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The evolution of data to wisdom is defined by the DIKW pyramid [1].

[1] Frické, M. (2019). The knowledge pyramid: the DIKW hierarchy. Knowledge Organization: KO, 46(1), 33.

Data is just facts without any context, but when 
facts are used to understand relationships, it 
generates Information. 

That information can be used to understand 
patterns, it can then help build Knowledge.

When knowledge is used to understand 
principles, it builds Wisdom. 

From Data to Wisdom



No single definition; here is from Wikipedia:

Big data is the term for a collection of data sets so large and complex that it becomes 
difficult to process using on-hand database management tools or traditional data 
processing applications. 

The challenges include capture, curation, storage, search, sharing, transfer, analysis, 
and visualization. 

The trend to larger data sets is due to the additional information derivable from analysis of a 
single large set of related data, as compared to separate smaller sets with the same total 
amount of data, allowing correlations to be found to "spot business trends, determine 
quality of research, prevent diseases, link legal citations, combat crime, and determine 
real-time roadway traffic conditions.”

Data that is too large or too complex to be managed using traditional data 
processing, analysis, and storage techniques.
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What is Big Data?



The 4 V’S of Big Data By IBM
Volume: Large Volume Of Data
Variety: Different formats (Audio, Video, Images, Posts, etc)
Velocity: Speed of Data Processing.
Veracity: To check that the Data is Genuine.

Sensor technology and networks
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What is Big Data?
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What is Big Data?



Data science is the study of generalizable extraction of knowledge from data [2].

Machine Learning vs. Data mining vs. Data science

Data Science 

Data Mining 

Machine
Learning 
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What is Data Science

[2] Kulin, Merima, Carolina Fortuna, Eli De Poorter, Dirk Deschrijver, and Ingrid Moerman. "Data-Driven Design of Intelligent Wireless Networks: An 
Overview and Tutorial." Sensors 16, no. 6 (2016): 790.
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Machine Learning is a subset of artificial intelligence in the field of computer science that 
often uses statistical techniques to give computers the ability to “learn” (i.e., progressively 
improve performance on a specific task) with data, without being explicitly programmed. 

Driving Forces
– Explosive growth of data in a great 

variety of fields
• Cheaper storage devices with 

higher capacity
• Faster communication
• Better database management 

systems
– Rapidly increasing computing power

What is Machine Learning
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What is Machine Learning



A Marriage Between Giants!
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Big Data and Machine Learning



CoscoNesteMaersk

ABSRoyston
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Big Data and Machine Learning

The Ship Data Center
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The Ship Data Center
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Ships Data Center

Meteorological Information

Ship Information

Engines

Navigation

Gearbox

Generators

Aux. engines Machinery 

sensor data

Navigational

 data

Meteorological

 data

local data 

server

Wind Speed

Wave Direction

Wave height

Current velocity

Wind Direction

Current direction

Propellers

Shaft line

Operational Optimization

• Fleet Optimization
• Fleet Monitoring and Control
• Route Optimization
• Performance Management
• Decision Support Systems

Health Management

• Remote Machine Diagnostics 
• Predictive maintenance
• Reliability and Redundancy
• Safety and Security Systems 

Remote Control

• Operations Management
• Situational Awareness Interface
• Human Interaction Interface
• Remote Deep Sea Navigation

Situation Awareness

• Obstacle Detection
• Collision Avoidance
• Environmental Condition Monitoring
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The Ship Data Center
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The Ship Data Center
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The Ship Data Center



Herbert Alexander Simon: “Learning is any process by which a system improves 
performance from experience”.

Role of Statistics: 
• Inference from a sample 

Machine Learning is concerned with computer programs that automatically improve their 
performance through experience.

Role of Computer science: 
• Efficient algorithms to solve the optimization problem
• Representing and evaluating the model for inference
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Model

Data

Model  
Input

Output
Validation Algorithms

Training
Data 

Output
Model

Output
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Validation 
Data 

Data-Driven ModellingTraditional Modelling

Data-Driven Models



Design
Assembly

Operation

Data & KnowHow

Models
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Data-Driven Models
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While Descriptive, Diagnostic, and Predictive Analytics are quite exploited in research and 
practice, fewer examples of Prescriptive Analytics can be found.

Prescriptive Analytics is the effort to fully automatize the process of taking decisions and 
actions starting from the data about the problem with no human intervention making specific 
processes autonomous. 

This process is limited by the specific domain which requires that the final decision should be 
undertaken by a human operator who takes responsibility for that choice.

From Predictive to Prescriptive Analytics
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From Predictive to Prescriptive Analytics
The Staircase Approach: Learning, Reasoning and Planning



19

Endogenous and 

Exogenous Parameters

System

Model

Input Actual Output

Estimated Output

Prior

Knowledge, 

Experience

White Box Approach



• Black Box Models make use of statistical inference procedures based on historical 
data collection.

