teleported, Alice needs to send Bob two classical 
bits of information, which cannot carry complete information 
about the state being teleported. An eavesdropper cannot 
reconstruct the state |ψ> by eavesdropping the communication 
between Alice and Bob. 

Note the role of the collapse of the wave function in the teleportation 
protocol, which makes it nonlocal. 
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Let’s see how the teleportation protocol can be implemented in a 
quantum computational language. The Bell states can be generated as 
follows: 

|φ+> |φ->

|ψ+> |ψ->

And they can be measured as follows 

|φ+>

|φ->

|ψ+>

|ψ->

Outcome m1 = 0

Outcome m2 = 0

Outcome m1 = 1

Outcome m2 = 0

Outcome m1 = 0

Outcome m2 = 1

Outcome m1 = 1

Outcome m2 = 1
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This is called a Bell state anlayzer. The circuit for the teleportation 
protocol is now easy to construct

Bell state preparation

Bell state measurement

Classical communication and
Post measurement manipulation
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Entanglement swapping

An important operation associated to teleportation is entanglement 
swapping. First we present the algorithm, then we explain its importance. 

1

2

3

1. Two separate Bell state are prepared. Keeping the order from top to 
bottom:

1p
2
[|00i+ |11i] 1p

2
[|00i+ |11i] =

1

2
[|00i|00i+ |00i|11i+ |11i|00i+ |11i|11i]

=
1

2
p
2
[|0i(|�+i+ |��i)|0i+ |0i(| +i+ | �i)|1i

+|1i(| +i � | �i)|0i+ |1i(|�+i � |��i)|1i]

<latexit sha1_base64="ZZ6ootF1SoIcLfPKsgjXYpTCj5g="></latexit>

We highlight the two middle qubit in red and put them on the left 
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1p
2
[|00i+ |11i] 1p

2
[|00i+ |11i] =

1

2
[|�+i|�+i+ |��i|��i+ | +i| +i+ | �i| �i]

<latexit sha1_base64="cuEBS/VQydwgrv86JuPRn1o62uM="></latexit>

v

2. A Bell state analysis of the two middle qubits is performed. There are 
four possible outcomes, all with the same probability 1/4. The two 
outer qubits will end up in an entangled state perfectly correlated to 
the outcome of the measurement. 

3. Through classical communication of the result, the Bell state is 
changed into |φ+>. 

What we have realized is entanglement swapping 

Now the two are entangled

This forms the basis of the working of a quantum repeater
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A quantum repeater, as a classical repeater, is meant to increase the 
distance for two parties to share entangled state. Entangled states 
traveling foe example along optical fibbers, are subject to losses. 
Currently, maximum distances of hundreds of kilometres can be reached. 
Quantum repeaters can overcome such losses.  
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FLASH—A superluminal 
communicator based upon a new 
kind of measurement

As usual, there are Alice and Bob sharing a singlet state and perform 
distant spin measurements, as in a standard Bell setup.

The bases we will consider are |↑> , |↓> and |+>, |-> .

The FLASH protocol goes as follows.

1. Alice performs measurements in one of the two basis indicated 
above. Bob will receive the opposite state.

↑/↓ measurements. Alices obtains 50% |↑> and 50% |↓>. The 
states Bob receives are 50% |↓> and 50% |↑>, respectively.

+/- measurements. Alices obtains 50% |+> and 50% |->. The states 
Bob receives are 50%  |-> and 50% |+>, respectively.

2. Bob amplifies the signal:

|↑>  ⇒ |↑↑↑↑↑↑↑↑↑↑↑↑>
|↓>  ⇒ |↓↓↓↓↓↓↓↓↓↓↓↓ >

in case Alice makes ↑/↓ measurements.

|+>   ⇒ |++++++++++++++++++++>
|->   ⇒ |--------------------------------->

in case Alice makes +/- measurements.
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3. Bob divides the states in two subsets. For half of them he performs 
a ↑/↓ measurement; for the other half he performs a +/-
measurement. 

1. Alice makes a 
measurement

2. Bob amplifies 
the signal

↑/↓

+/-

|↑↑↑↑↑>
or

|↓↓↓↓↓>

|++++++++>
or

|------------->

3. Bob performs 
a measurement

↑/↓ +/-

100% ↑

100% ↓

50% + 
50% -

50% + 
50% -

↑/↓ +/-

100% +50% ↑ 
50% ↓

50% ↑ 
50% ↓

100% -

The statistics in the two cases is different. Bon can recover from a 
distance the type of measurement Alice performed. This forms the 
basis for a superluminal communication protocol.   
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The no-cloning theoremThe No Cloning Theorem
The theorem says that it is not possible to clone an arbitrary quantum 
state.


