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From Data to Wisdom

The evolution of data to wisdom is defined by the DIKW pyramid [1].
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[1] Frické, M. (2019). The knowledge pyramid: the DIKW hierarchy. Knowledge Organization: KO, 46(1), 33.



What is Big Data?

No single definition; here is from Wikipedia:

Big data is the term for a collection of data sets so large and complex that it becomes
difficult to process using on-hand database management tools or traditional data
processing applications.

The challenges include capture, curation, storage, search, sharing, transfer, analysis,
and visualization.

The trend to larger data sets is due to the additional information derivable from analysis of a
single large set of related data, as compared to separate smaller sets with the same total
amount of data, allowing correlations to be found to "spot business trends, determine
quality of research, prevent diseases, link legal citations, combat crime, and determine
real-time roadway traffic conditions.”

Data that is too large or too complex to be managed using traditional data
processing, analysis, and storage techniques.



What is Big Data?

Every 60 seconds

o 3 98,000+ tweets
g A Pl T B 695,000 status updates
- L @ 11million instant messages

Big Data & The Cloud p 698,445 Google searches

Q 168 million+ emails sent

i 1,8207B of data created

Q 217 new mobile web users

The 4 V'S of Big Data By IBM Sensor technology and networks
Volume: Large Volume Of Data

Variety: Different formats (Audio, Video, Images, Posts, etc)

Velocity: Speed of Data Processing.

Veracity: To check that the Data is Genuine.




What is Big Data?

It's estimated that
2.5 QUINTILLION BYTES
[ 2.3 TRILLION GIGABYTES |

of data are created each day

40 ZETTABYTES

43 TRILLION GIGABYTES |
of data will be created by
2_020. an increase of 300 2
times from 2005 020

The
FOURV’s
of Big
Data

From traffic patterns and music downloads tc

6 BILLION
PEOPLE

have cell
phones

and medical records, data is

Most companies in the
U.S. have at least

100 TERABYTES

[ 100,000 GIGABYTES |
of data stored

R
»

WORLD POPULATION: 7 BILLION

Modern cars have close to
The New York Stock Exchange -
captures @ . 100 SENSORS
1 TB UF TRADE ( that monitor items such as
|NFURMA‘”DN ( \ fuel level and tire pressure

during each trading session

As a leader in the s IBM data scientists
break big data into four dimensions: Volume,
Velocity, Variety and Veracity

mobile devices.

apt their d se to better meet
customer needs, optimize operations and
infrastructure, and find ne C f revenue.

Velocity

ANALYSIS OF 4.4 MILLION IT JOBS
sTREAMING DATA will d globally to support big data

with 1.9 million in the United States

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS
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As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

es;imated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
161 BILLION GIGABYTES HEALTH MONITORS

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You

30 BILLION You

PIECES OF CONTENT ‘@‘
are shared on Facebook

every month

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

Poor data quality costs the US
economy around

don't trust the information
they use to make decisions .

Veracity

; UNCERTAINTY
4 OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




What is Data Science

Data science is the study of generalizable extraction of knowledge from data [2].

Data Science

Data Mining

Machine
Learning

Machine Learning vs. Data mining vs. Data science

[2] Kulin, Merima, Carolina Fortuna, Eli De Poorter, Dirk Deschrijver, and Ingrid Moerman. "Data-Driven Design of Intelligent Wireless Networks: An
Overview and Tutorial." Sensors 16, no. 6 (2016): 790. 6



What is Machine Learning

Machine Learning is a subset of artificial intelligence in the field of computer science that
often uses statistical techniques to give computers the ability to “learn” (i.e., progressively
improve performance on a specific task) with data, without being explicitly programmed.

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, Driving Forces
act, and adapt

— Explosive growth of data in a great
variety of fields

* Cheaper storage devices with

MACHINE LEARNING . .
Algorithms whose performance improve h Igh ercapac Ity
as they are exposed to more data over time e Faster communication
* Better database management
DEEP systems

LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

— Rapidly increasing computing power



What is Machine Learning

Deep Boltzmann Machine (DBM)
Ceep Belief Networks (DBEN)
Convolutional Neural Network (CNN)

~

Stacked Auto-Encoders

Random Forest
Gradient Boosting Machines (GEM) |

Boosting |

Bootstrapped Aggregation (Bagging) 1\ Ensemble

- Deep Learning
S

AdaBoost r
)

Stacked Generalization (Blending)

Gradient Boosted Regression Trees (GBRT)
Radial Basis Function Network (REFN)
Perceptron |

Back-Propagation
Hopfield Netwaork

J
Ridge Regression
_—

Least Absolute Shrinkage and Selection Operator (LASS0O)

Elastic Net
- |

y
Cubist _
One Rule (OneR) |

Least Angle Regression (LARS)

R
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Repeated Incremental Pruning to Produce Error Reduction (RIPPER)  /

Zero Rule (ZeroR)

Linear Regression

Ordinary Least Squares Regression (OLSR) |

Stepwise Regression

Multivariate Adaptive Regression Splines (MARS)

Locally Estimated Scatterplot Smoothing (LOESS)

Logistic Regression

-, MNeural Networks
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Regression
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E'_T_Machine Learning Algorith

MNaive Bayes

Averaged One-Dependence Estimators (AQODE)

Bayesian Belief Network (BEN)

Bayesian

Gaussian Maive Bayes

ms
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\‘\ Dimensionality Reduction |~

Multinomial Naive Bayes

~ Bayesian Network (BN)

Classification and Regression Tree (CART)

-

I.-'r Iterative Dichotomiser 3 (ID3)
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Chi-squared Automatic Interaction Detection (CHAID)

\_ Decision Stump
|, Conditional Decision Trees
| M5

Principal Component Analysis (PCA)

[ Partial Least Sguares Regression (PLSR

| Sammon Mapping

[ _Multidimensional Scaling (MDS)

" Projection Pursuit

Principal Component Regression (PCR)

| Instance Based |-

g

k-Medians

\ Clustering |-
\—¢
f\\.

p

. Partial Least Squares Discriminant Analysis

Mixture Discriminant Analysis (MDA)

Quadratic Discriminant Analysis (QDA)

. Regularized Discriminant Analysis (RDA)

Flexible Discriminant Analysis (FDA)

Linear Discriminant Analysis (LDA)
k-Nearest Neighbour (kNN)

Learning Vector Quantization (LVQ)
Self-Organizing Map (50M)

Locally Weighted Learning (LWL)
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k-Means

Expectation Maximization

Hierarchical Clustering




Big Data and Machine Learning
A Marriage Between Giants!