• These methods do not require any a-priory knowledge of the physical system and 
allow exploiting even measurements whose role might be important for the calculation 
of the predicted variables but might not be captured by simple physical models. 

• The model resulting from a black-box approach is not supported by any physical 
interpretation and a significant amount of data (both in terms of number of different 
measured variables and of length of the time series) are required for building reliable 
models. 20

Past 

Data

Endogenous and 
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Input
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Black Box Approach
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Past or 

Future Data

Past 

Data
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System

Model

Input Actual Output

Estimated Output
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Knowledge, 

Experience

Gray Box Approach



From Predictive to Prescriptive Analytics
Optimal Topology Design



Hybrid Models

Physics Informed Models



Physics Informed Models



Learning from data while preserving the privacy of individual observations:

2. Exploit the data in a federated way, leaving the data in the hand of the data owner, 
centralizing only aggregated information.

Vessel 1
data

Vessel 2
data

Vessel k
data

1. Data Preserve privacy is to corrupt the learning procedure with noise without 
destroying the information to extract.

Challenges
Learning with Privacy



One of the legal bottlenecks hampering the application of advanced analytics to real 
problems is the “right to explanation”. 

Such requirement directly collides with the limitations of many technologies in terms of 
Interpretability and Explainability.

These issues have lately come to the forefront of researchers, primarily due to the 
widespread development and application of Deep Learning. 

As they amplify shallow neural networks, Deep Learning may become an extreme case of 
black box models, further reducing their Interpretability and Explainability.

Challenges
Interpretability and Explainability: the right to explanation



Challenges
Safety, Security, and Reliability



Digital Twin Solutions
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Induction Motors Bearings Monitoring



29

A 30% increase in resistance caused 
by the moderate biological 

contamination of a 100 000–DWT 
tanker hull will increase the ship’s 

fuel consumption by up to 12 
tons/day, which is the reason for the 
increase in ship operating costs and 

emissions [1].

[1] Song, C., & Cui, W. (2020). Review of Underwater Ship Hull Cleaning Technologies. Journal of Marine Science and Application, 1-15.

[2] Christian Schack, FORCE Technology (presentation) March 2010.

Fuel consumption due to hull fouling may 
increase as much as 15% at the end of a 

docking period.
Additional fuel consumption due to propeller 

fouling may be up to 5-6% [2].

Estimates of increases in fuel 
consumption from biofilm attached 
to the hull alone range from 8% to 

12%, and from normal propeller 
fouling range from 6% to 14% [3].

[3] T. Munk, D. Kane, D. M. Yebra. (2009). The effects of corrosion and fouling on the performance of ocean-going vessels: a naval architectural perspective. Chapter 7 of Advances in marine 
antifouling coatings and technologies, Materials.

At 24 knots, the propeller polishing at six-
month intervals resulted in a fuel savings of 
five tons per day for each propeller polish, 

and the hull cleaning resulted in a fuel 
savings of approximately 12 tons per day [4]

[4] Naval Sea Systems Command, Naval Ships’ Technical Manual Chapter 081. (2006). Waterborne Underwater Hull Cleaning of Navy Ships. Revision 5.

Hull and Propeller Marine Fouling
Motivation and Background
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Even a 1mm layer of accumulated fouling or calcium deposits on 
a propeller will significantly increase its roughness, and within 
12 months can increase an ISO class I to an ISO class II, or a class 
II to a III.

Figures indicate a 6 to 12% gain in fuel consumption in polishing 
a propeller from a class III condition to a class I condition.

As the fouling increases with time the drag on the hull increases, the propeller efficiency 
reduces and the hull speed decreases. 

An increase in engine power is therefore required to maintain the desired speed.

More engine power → more fuel  → increase of CO2 released

Hull and Propeller Marine Fouling
Motivation and Background
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Preventive

Coatings

Anodes

Inspections

Predictive

Anodes Renewal

Coatings Renewal

Fatigue Studies 

Propeller Cleaning

Corrective

Coatings Repairs

Steelwork Repairs

Hull  Cleaning

Propeller Cleaning

Reactive

Coatings Repairs

Steelwork Repairs

Hull  Cleaning

Propeller Cleaning

Planned Unplanned

Cost Effective Cost Inefficient

Hull and Propeller Marine Fouling
Motivation and Background
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Hull  Cleaning

Propeller Cleaning
Planned Cost Effective

When?

Hull and Propeller Marine Fouling
Motivation and Background
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It is challenging to assess Ship performance drop-off due to hull and propeller fouling because
factors as wind, waves, currents and prime movers' efficiency are variable.