Let us consider a unitary operator U such that:





The state  has been duplicated. In particular we have, for two given 
states:







U |ψ⟩ ⊗ |s⟩ → |ψ⟩ ⊗ |ψ⟩ ∀ψ ∈ ℋ

ψ

U |ψ1⟩ ⊗ |s⟩ → |ψ1⟩ ⊗ |ψ1⟩
U |ψ2⟩ ⊗ |s⟩ → |ψ2⟩ ⊗ |ψ2⟩

The No Cloning Theorem
Then:


⟨ψ1 |ψ2⟩ = ⟨ψ1 | ⊗ ⟨s |s⟩ ⊗ |ψ2⟩ = ⟨ψ1 | ⊗ ⟨s |U†U |s⟩ ⊗ |ψ2⟩ = ⟨ψ1 |ψ2⟩2

So we have the equation: x2 = x, whose solution is x = 0,1. This means 
that the two states  and  are either the same or orthogonal to 
each other.


The conclusion is that it is possible to copy orthogonal states, but it is 
ont possible to copy arbitrary non-orthogonal states. This violates the 
unitarity of quantum evolutions.  


ψ1 ψ2

The No Cloning Theorem
The theorem says that it is not possible to clone an arbitrary quantum 
state.


Let us consider a unitary operator U such that:





The state  has been duplicated. In particular we have, for two given 
states:
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So we have the equation: x2 = x, whose solution is x = 0,1. This means 
that the two states  and  are either the same or orthogonal to 
each other.
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ψ1 ψ2

not
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Why FLASH does not workWhy FLASH does not work
Suppose the machine does the following

| ↑ ⟩ → | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩
| ↓ ⟩ → | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩

Then by linearity

| + ⟩ = 1
2

[ | ↑ ⟩ + | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ + | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

| − ⟩ = 1
2

[ | ↑ ⟩ − | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ − | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

Why FLASH does not work
The suppose Alice prepared in the so that Bob’s machine generates↑ / ↓
| ↑ ⟩ → | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩
| ↓ ⟩ → | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩

Bob divides the set un two subsets. For half of them he performs a 
measurement; for the other half he performs a +/- 

measurement.

 

↑ / ↓

| ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩

| ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩
Half to :  100%   or 100%   ↑ / ↓ | ↑ ⟩ | ↓ ⟩
Half to    :  50%     and 50%   +/− | + ⟩ | − ⟩

Why FLASH does not work
Suppose the machine does the following

| ↑ ⟩ → | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩
| ↓ ⟩ → | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩

Then by linearity

| + ⟩ = 1
2

[ | ↑ ⟩ + | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ + | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

| − ⟩ = 1
2

[ | ↑ ⟩ − | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ − | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

Why FLASH does not work
The suppose Alice prepared in the so that Bob’s machine generates↑ / ↓
| ↑ ⟩ → | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩
| ↓ ⟩ → | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩

Bob divides the set un two subsets. For half of them he performs a 
measurement; for the other half he performs a +/- 

measurement.

 

↑ / ↓

| ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩

| ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩
Half to :  100%   or 100%   ↑ / ↓ | ↑ ⟩ | ↓ ⟩
Half to    :  50%     and 50%   +/− | + ⟩ | − ⟩

|↑↑↑↑↑>
or

|↓↓↓↓↓>

↑/↓ +/-

100% ↑

100% ↓

50% + 
50% -

50% + 
50% -

The statistics is
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Why FLASH does not work
The suppose Alice prepared in the  so that Bob’s machine generates+/−

Bob divides the set un two subsets. For half of them he performs a 
measurement; for the other half he performs a +/- 

measurement. It is evident that as soon as he performs a  
measurement on the first system, the whole state collapses to  

 

↑ / ↓
↑ / ↓

| + ⟩ = 1
2

[ | ↑ ⟩ + | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ + | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

| − ⟩ = 1
2

[ | ↑ ⟩ − | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ − | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

| ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩50% 50%

Therefore the same statistics as in the previous case is recovered

Why FLASH does not work

Exercise: Repeat the calculation assuming that Bob’s machine does the 
following

| + ⟩ → | + + + + + + + + + ⟩
| − ⟩ → | − − − − − − − − − ⟩
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or

The statistics is

The two statistics are equivalent: Bob cannot distinguish the two cases
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[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ + | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

| − ⟩ = 1
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[ | ↑ ⟩ − | ↓ ⟩] → 1
2

[ | ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ − | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩]

| ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⟩ | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⟩50% 50%

Therefore the same statistics as in the previous case is recovered

Why FLASH does not work

Exercise: Repeat the calculation assuming that Bob’s machine does the 
following

| + ⟩ → | + + + + + + + + + ⟩
| − ⟩ → | − − − − − − − − − ⟩
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Classical cryptography can be divided into two major branches; secret or 
symmetric key cryptography and public key cryptography, which is also 
known as asymmetric cryptography. 