Image
Structure Classification
Discovery Feature ° Customer
. @ Elicitation Fraud @® Retention
Meaningful Detection ®

compression

DIMENSIONALLY

REDUCTION CLASSIFICATION

@ Diagnostics
Big data

Visualisation

® Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING ® Predictions

CLUSTERING

Targetted MACHINE @ Process

Marketing Optimization

LEARNING .
]
Customer New Insights
Segmentation

REINFORCEMNET
LEARNING

Real-Time Decisions ® // / ® Robot Navigation

BIG DATA

Game Al ® @ Skill Aquisition

[ J
Learning Tasks

ANALYTICS
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The Ship Data Center

Neste Cosco

Maersk

ABS

Vessel Operational

Vessel
Position \% Performance Data
Data
Product usage . Selection of
specific data _— - Control
V4 +—— Systems
\ 5 AT data
| == | o
S, ¢
Environmental
5’ data
g / Product condition
- / o Fuel and efficiency specific data
Vibration, Oil monitoring specific data (temp, pressures, etc.)

(particles, moisture),
speed, load, steering
angle



The Ship Data Center

+ GPS
+ Navigation systems

%

+ Controllable Pitch Propellers
* Torque meters
» Steering systems

fﬁ’; mr Py * Refrigeration

+ Air conditioning

* Reverse osmosis
+ Steam evaporators

« Fe
+ Ballast management ¢ Reduction * Main propulsion diesel engines »  Waterjets Compressors
systems gears + Ship’s service diesel generators * Fin stabilizers * High pressure
* Oily water + Transmissions * Emergency generators * Thrusters * Medium pressure
separators v * Low pressure
+ Sewage / gray-water ﬂ * De-ballast
systems COMPressors
* Ballast water ' :
treatment systems «  Fuel & lube oil * Gas turbine main engines Fuel flow  Tanks levels Additional data inputs
systems * Gas turbine generators meters * Fuel oll * Fluid Analysis / SOS
* Purifiers * Auxiliary gas turbines * Lube oil + Visual (manual) inspections
+ Service &transfer e« Gas turbine starting systems + Cargo + Additional / aftermarket sensors
pumps - + Ballast (bearing, oil condition, vibration, etc)
Other auxiliaries
+ Waste heat boilers + Feed & booster pumps » Specialized

+ Chill water pumps  + Seawater service & fire pumps

equipment

+ Cathodic protection + Deck equipment

1



The Ship Data Center

Meteorological Information
. =

| Wind Speed g

e/
Ship Information

Gearbox

local data

: server

-
Propellers _
Shaft line

Ships Data Center

)

-

- VW Navigational

Meteorological

data

Operational Optimization

* Fleet Optimization

* Fleet Monitoring and Control
* Route Optimization

* Performance Management

* Decision Support Systems

Health Management

* Remote Machine Diagnostics
* Predictive maintenance

* Reliability and Redundancy

» Safety and Security Systems

Remote Control

* Operations Management

* Situational Awareness Interface
* Human Interaction Interface

* Remote Deep Sea Navigation

Situation Awareness

¢ Obstacle Detection
¢ Collision Avoidance
* Environmental Condition Monitoring

12



The Ship Data Center

4-

—
Ships Data Center w .

A ;

Al
Metrological
data
Machinery
sensor data

From Data to Knowledge: Unlocking the Power of Data for Marine

13



The Ship Data Center
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Data-Driven Models

Herbert Alexander Simon: “Learning is any process by which a system improves
performance from experience”.

Machine Learning is concerned with computer programs that automatically improve their
performance through experience.

Role of Statistics: Role of Computer science:
* Inference from a sample » Efficient algorithms to solve the optimization problem
* Representing and evaluating the model for inference

Traditional Modelling Data-Driven Modelling

Validation
Data
: Dqta
v Training
Input Output—» Output

15



Data-Driven Models

Operation

Assembly

>

Value

y

Data & KnowHow

Models

Descriptive
Analytics

Why did
it happen?

Diagnostic
Analytics

What will
happen?

Predictive

Analytics

Insight

How can we
make it happen?

Prescriptive

Analytics

Foresight

Difficulty
16



From Predictive to Prescriptive Analytics

While Descriptive, Diagnostic, and Predictive Analytics are quite exploited in research and
practice, fewer examples of Prescriptive Analytics can be found.

Prescriptive Analytics is the effort to fully automatize the process of taking decisions and
actions starting from the data about the problem with no human intervention making specific

processes autonomous.

This process is limited by the specific domain which requires that the final decision should be
undertaken by a human operator who takes responsibility for that choice.

Artificial
Intelligence

Prescriptive

Analytics .
Visual

........... : Analytics

-
.....
----------
. .
.

Machine
Learning
Predictive
Analytics

Mining  piaenostic
Analytics

-
-
---
'.‘

Data
Wrangling

Descriptive
Analytics

Human-Machine
Interaction

17



From Predictive to Prescriptive Analytics
The Staircase Approach: Learning, Reasoning and Planning

LEARNING
ih.
Data | REASONING
® M
\‘ﬁEI . Pr&ctive
Knﬁ;:;rd } Models PLANNING

o

A -
Causal
Constraints Models
[ ]

] — A
Decision &
Actions

Preferences



White Box Approach

Input
Endogenous and
Exogenous Parameters

g

System

— Actual Output

Prior
Knowledge,

Model

» Estimated Output

Experience



Black Box Approach

Input »  System > Actual Output
Endogenous and
Exogenous Parameters Past
Data
Pastor | —> Model > Estimated Output
Future Data "

* Black Box Models make use of statistical inference procedures based on historical
data collection.

* These methods do not require any a-priory knowledge of the physical system and
allow exploiting even measurements whose role might be important for the calculation
of the predicted variables but might not be captured by simple physical models.