• Fuel consumption often a disappointment
• Torsion meter provides most accurate and valuable data

No matter the methodology used, the determination of when it is time to clean the propeller
and the hull is dependent on what performance drop off the ship operator or Charterer is
prepared to accept.

This led to the conclusion that no fixed time parameters for cleaning can be defined.

Hull and Propeller Marine Fouling
Motivation and Background



From Data to Knowledge: Unlocking the Power of Data for Marine 
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Is it possible to predict the clean and not-clean hull condition based on operational data 
provided from the automation system?

Suppose to carry out an experimental campaign and to collect data charactering the behavior and 
performance of the vessel with the label (1= Fouled, 0=clean).

30/03/2017 27/03/2017

Fouled – Label 1Clean – Label 0

Unsupervised Learning

Machine Learning

Supervised Learning

Regression ClassificationClustering Dimensionality 
Reduction

Anomaly
Novelty 

Detection

Novelty Detection Approaches
Hull and Propeller Marine Fouling



From Data to Knowledge: Unlocking the Power of Data for Marine 
Engineering Applications
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Novelty (outlier) detection methods address the problem of identifying new or unknown data 
that a data analytics system has not been trained with and was not previously aware of.

Novelty detection is also referred to as one-class classification because it is trained only on the 
one class of known data (data from sea trials, in clean hull and propeller conditions).

An outlier is an observation which deviates so much from the other observations as to arouse 
suspicions that it was generated by a different mechanism [4].

[4] Hawkins, D. M. (1980). Identification of outliers (Vol. 11). London: Chapman and Hall.

Unsupervised Learning

Machine Learning

Supervised Learning

Regression ClassificationClustering Dimensionality 
Reduction

Anomaly
Novelty 

Detection

Hull and Propeller Marine Fouling
Novelty Detection Approaches



From Data to Knowledge: Unlocking the Power of Data for Marine 
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Hull and Propeller Marine Fouling
Novelty Detection Approaches
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Hull and Propeller Marine Fouling
Novelty Detection Approaches
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Two separate sea trials were carried 
out six months apart to allow 
fouling to take place on the hull 
surface under normal operational 
conditions. 

Trial Condition

30/03/2017 Clean Hull

27/03/2017 Fouled

Case Study

The Prince Royale Vessel
Hull and Propeller Marine Fouling
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Data logging system

Hull and Propeller Marine Fouling
The Prince Royale Vessel
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Data Pre-Processing – Some False Friends

Hull and Propeller Marine Fouling
The Prince Royale Vessel
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The Importance of the weather
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eStarboard consumption Model Port consumption Model

Monitoring System + Weather data 

Data Pre-processing - Data fusion
Hull and Propeller Marine Fouling
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Starboard consumption Model Port consumption Model

Case Study

Data Pre-processing - Data fusion
Hull and Propeller Marine Fouling
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The Failure of Linear Models - PCA

Case Study

Data Pre-processing - Data fusion
Hull and Propeller Marine Fouling
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1. Average Misclassifications Rate (AMR) is the mean number of misclassified samples

2. the Confusion Matrix, which measures four different quantities

Case Study

Measuring the Error
Hull and Propeller Marine Fouling
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Algorithm 1:
One-Class SVM (OCSVM) is a boundary-based anomaly detection method, inspired by SVM, which encloses 
the inlier class in a minimum volume hypersphere by minimizing a Tikhonov regularization problem, similar 
to the one reported for the SVM framework. 

Like traditional SVMs, OCSVM can also be extended to non-linearly transformed spaces using the Kernel 
trick for distances. 

The hyperparameters OCSVM HOCSVM are: 
• The kernel, which is usually fixed (Gaussian Kernel) 
• Its hyperparameter ℎ1
• The regularization hyperparameter ℎ2

Algorithm 2:
The Global KNN (GKNN), inspired by the KNN, was originally introduced as an unsupervised distance-based 
outlier detection method. 

The hyperparameter of GKNN is the number of neighbours to be considered ℎ1.

Case Study

Learning Algorithms
Hull and Propeller Marine Fouling
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Case Study

Results
Hull and Propeller Marine Fouling



47

Is it possible to build a data-driven Digital Twin of the ship and use it for estimating the speed loss due to 
marine fouling?

Deep Extreme Learning Machines can be used for estimating the speed loss caused by the marine fouling 
effects on the ship hull and propeller, leveraging on the large amount of information collected from the on-
board monitoring system sensors.

Data Driven Methods can be applied for predicting the speed, and therefore the speed loss of the ship, able 
to act as a Digital Twin of the ship itself. 