Secret key cryptography represents the most traditional form of 
cryptography in which two parties both encrypt and decrypt their messages 
using the same shared secret key. While some secret key schemes, such as 
one-time pads, are perfectly secure against an attacker with arbitrary 
computational power, they have the major practical disadvantage that 
before two parties can communicate securely they must somehow 
establish a secret key. 

In order to establish a secret key over an insecure channel, key distribution 
schemes based on public key cryptography, such as Diffie-Hellman, are 
typically employed. 

In contrast to secret key cryptography, a shared secret key does not need to 
be established prior to communication in public key cryptography. Instead 
each party has a private key, which remains secret, and a public key, which 
they may distribute freely. If one party, say Alice, wants to send a message 
to another party, Bob, she would encrypt her message with Bob's public 
key after which only Bob could decrypt the message using his private key. 
While there is no need for key exchange, the security of public key 
cryptography algorithms are currently all based on the unproven 
assumption of the difficulty of certain problems such as integer 
factorization or the discrete logarithm problem. This means that public key 
cryptography algorithms are potentially vulnerable to improvements in 
computational power or the discovery of efficient algorithms to solve their 
underlying problems. Indeed algorithms have already been proposed to 
perform both integer factorization and solve the discrete logarithm 
problem in polynomial time on a quantum computer.

Secure communication
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QKD – Quantum Key Distribution
The basic model for Quantum Key Distribution (QKD) protocols involves 
two parties, referred to as Alice and Bob, wishing to exchange a key both 
with access to a classical public communication channel and a quantum 
communication channel. This is shown in the figure. 

An eavesdropper, called Eve, is assumed to have access to both channels 
and no assumptions are made about the resources at her disposal. With 
this basic model established, we describe in layman's terms the 
necessary quantum principles needed to understand the QKD protocols. 

QKD
The basic model for Quantum Key Distribution (QKD) protocols involves 
two parties, referred to as Alice and Bob, wishing to exchange a key both 
with access to a classical public communication channel and a quantum 
communication channel. This is shown in the figure. An eavesdropper, 
called Eve, is assumed to have access to both channels and no 
assumptions are made about the resources at her disposal. With this basic 
model established, we describe in layman's terms the necessary quantum 
principles needed to understand the QKD protocols.

QKD - BB84
The Figure shows how a bit can 
be encoded in the polarization 
state of a photon in BB84. 


We define a binary 0 as a 
polarization of 0 degrees in the 
rectilinear bases or 45 degrees 
in the diagonal bases. Similarly 
a binary 1 can be 90 degrees in 
the rectilinear bases or 135 in 
diagonal bases. 


Thus a bit can be represented 
by polarizing the photon in 
either one of two bases.

QKD – The BB84 protocol
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Assume that Eve tries to intercept the basis. She will do that by 
measuring the photon’s state. In this way, she will introduce an error with 
probability 25%

A sends bit 
0 in basis +

The best Eve can do is:

50% +: outcome 0

50% x: outcome 0 or 1

Bob mesures in basis +

Outcome 0

50 % 0 and 50% 1

So 25% of the times Bob gets a different result from Alice, in spite they 
have measured in the same basis. 

What an eavesdropper can do.  Eve can do only two things: either perform a unitary evolution in the attempt 
to copy the state of the system, or measure the state. Because of the no-cloning theorem, she cannot copy 
non-orthogonal states, this is why the BB84 has be set up this way. Let’s see what happens is she measures 
the state .

,
§

1. Alice begins by choosing a random string of bits.

2. For each bit, Alice will randomly choose a basis, rectilinear or diagonal, to use 
to encode the bit.

3. She will transmit a photon for each bit with the corresponding polarization, as 
just described, to Bob.

4. Bob also chooses a random basis.

5. For every photon Bob receives, he will measure the photon's polarization in 
the chosen basis. If, for a particular photon, Bob chose the same basis as Alice, 
then in principle, Bob should measure the same polarization and thus he can 
correctly infer the bit that Alice intended to send. 

6. Bob will notify Alice over any insecure channel what basis he used to measure 
each photon. Alice will report back to Bob whether he chose the correct basis 
for each photon.

7. Alice and Bob will discard the bits corresponding to the photons which Bob 
measured with a different basis. On the average, only half of the photons have 
to be disregarded. Provided no errors occurred or no one manipulated the 
photons, Bob and Alice should now both have an identical string of bits which 
is called a sifted key.