« The modelresulting from a black-box approach is not supported by any physical
interpretation and a significant amount of data (both in terms of number of different
measured variables and of length of the time series) are required for building reliable
models. 20



Gray Box Approach

Input »  System

Endogenous and

Exogenous Parameters

Past or »  Model
Future Data >

Past
Data

» Actual Output

Prior
Knowledge,
Experience

» Estimated Output

21



From Predictive to Prescriptive Analytics
Optimal Topology Design

Cost Function

mini:uize flz)

subject to gi(z)<0, i=1,...,m
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Physics Informed Models

Vessel Vessel Operatianal
Position ~ ﬁ Performance Data
Data o v 4]
Product usage d / Selection of
specific data e i - Control
ps ) &« Systems
\ : S e p— data

Environmental

,ﬁﬁ 4 >

Product condition
Fuel and efficiency specific data

Vibration, Oil monitoring specific data Hemp, pressures, ¢}

(particles, moisture),
speed, load, steering
angle

A 4
(5]
<
&
a
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Hybrid Models Input

Endogenous and

Exogenous Parameters

Past or
Future Data

vy Vv
<
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&
[ty
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Past
Data

v

Prior
Knowledge,
Experience

v

Actual Output
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Physics Informed Models

|

Data Loss Function:.Jy

PDE
aT a*T i a*T 0T arT arT oT
9 P ot~ \ox2 T oyr T 9:2) or "oy "o
— — >
6y & —T7 %4_%_{_8“2 8_TB_D+3_T(9_D+8_T(9_D
52 o2 Ox dy 0z Or dr Ay Oy 0z Oz
= R
dy? 022
BCs & 1Cs
ﬁ ) Fluid inlet condition 7T(z = 0,4, z2,t) = The
Oz Fluid outlet condition T(x =1,y,2,t) = Teoid
o Initial (t=0) condition T(z,y,2,t =0) = Teoid
— —> —
dy Wall condition (y = 0) Dw = kT(z,y = 0,t)
Y
0 Wall condition (y = 1) Dw = kT (x,y = 1,t)
FZ o
Wall condition (z = 0) D—aT(I’; =) = kT(z,z=0,1)
2
! Wall condition (z = 1) DM = [§Tan, m = 1,7)
z

1

Physics Loss Function:J,




Challenges

Learning with Privacy
Learning from data while preserving the privacy of individual observations:

1. Data Preserve privacy is to corrupt the learning procedure with noise without
destroying the information to extract.

2. Exploit the data in a federated way, leaving the data in the hand of the data owner,
centralizing only aggregated information.

. NP
1 I H H ﬁ
Vessel 1 Training the local model

& preservin
data dal::a privac?

Federated
server

|.n| I H ” ﬁ
Vessel 2 Training the local model

& preserving
data data privacy

Global Model

|.u| I H H %
Training the local model

Vessel k & preserving
data data privacy




Challenges

One of the legal bottlenecks hampering the application of advanced analytics to real
problems is the “right to explanation”.

Such requirement directly collides with the limitations of many technologies in terms of
Interpretability and Explainability.

These issues have lately come to the forefront of researchers, primarily due to the
widespread development and application of Deep Learning.

As they amplify shallow neural networks, Deep Learning may become an extreme case of
black box models, further reducing their Interpretability and Explainability.

L \
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Challenges

Safety, Security, and Reliability

model
Original Image ice bear
/® 85,8% confidence
&
@
®
9
XN TS A
7NN/ ~0 @
NSN3
\Y/Za\Y ®
e
 Adversarial Perturbation
created by attack
Adversarial Exampl VY dishwasher

100% confidence



Hull and Propeller Marine Fouling

Digital Twin Solutions
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Hull and Propeller Marine Fouling
Motivation and Background

[1] Song, C., & Cui, W. (2020). Review of Underwater Ship Hull Cleaning Technologies. Journal of Marine Science and Application, 1-15.

[2] Christian Schack, FORCE Technology (presentation) March 2010.

[3]1 T. Munk, D. Kane, D. M. Yebra. (2009). The effects of corrosion and fouling on the performance of ocean-going vessels: a naval architectural perspective. Chapter 7 of Advances in marine
antifouling coatings and technologies, Materials.

[4] Naval Sea Systems Command, Naval Ships’ Technical Manual Chapter 081. (2006). Waterborne Underwater Hull Cleaning of Navy Ships. Revision 5. 29



Hull and Propeller Marine Fouling

As the fouling increases with time the drag on the hull increases, the propeller efficiency
reduces and the hull speed decreases.

An increase in engine power is therefore required to maintain the desired speed.

More engine power — more fuel — increase of CO2 released

Even a 1mm layer of accumulated fouling or calcium deposits on
a propeller will significantly increase its roughness, and within
12 months can increase an ISO class | to an ISO class Il, or a class
II'to a lll.

Figures indicate a 6 to 12% gain in fuel consumption in polishing
a propeller from a class Ill condition to a class | condition.

30



Hull and Propeller Marine Fouling

Preventive

!

Coatings
Anodes

Inspections

!

Fatigue Studies
Anodes Renewal

Coatings Renewal

Propeller Cleaning

Planned

Cost Effective

Coatings Repairs
Steelwork Repairs

Hull Cleaning

Propeller Cleaning

Coatings Repairs
Steelwork Repairs

Hull Cleaning

Propeller Cleaning

Unplanned

Cost Inefficient

31



Hull and Propeller Marine Fouling

Hull Cleaning

—— Planned —— Cost Effective
Propeller Cleaning

When?

32



Hull and Propeller Marine Fouling

It is challenging to assess Ship performance drop-off due to hull and propeller fouling because
factors as wind, waves, currents and prime movers' efficiency are variable.

O

,) : . .
Sofi \ltl G * Fuel consumption often a disappointment
aring roup . Torsion meter provides most accurate and valuable data

360° Coating & Engineering Experts

No matter the methodology used, the determination of when it is time to clean the propeller
and the hull is dependent on what performance drop off the ship operator or Charterer is

prepared to accept.

This led to the conclusion that no fixed time parameters for cleaning can be defined.

33



Hull and Propeller Marine Fouling

Is it possible to predict the clean and not-clean hull condition based on operational data
provided from the automation system?

Clean — Label O Fouled — Label 1
' 27/03/2011 ' P

P
e

Suppose to carry out an experimental campaign and to collect data charactering the behavior and
performance of the vessel with the label (1= Fouled, O=clean).

Machine Learning
|
I I

Supervised Learning

]
| | | I I

Classification

From Data to Knowledge: Unlocking the Power of Data for Marine 34



Hull and Propeller Marine Fouling

Novelty (outlier) detection methods address the problem of identifying new or unknown data
that a data analytics system has not been trained with and was not previously aware of.

An outlier is an observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism [4].

Machine Learning

Unsupervised Learning
| ]
I I I M I
Anomaly
Novelty
Detection

Novelty detection is also referred to as one-class classification because it is trained only on the
one class of known data (data from sea trials, in clean hull and propeller conditions).

[4] Hawkins, D. M. (1980). Identification of outliers (Vol. 11). London: Chapman and Hall.

From Data to Knowledge: Unlocking the Power of Data for Marine 35



Hull and Propeller Marine Fouling
Novelty Detection Approaches
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Hull and Propeller Marine Fouling
Novelty Detection Approaches
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Hull and Propeller Marine Fouling
The Prince Royale Vessel

Main particulars of The Princess Royal.

Ship feature Value Unit
Length overall 18.9 [m]
Length between Perpendicular 16.45 [m]
Breadth Moulded 7.03 [m]
Displacement (Lightship) 36.94 [t]
Draught (Lightship) (Amid - FP - AP) 1.65-1.6-1.7 [m]
Deadweight 7.32 [t]

Propeller, engine and gearbox particulars of The Princess Royal.

Propeller particulars
Number of Propellers
Propellers Type
Propeller Diameter
Number of Blades
Engine particulars
Number of Engines
Engine Make and Model
Rated Power

Rated Speed

Rated Fuel Consumption
Gearbox particulars
Number of Gearbox
Reduction Ratio

Fixed
0.75 [m]
5

2

MAN D2676 LE443
537 [kW]

2300 [rpm]

142 [Ltr/hr]

2
1.75:1

30/03/2017

27/03/2017

Clean Hull

Fouled

Two separate sea trials were carried
out six months apart to allow
fouling to take place on the hull
surface under normal operational
conditions.

Weather station

{ V5. woodnom, |
ewoodhomMuEeum

67 and Northumberland... v,

hington

- East Sleekburn
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Hull and Propeller Marine Fouling
The Prince Royale Vessel

Measured values available from the monitoring system.

Feature Variable name Unic Data logging system

X1 Magnetic Heading [deg]

Xa True Heading [deg]

X3 Latitude | A

X4 Longitude SRR

X5 Speed through water [Kn]

X6 Water Depth [m]

X7 Humidity [%] .
. Rudder angle (deg] Weather station
Xg Course over ground [deg]

x,0 Wind Apparent Speed [m/s] DGPS
X11 Wind Apparent Direction [deg] : ’ i
X12 Air Temperature °c]

X13 Air Pressure [mbars]

X14 Relative Humidity [%]

X15 Coolant Pressure (port) [bar]

X16 Coolant Temperature (port) ’cl

X17 Engine Speed (port) [rpm]

Xig Engine Torque (port) [%]

X19 Fuel Delivery Pressure (port) [bar]

Xag 0il Pressure (port) [bar]

Xo1 0il Temperature (port) °cl

Xao Crankcase Pressure (port) [bar]

Xa3 0il Level (port) [%]

Xa24 Fuel Flow (port) [Ltr/hr]

X5 Fuel Return (port) [%]

Xo6 Fuel Supply Pressure (port) [Ltr]

Xo7 Fuel Consumption (port) [Ltr/hr]

Xz8 Coolant Pressure (starboard) [bar]

Xag Coolant Temperature (starboard) ‘el

Xa1 Engine Speed (starboard) [rpm]

Xao Engine Torque (starboard) [%]

X33 Fuel Delivery Pressure (starboard) [bar]

X3q 0il Pressure (starboard) [bar]

Xas 0il Temperature (starboard) [°c]

Xzp Crankcase Pressure (starboard) [bar]

Xaz 0il Level (starboard) [%]

Xag Fuel Flow (starboard) [Ltr/hr]

Xag Fuel Return (starboard) [%]

X40 Fuel Supply Pressure (starboard) [bar]

X41 Fuel Consumption (starboard) [Ltr/hr]

39



Hull and Propeller Marine Fouling

Data Pre-Processing — Some False Friends

-1.46 . 35 . ; ;
e Clean e Clean
* Fouled (YT ﬁ30 'l ® Fouled 'i
—-1.47¢ ﬁ\. | Eo5t "o §°
3 w.p:r X h 207" o < 40,
= %5e0 o
R e S - ¢ :
= ° et — 15+ °
g ' Bt 2.0l
— -1.49 ¢ 'i - = bt s oo, ~5‘ ¥
\ %
-1.5 : : : 0
551 55.12 55.14 55.16 55.18

0 2 4 6 8 10 12 14 16 18
Latitude [°] Speed Over Ground [Kn]



Hull and Propeller Marine Fouling
Data Pre-processing - Data fusion

Relative error in percentage

s The Importance of the weather

joodhorn Museum
D e,

Monitoring System + Weather data

Newbiggin Ness buoy data.

Parameter Unit
Significant Wave Height [m]
Wave zero up crossing period [s]
Wind Wave Significant Wave Height [m]
Wind Wave Peak Period [s]
Wind Wave Peak Period Direction 1
Swell Significant Wave Height [m]
Swell Peak Period [s]
Swell Peak Period Direction [’1
Sea Surface Elevation [m]
Sea Temperature [°C]

Starboard consumption Model o Port consumption Model
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Hull and Propeller Marine Fouling

Data Pre-processing - Data fusion

Starboard consumption Model

Relative Importance of Inputs in estimating STB Fuel Consumption

STB Engine Speed [rpm]
STB Engine Torque [%]
SOG [kn]
STB Oil Temperature [°C]
STB Oil Pressure [bar]
PS Engine Torque [%]
PS Oil Pressure [bar]
Rudder Angle [deg]
PS Engine Speed [rpm]
Time [hh:mm:ss]
Magnetic Heading[deg]
STW [kn]
PS Oil Temperature [°C]
PS Coolant Pressure [bar]

Variable Rank

NN MNMN NN NN — — s
o]

STB Fuel Delivery Pressure [bar]

True Heading [deg]
COG [deg]
Air Pressure [mbars]

|

PPN = = bl

PS Coolant Temperature [°C}

PS Fuel Delivery Pressure [bar]
STB Coolant Temperature [°C]

OONOUTAWN=OWNOUIARWN—=OWO~NOURWN—-O

STB Coolant Pressure [bar]

T T

0.1 0.2
Variable Importance

o

Variable Rank

Port consumption Model

Relative Importance of Inputs in estimating STB Fuel Consumption

STW [kn]
PS Qil Pressure [bar]
PS Engine Speed [rpm]
Time [hh:mm:ss]
PS Engine Torque [%]
PS Coolant Pressure [bar]
STB Engine Speed [rpm]
PS Qil Temperature [°C]
STB Engine Torque [%)]
STB Coolant Pressure [bar]
STB Oil Pressure [bar]