The protocol is (a variation of) the following

1
2
3
4
5
6
7
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The role of Eve

QKD - BB84

QKD - BB84 - Eve
Assume that Eve tries to intercept the basis. She will do that by 
measuring the photon’s state. In this way, she will introduce an error with 
probability 25%

A sends bit 
0 in basis +

The best Eve can do is:

50% +: outcome 0

50% x: outcome 0 or 1

Bob mesures in basis +

Outcome 0

50 % 0 and 50% 1

So 25% of the times Bob gets a different result from Alice, in spite they 
have measured in the same basis. 

QKD - BB84 - Eve
If now Alice and Bob publicly compare n bits (then disregarding them as 
key bits, since they are no longer secret) the probability of finding a 
disagreement is


    (where 3/4 is the probability that they all match)


Then for n = 72:   (nine 9)


Almost immediately Alice and Bob realize that Eve tried to copy the key 
and abort the operation of key distribution. 


In general, if there are too many errors when comparing the bits, the 
quantum channel in considered insecure and the protocol is aborted. 

ℙ(n)
D = 1 − (3/4)n

ℙ(n)
D = 0,999999999

QKD - E91
Eckert describes a channel where there is a single source that emits pairs 
of entangled particles, which could be polarized photons. The particles 
are separated and Alice and Bob each receive one particle from each pair 
as shown in figure 5. Alice and Bob would each choose a random bases 
on which to measure their received particles. As in BB84, they would 
discuss in the clear which bases they used for their measurements. For 
each measurement where Alice and Bob used the same bases, they 
should expect opposite results due to the principle of quantum 
entanglement as described earlier.
This means that if Alice and Bob 
both interpret their measurements 
as bits as before, they each have 
a bit string which is the binary 
complement of the other. Either 
party could invert their key and 
they would thus share a secret 
key.
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QKD – The E91 protocol

This protocol makes specific use of entanglement

1. Alice and Bob share an entangled state, specifically the state |φ+>.

2. Alice makes a measurement with a direction randomly chosen between 
{0, π/8 , π/4}, whereas Bob makes a measurement with a direction 
randomly chosen between {−π/8 , 0, π/8}. They record the measurement 
result and broadcast the measurement basis which they used, through the 
classical channel. 

3. Thus, Alice and Bob now know each other's choice. They divide the 
measurement result into two groups: one is the decoy qubits G1 where 
they choose different measurement basis and another is the raw key 
qubits G2 where they choose the same measurement basis.

4. The group G1 is used to detect whether there is an eavesdropping. To 
detect eavesdropping, they can compute the test statistic S using the 
correlation coefficients between Alice’s bases and Bob’s, similar to that 
shown in the Bell test experiments. If there is an error in the value of S, 
which means that there is also a eavesdropper, Alice and Bob will conclude 
that the quantum channel is not safe, and they will interrupt this 
communication and start a new one. 

5. If the quantum channel is safe, G2 can be used as the raw keys because 
Alice and Bob can receive the same measurements. Both Alice and Bob 
agree on that the measurement |0⟩ represents the classical bit 0, while 
the measurement |1⟩ represents the classical bit 1, and thus get their key 
string. 
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Note: The choice of direction is different from that considered before 
when presenting Bell’s theorem, because now we are referring to photon 
polarization in the |φ+> state, while before we were referring to the singlet 
state of spins. In the present case we have

PQM(+ + |a,b, ) = PQM(�� |a,b, ) = 1

2
cos2 ✓

PQM(+� |a,b, ) = PQM(�+ |a,b, ) = 1

2
sin2 ✓

<latexit sha1_base64="SZUgTSFvErdpE2a49QDnkYsqA3c="></latexit>

and

EQM(a,b| ) = cos 2✓

<latexit sha1_base64="TLWRQqHOkIpAQSnAaIdujX2QPg0="></latexit>

And, for a choice of directions like in the figure
a
b

c
d

|𝐸!"(𝐚, 𝐛) − 𝐸!"(𝐚, 𝐝)| + |𝐸!"(𝐜, 𝐛) + 𝐸!"(𝐜, 𝐝)| =

= |cos2𝜃𝐚,𝐛 − cos2𝜃𝐚,𝐝| + |cos2𝜃𝐜,𝐛 + cos2𝜃𝐜,𝐝|

= |cos2𝜃 − cos6𝜃| + 2|cos2𝜃|

For θ = π/8 we have

cos2𝜃 − cos6𝜃 + 2 cos2𝜃 = 2 2 > 2

The inequality is violated.