SOG [kn]
True Heading [deg]
Magnetic Heading[deg]

STB Fuel Delivery Pressure [bar]
STB Coolant Temperature [°C]
PS Fuel Delivery Pressure [bar]
RH

Rudder Angle [de

COG [deg]

PS Coolant Temperature [°C]
STB Oil Temperature [°C]

OONOOTEWN—=COONOUIERWN=-OOONORWN—=O

0.1 0.2
Variable Importance

o
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Hull and Propeller Marine Fouling
Data Pre-processing - Data fusion

The Failure of Linear Models - PCA
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Hull and Propeller Marine Fouling

1. Average Misclassifications Rate (AMR) is the mean number of misclassified samples

AMR = — ZeH N,4)

Cu(f(z),y) = [f(z) # Y

2. the Confusion Matrix, which measures four different quantities

N =0 (it =gt ngt=

TP:%;_f(azﬁ:yﬁ/\yﬁzﬂj

FN:%iif(wﬁ#yff\yEZ—li
=
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Hull and Propeller Marine Fouling

Algorithm 1:

One-Class SVM (OCSVM) is a boundary-based anomaly detection method, inspired by SVM, which encloses
the inlier class in a minimum volume hypersphere by minimizing a Tikhonov regularization problem, similar
to the one reported for the SVM framework.

Like traditional SVMs, OCSVM can also be extended to non-linearly transformed spaces using the Kernel
trick for distances.

The hyperparameters OCSVM HOCSVM are:

* The kernel, which is usually fixed (Gaussian Kernel)
* Its hyperparameter h,

* The regularization hyperparameter h,

Algorithm 2:
The Global KNN (GKNN), inspired by the KNN, was originally introduced as an unsupervised distance-based
outlier detection method.

The hyperparameter of GKNN is the number of neighbours to be considered h;.
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Hull and Propeller Marine Fouling

AMR, TP, TN, FP, and FN of the models learned with the different algorithms
(OCSVM and GKNN) when [ = 150 and v € {10,20,30}.

v AMR TP TN FP FN

OCSVM 10 0.04 = 0.01 478 £ 1.2 478 £ 1.0 22+ 10 1.8+ 1.1
20 0.04 = 0.01 48009 480x 1.1 20+ 10 20+ 1.0
30 0.03 = 0.01 484 £ 1.0 484 =09 1.6 + 1.0 14+ 1.0

GKNN 10 0.05 + 0.02 476 £ 2.3 476 =+ 1.8 24+ 1.9 26 £ 19
20 0.04 + 0.02 482 £ 2.0 482+ 19 1.8 + 23 22+20
30 0.03 = 0.01 487 £1.2 487 £ 1.1 1.3+ 1.0 1.7+ 0.8

AMR, TP, TN, FP, and FN of the models learned with the different algorithms
(OCSVM and GKNN) when v = 30 and | € {30,70,150}.

l AMR TP TN Fp FN

OCSVM 30 022+ 011 395+108 395+113 105+ 107 115+ 115
70 0.07 £ 0.04 464 + 3.5 464 + 3.6 3.6 +£3.7 34 + 38
150 0.03+0.01 484+ 1.0 484 + 09 1.6 +£ 1.0 14 +1.0

GKNN 30 025+ 015 379 + 150 379+105 1214143 129+ 169
70 0.11 +£ 0.06 451 + 6.6 451 + 6.2 4.9 + 6.0 6.1 +6.1
150 0.03+0.01 487 H12 487+ 1.1 1.3 +£1.0 1.7 £ 0.8

OCSVM
X5

X17

X30

X18

X31
GKNN
Xs

X17

Xi8

X30

X31

Speed through water [kn]
Engine Speed (port) [rpm]
Engine Speed (starboard) [rpm]
Engine Torque (port) [%]
Engine Torque (starboard) [%]

Speed through water [kn]
Engine Speed (port) [rpm]
Engine Torque (port) [%]
Engine Speed (starboard) [rpm]
Engine Torque (starboard) [%]

0.12 + 0.03
0.07 + 0.03
0.07 + 0.03
0.06 + 0.04
0.06 + 0.04

0.14 + 0.04
0.08 + 0.03
0.07 + 0.04
0.07 + 0.04
0.06 + 0.04
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Digital Twin Solutions
Motivation and Background

Is it possible to build a data-driven Digital Twin of the ship and use it for estimating the speed loss due to
marine fouling?

Data Driven Methods can be applied for predicting the speed, and therefore the speed loss of the ship, able
to act as a Digital Twin of the ship itself.

Deep Extreme Learning Machines can be used for estimating the speed loss caused by the marine fouling
effects on the ship hull and propeller, leveraging on the large amount of information collected from the on-
board monitoring system sensors.
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Digital Twin Solutions

V1 Il V2
Ship ]‘”_mm‘ - \i‘llf" [ Uit | \'flll_lt ‘ Uit | | Variable name ] Unit “ Variable name I Unit ‘
Deadweight 46764 [t] 46067 [t] =
Design speed 15 [knots] 15.5 [knots] TllneStaHlp [f] Sea dEPLh [‘”’l}
Draft (summer SW) 12.18 [m] 12.2 [m] Latitude [°] || Seawater temperature [°C]
Length between perpendicular llT{i.Ti [m] l.?“fi"NJS ;m] Longitude [ CPP set point [
o mided e | w2 ] ER Nhin engies ol consumption | [£/1] | CPP fedback y
Auxiliary engines installed power 682x2 kW] 1176 x3 (kW] Auxiliary engines power output [ky/h] Fuel density [k'y/"nd}
Shaft generator power 3200 [kW] Shaft generator power [kg/h] || Fuel temperature [c]
Exhaust boilers steam generator 750 %2 [kg/h] 1130 |kg/h| Propeller shaft power [[\H] Ambient pressure [bCIT‘}
,-}11xilim*_\- I»l)il«‘}'h steam generator || 14000x2 H.:_q/h] 14000 %2 |kg/h| Propeller speed [rpm] Humidity 0
Fuel consumption 34.7 | [mt/day| 31.8 | [mt/day| Ship draft (fore) [m] Dew point temperature 0
Ship draft (aft) [m] || Shaft torque [ENm]
Draft port [m] || Rudder angle [
Draft starboard [m] || Acceleration x direction [m/s%]
Relative wind speed [m/s] || Acceleration y direction [m/s?]
Relative wind direction [] || Acceleration z direction [m/s?]
GPS heading [] || Rell [
Speed over ground [knots] || Pitch ]
Speed through water (knots] || Yaw [

Date | Event

21/03/2012 | Vessel delivery

29/10/2012 | Propeller cleaning

30/03/2013 | Hull cleaning

01/08/2013 | Loss of the LOG speed measurement

17/07/2014 | Change from fixed-speed to variable-speed operations

V2

| Date | Event

19/04/2014 | Propeller polishing

20/12/2014 | Hull cleaning

28/08/2015 | Hull cleaning and Propeller polishing
28/11/2015 | Dry-docking




Digital Twin Solutions
Methodology

To this aim, a two-phase approach can be applied:

Phase 1: a data-driven model based Digital Twin is built, leveraging on the large amount of
information collected from the on-board monitoring system sensors.

Phase 2: the model developed is applied in order to estimate the speed-loss of the ship and its
drift.

Phase 1

KPI
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Digital Twin Solutions

Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines

Deep Extreme Learning Machines are the evolution of the Shallow Extreme Learning Machine for the
purpose of creating an algorithm able to both learn new features from the available raw variables and create

a regression model.

Shallow Extreme Learning Machine
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Digital Twin Solutions

Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines

h Hidden-layer output corresponding to the input sample X
F(X) =) wjgi(X), g RIS R, g€ {L-- k)
J=1

w is the output weight vector between the hidden layer and the output layer. X ={xq1,x3, ... X4}

vy = {V1,0, V1,1, V1,2, - V1,a}
Input weights (connecting input neurons to hidden neurons)
v € RY, je {1,--- ,h} vy = {V20, V21, V2,20 - V2,a}

’U;-), j€{l,---,h} Biasterm

@ : R — R Nonlinear activation function

. . . , V1 X+ V1o
w € }Rh Output weights (connecting hidden neurons !
to output neurons without any bias)

Neuron’s response to an input stimulus:

C,O(’Uj°X—|-’U§-]), je{l,---,h}

() X+ 172’0

Overall output function of the network:

h
FX) =D wip(; - X +v))

i=1

Vn X+ vhlo
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Digital Twin Solutions

Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines

p(v1-X14+0Y) - plop-Xi+ul)] [o' (X3)

V= : : = : Activation Matrix

p(v1-Xn+v)) -+ plon-Xot1))] [¢7(Xn)
V; j is the activation value of the j-th hidden neuron for the i-th input pattern

The training problem reduces to minimisation of the convex cost

w* = argmin ||Vw — y||
w
A matrix pseudo-inversion yields the unique L, solution:
w* =VTy.

The simple, efficient procedure to train an Extreme Learning Machines involves the following steps:
1. Randomly generate hidden node parameters (in or case v; and bias v?) for each hidden neuron
2. Compute the activation matrix V

3. Compute the output weights by solving the pseudo-inverse problem: w™ = V+y.

Regularisation strategies:

w* = argmin |[Vw — y||° + A |w|*——w* = (VTV + A1) "'V Ty
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Digital Twin Solutions

Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines

Due to its shallow architecture, feature learning using Shallow Extreme Learning Machine
may not be effective even when h (the number of the neuron is large — EXTREME!!).

Since feature learning is often useful to improve the accuracy of the final model, multilayer (deep)
solutions are usually needed.

Multilayer learning architectures are developed using
Extreme Learning Machine-based autoencoder as its
building block, which results in a sort of Deep Extreme
Learning Machines.

At each layer i of the [ layers, each one composed of h;
i€{1,...,l} neurons, the Deep Extreme Learning Machines
tries to reconstruct the input data and the outputs of the
previous layer are used as the inputs of the next one.

h d h
i—1 j=1 i—1

Deep Extreme Learning Machines
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Digital Twin Solutions

Phase 2: Speed-loss Estimation

Once the Deep Extreme Learning Machines-based Digital Twin has been built, it is possible to apply it to the
rest of the data in order to estimate the expected speed (v,,,) and compare it with the measured one
(Vnes) for the purpose of computing the percentage speed loss SL%.

ISO 19030 procedure

The calculation of the percentage speed loss based on the corrected propulsion power.
The expected speed v,,,, is computed based on reference, clean-hull data starting from actual
measurements of draft (T ) and trim (6):

Vezp = f(PI;,T, 5)

where Pp’ is the corrected power for accounting the
effect of the draft, and trim.
This allows to compute the percentage speed loss as:

Speed loss [%]

ISO 19030
procedure
Um = Vexp
SLy, = 100 ———F E | |
Vexp R R R N
Deep Extreme SR3IRRRIIIIRRERRRRRIRRRRRRE
3385888853958 :88:53855539%8%3
. . Z 05 wz=29<3 5 < 0 Z A 9 e LS S L 0
Learning Machines Date

| Speed loss —Actual Events —RT-SVR
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Digital Twin Solutions

Phase 2: Speed-loss Estimation

The result of this process is a series of values in time representing the trend of the percentage
speed loss.

9(t) = at+ bwitha,b e R

a*,b* = arg min Z max|min[at + b — SLy(t), €], €]
a’bERte{tl ta,. ..}

The automatic identification of changes in time of the distribution of the percentage speed
loss was carried out, in order to check if those changes were in correspondence to
maintenance activities and testify the quality of the estimated speed loss.

For this purpose, Kolmogorov—Smirnov test (Smirnov, 1944) has been adopted.

This nonparametric statistical test can be exploited to check if two different data samples of
data are derived from the same probability distribution.

Null Hypothesis: the two samples belong to the same distribution.
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Digital Twin Solutions

Results
0.06 0.1
0.08
o 0.04 o
g ’ g 0.06
o) o
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Speed loss [%]
(a) V1

0
Speed loss [%]

(b) V2
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Digital Twin Solutions
Results

Predicted speed loss (ISO) [%]
Predicted speed loss (ISO) [%]
o

-20 |
-30 ' - ' ' . -30 : . . . . |
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
Predicted speed loss (DELM) [%] Predicted speed loss (DELM) [%]
(a) V1 (b) V2
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Vi
Change from fixed-speed to variable-speed operations

Loss of the LOG speed measurement

Propeller cleaning

Vessel delivery
Hull cleaning

| Event

21/03,/2012
29/10/2012
30/03,/2013
01/08,/2013
17/07/2014

| Date

ISO 19030 Procedure

Digital Twin Solutions

Results
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Digital Twin Solutions
Results

V1

| Date | Event

21/03/2012 | Vessel delivery

29/10/2012 | Propeller cleaning

30/03/2013 | Hull cleaning

01/08/2013 | Loss of the LOG speed measurement

17/07/2014 | Change from fixed-speed to variable-speed operations

Deep Extreme Learning Machines-based Digital Twin

T T T T | T T T T T T T T T T T T

Speed loss [%]

Apr 2013 it g

Jd Il | l 1 | | | | | | | | | 1 | | 4 | l l: | 3l |

N N N M M ™ M M M M M O Hm M S+ F F + &+ < <+ < <+ <
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8 5 9 @ © 8 @ 5 3 3 o 8 5 o0 @8 0 8 % W3 S5 30 8
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Date
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From Data to Knowledge: Unlocking the Power of Data for Marine 59



Digital Twin Solutions

Results

V2

Propeller polishing
Hull cleaning

I Event

Hull cleaning and Propeller polishing

19/04/2014
20/12/2014
28/08/2015

[ Date

28/11/2015 | Dry-docking
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Digital Twin Solutions

Results

V2

I Event

[ Date

Propeller polishing

Hull cleaning

Hull cleaning and Propeller polishing

Dry-docking

19/04/2014
20/12/2014
28/08/2015

28/11/2015
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Digital Twin Solutions

Results

V2

| Event

Propeller polishing

Hull cleaning

Hull cleaning and Propeller polishing

Dry-docking

[ Date

19/04,/2014
20/12/2014
28/08/2015

28/11/2015

Deep Extreme Learning Machines-based Digital Twin
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V2
Hull cleaning and Propeller polishing

Propeller polishing
Hull cleaning
Dry-docking

| Event

19/04/2014
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Digital Twin Solutions
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Digital Twin Solutions

1. The speed loss calculated using the linear robust regression provides an accurate picture of
the status of the hull and propeller fouling at a specific point in time.

2. This information could be used effectively to optimize the scheduling of maintenance
events, as today, hull and propeller cleaning are performed at fixed intervals, or in
correspondence of other maintenance events. In practice, they could be performed more or
less often depending on the actual status of the hull and propeller, according to methods
based on the minimization of costs, fuel consumption, and emissions.

3. Inthe future, the proposed method could be exploited also for the evaluation of the
effectiveness of different energy-saving solutions, such as the case of a new propeller design
or the evaluation of the benefits deriving from the application of sails.

4. The proposed method, will facilitate the verification of the impact of new technologies or
vessel components, thereby allowing to increase the transparency of energy and fuels
efficiency technologies by providing a method to validate fuel savings claims made by the
manufacturers and providers, supporting further uptake in the shipping industry.

64



Induction Motors Bearings Monitoring

Condition Based Maintenance (CBM) allows .
potential failures early detection and enables DATA ACQUISITION
to estimate, the time remaining before the

failure, and the equipment estimated life in ‘
accordance with relevant models/algorithms.

Are data without failure and or

1 .
DATA ACQUISITION performance degradation useful?

NO

2
DATA PROCESSING

Digital Twin

3
MAINTENANCE
DECISION-MAKING

65



Induction Motors Bearings Monitoring

Motivation and Background
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Induction Motors Bearings Monitoring

What Next?

our idea, we have
onboard that

We were thinking more to pur approach.

something like this: hat you need

Based on my methodology |
would need to install onboard

the following:

* Temperature sensor

* Torque Sensor

* Speed sensors

* 3-Phase voltage sensor
* 3-Phase current sensor
* Vibration Measurements
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Induction Motors Bearings Monitoring

Motivation and Background

Induction Motors (IMs) are ubiquitous in Industrial Systems:

Cheap
Highly efficient

Requiring low maintenance activities

FAILURE RATES

M Bearings
® Windings
m Rotor

Hm Others

Stator Shaft

Bearing 2 Bearing 1

IMs Bearings are subject to continuous mechanical
stress and produce undesirable vibrations when

degraded.

Bearing fault account for the 41% of all IMs failures.
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Induction Motors Bearings Monitoring

Rolling-Element Bearing related defects can be categorized as:
* Quter bearing race defects

* Inner bearing race defects

* Ball defects

* Train defects.

—_—
S

>

The vibration frequencies to detect these faults can be described by the Egzne?jlzring characteristic pa-
following relationships:

D- T 62 | n r 6
fod—% (1_% 005(7)) foa= f (1_D2 0052(7)) fia= éfr (l—l—D cos('y)) ftr:% (1—5 COS(’Y))

A common approach is to analyse fault features in the vibration signal collected with vibration probes.

Vibration sensors are not cheap, are prone to faults, are hard or impossible to install on many systems, and are sensible to
corrosive and dusty environments.

foa: outer race defect frequency
fia: inner race defect frequency
fpa: ball defect frequency

ftr: train defect frequency

fr+ is the shaft rotation frequency
n: rollers number

4: roller diameter of the bearing
D: pitch diameter of the bearing
y: contact angle

0.01

Frequency Spectrum for Current Signals

Current 1
0.008 | Current2| |

0.006 |

0.004

0.002 “

L .
0 50 100 150 200 250
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Induction Motors Bearings Monitoring

Power Supply
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Induction Motors Bearings Monitoring

H1

* Three identical artificially damaged bearings have been used:
* HO=no damages,
* H1 =size-1 artificial induced hole (1.6 mm),
* H2 =size-2 artificial induced hole (5 mm).

* For each bearing damaged condition, four different mechanical conditions have been investigated, applying to the
motor shaft different resistive torques at the same rotational speed.

* Each mechanical condition is identified by the stator current percentage of the rated motor current:

* L1=25%,
* L2=50%,
e L3=75%,
* L4=100%.

For each experiment, once the steady-state conditions have been reached, the stator currents have been acquired for 30
seconds.

Experiments have been repeated 30 times for each damage condition, to build a large enough set of experiments.
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Induction Motors Bearings Monitoring

Methodology
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(i) Data collection & cleaning

(ii) Data partition

Feature Mapping

: Raw Data ([)(.’I.'-)
o 0 o A /-\
| | lg T-\
» > D . Ic :.
s r T = - ° . .
—— |--| ) I
ip I I
': :-
Jiis; I
C® S
3~

Data Pre-processing & Features creation

(iii) Feature mapping

mean(iy, ip)

Std(ig, ip)

Mad (ig, ip)

Max (iq, ip)

Min(ig, ip)

Sma(ig,ip)

Corr(ig,ip)

Energy (ia,iy)

Iqr(i(,, jb)

ArCoef f(iq, ip)

MaxFreq(ig, ip)

MeanFreq(ig, ip)

skeFreq(i,, iy)

KurFreq(iq ip)

BandEn,(ig, i)

BandEngy(iq,ip)

(iv) & (v) Unsupervised

& supervised learning

Decoding

Encoding

Output

Input

The first phase: process of collecting the raw data with an analog to digital converter device cleaned from the higher noise

frequencies.

The second phase: consists in segmenting these raw data in overlapping sliding time windows of 24 s. This quantity has
been selected considering the peculiar characteristic of the studied IM, so to have a window large enough to capture the

behavior of the IM.

The third phase: extraction from the windowed raw data a series of simple yet informative features, which have been

chosen based on previous studies on similar context.
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Time Domain

T (ii) Data partition (iii) Feature maAp?mg

Correlation coefficient between i, and ij, mean (ig, ip)

Average sum of the squares of i, and i, Feature Mannine Std(ig, ip)
eature Mapping Mad (i, iy)

Interquartile range of i, and ip
Signal Entropy of i, and i, Raw Data o(x) Max(iq, ip)
Autoregression coeflicients of i, and i, /‘\ Min(ig, ip)
Mean value of i, and ip, + iy Sma(ig, i)
Standard deviation of i, and ij, Corr(iq.iy)
Median absolute value of i, and i Energy(ia, ip)

i

- ————— - —

t skeFreq(ig, iy)
KurFreq(ig, ip)

v

: . LY : L t
Largest values of i, and i 1 - Iqr(ig, ip)
Smallest value of i, and ip ; : ArCoeff (iq, ip)
b ol . MaxFreq(ig, i)
Frequency Domain . :. . MeanFreq(iq, iy)
[
)

Largest frequency component of i, and i, 8 features
Frequency signal average of i, and i —
Frequency signal Skeewness of i, and i, BandEn, (i, 1) /
Frequency signal Kurtosis of i, and ip .

Energy at 60 different band frequencies of i, and ij

BandEngy(ig, ip)

The result of this feature mapping is a sample x € X € R4 with d = 155 with associated its label y €Y

yl € Yl = {1;213} yz € Yz CR
1 =HO = no damages L1 =25%
Ca e 1 L2 = 50%
2 = H1 =size-1 artificial induced hole (1.6 mm) e
3 = H2 =size-2 artificial induced hole (5 mm) L3 =75%
L4 = 100%
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A total of n = 1400 samples have been collected for solving a multioutput (two labels) and multitasks
problem:

* one label brings to a classification task

* one label brings to a regression one

Drawbacks

N o |

= 1\ \

Risk is to overfit the available data
instead of learning some
meaningful information out of
them.

High dimensional feature mapping ‘ Hard to interpret

High dimensional space and the low number of experiments ‘

Solution
Unsupervised Dimensionality Reduction
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The unsupervised learning feature selection process has been developed utilizing SNNs and DNNs.

instead of learning the relationship between the input space X and the output space Y, try to perform an often lower
dimensional feature mapping, which is able to explain, in a more informative way, the point sampled from X.

Encoding Decoding

Input Output

By staking many autoencoders it is possible to obtain a deep autoencoder:
Encoding Decoding
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Once the representation has been learned, it is possible to use the deep autoencoder in order to learn the
relation between X and Y with the final SNN & DNN architecture

Encoding Decoding Encoding  Decoding Encoding Predicting

Hyperparameters:

* the activation function (e.g. sigmoidal, hyperbolic tangent, and rectified linear);

* the number of layers;

* the number of neurons for each layer;

* the type of regularizes and magnitude of regularization (e.g. norm of the weights, dropout, and early
stopping);

* the loss function (e.g. quadratic and linear);

* the optimizer and optimization time (e.g. stochastic gradient descent and mini-batch gradient descent).
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Projected test point in the two-dimensional space defined by the different networks.

To simulate in a more realistic scenario a reduced amount of labeled samples has been exploited just n €

{100, 150, 200}

SNN n=100

SNN n=150

SNN n=200

s %
&,

+ HO - L1 HO — L3

O H1-11 H1—L3

0 H2 — 11 H2 — L3

HO — L2 + HO-—L4
H1-1.2 O H1-14
H2 — 1.2 O H2 - 14

#ﬁ#-':

+
o

HO = no damages

Sy
&2 *'fgﬁf
Q° L

=

-

H1 = size-1 artificial induced hole (1.6 mm)
H2 = size-2 artificial induced hole (5 mm)

L1=25%

L2 =50%
L3 =75%
L4 = 100%
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Clusters based on load and damage conditions

DNN n=150 y n=
o 4 ,
r 3 v
& >
o ”
”’ >

+ HO—L1 =~ HO—L3  ° HO=nodamages
O H1-11 H1 — L3 * H1=size-1 artificial induced hole (1.6 mm)

O H? — L1 H? — L3 H2 = size-2 artificial induced hole (5 mm)

HO—L2 + HO—L4  ° L1=25% @ @ (C_ N
IR —— 4 4
H2 - L2 O H2-14 . 4= 100% R _ -
HO H1 H2
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Clusters based on load and damage conditions

DNN n=150 y n=
o 4 ,
r 3 v
& >
o ”
”’ >

+ HO—L1 =~ HO—L3  ° HO=nodamages
O H1-11 H1 — L3 * H1=size-1 artificial induced hole (1.6 mm)

O H? — L1 H? — L3 H2 = size-2 artificial induced hole (5 mm)

HO—L2 + HO—L4  ° L1=25% @ @ (C_ N
IR —— 4 4
H2 - L2 O H2-14 . 4= 100% R _ -
HO H1 H2
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DNN and SNN find compact and expressive representations of the bearings damage status, by grouping
the data in separate clusters based on load and damage conditions;

both in SNN and DNN learned representation groups are ordered by load and entity of the damage;

DNN provide clearer and more defined clusters with respect to SNN ones, showing higher classification
performances even when the number of training samples is extremely limited.

This model:

e USE simply collectable data;
* [S unintrusive;

* ISinterpretable;

* HAS good precision;

* IS cheap.
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