Case StudyDigital Twin Solutions
Motivation and Background
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Digital Twin Solutions
Available Vessels and Data
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To this aim, a two-phase approach can be applied:

Phase 1: a data-driven model based Digital Twin is built, leveraging on the large amount of 
information collected from the on-board monitoring system sensors.

Phase 2: the model developed is applied in order to estimate the speed-loss of the ship and its 
drift.

Case StudyDigital Twin Solutions
Methodology
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Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines  

Deep Extreme Learning Machines are the evolution of the Shallow Extreme Learning Machine for the 
purpose of creating an algorithm able to both learn new features from the available raw variables and create 
a regression model.

Shallow Extreme Learning Machine 

Case StudyDigital Twin Solutions
Methodology
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Neuron’s response to an input stimulus:

Hidden-layer output corresponding to the input sample 𝑿

Overall output function of the network:

w is the output weight vector between the hidden layer and the output layer.

Input weights (connecting input neurons to hidden neurons)

Bias term

Nonlinear activation function

Output weights (connecting hidden neurons 
to output neurons without any bias)

𝒗1 = {𝑣1,0, 𝑣1,1, 𝑣1,2, … 𝑣1,𝑑}

𝒗2 = {𝑣2,0, 𝑣2,1, 𝑣2,2, … 𝑣2,𝑑}

𝒗𝑗 = {𝑣ℎ,0𝑣ℎ,1, 𝑣ℎ,2, … 𝑣ℎ,𝑑}

⋮

𝒙𝟑

𝒙𝒅

𝒙𝟏

𝒙𝟐

⋮

𝒙𝟒

𝜑

𝜑

𝜑

⋮

w1

w2

wℎ

𝒗𝒉 ∙ 𝑿 + 𝒗𝒉,𝟎

𝒗𝟐 ∙ 𝑿 + 𝒗𝟐,𝟎

𝒗𝟏 ∙ 𝐗 + 𝒗𝟏,𝟎

⋮

𝐗 = {𝑥1, 𝑥2, … 𝑥𝑑}

Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines  

Case StudyDigital Twin Solutions
Methodology
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Activation Matrix

𝑉𝑖,𝑗 is the activation value of the 𝑗-th hidden neuron for the 𝑖-th input pattern

The training problem reduces to minimisation of the convex cost

A matrix pseudo-inversion yields the unique 𝐿2 solution:

The simple, efficient procedure to train an Extreme Learning Machines involves the following steps:

1. Randomly generate hidden node parameters (in or case 𝒗𝑖 and bias 𝒗𝑖
0) for each hidden neuron

2. Compute the activation matrix 𝑉
3. Compute the output weights by solving the pseudo-inverse problem:

Regularisation strategies: 

Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines  

Digital Twin Solutions
Methodology
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Phase 1: data-driven model based Digital Twin - Deep Extreme Learning Machines  

Due to its shallow architecture, feature learning using Shallow Extreme Learning Machine 
may not be effective even when ℎ (the number of the neuron is large – EXTREME!!).

Since feature learning is often useful to improve the accuracy of the final model, multilayer (deep) 
solutions are usually needed.

Multilayer learning architectures are developed using 
Extreme Learning Machine-based autoencoder as its 
building block, which results in a sort of Deep Extreme 
Learning Machines.

At each layer 𝑖 of the 𝑙 layers, each one composed of ℎ𝑖
𝑖∈{1,…,𝑙} neurons, the Deep Extreme Learning Machines 
tries to reconstruct the input data and the outputs of the 
previous layer are used as the inputs of the next one.

Deep Extreme Learning Machines

Digital Twin Solutions
Methodology
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Phase 2: Speed-loss Estimation  

Once the Deep Extreme Learning Machines-based Digital Twin has been built, it is possible to apply it to the 
rest of the data in order to estimate the expected speed (𝑣𝑒𝑥𝑝) and compare it with the measured one 

(𝑣𝑚𝑒𝑠) for the purpose of computing the percentage speed loss SL%. 

The calculation of the percentage speed loss based on the corrected propulsion power. 
The expected speed 𝑣𝑒𝑥𝑝 is computed based on reference, clean-hull data starting from actual 

measurements of draft (𝑇 ) and trim (𝛿):

where 𝑃𝑝
′ is the corrected power for accounting the 

effect of the draft, and trim. 
This allows to compute the percentage speed loss as:

ISO 19030 procedure

SL% = 100
𝑣𝑚 − 𝑣𝑒𝑥𝑝

𝑣𝑒𝑥𝑝

ISO 19030 
procedure

Deep Extreme
Learning Machines 

Digital Twin Solutions
Methodology
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Phase 2: Speed-loss Estimation  

The result of this process is a series of values in time representing the trend of the percentage 
speed loss.

The automatic identification of changes in time of the distribution of the percentage speed 
loss was carried out, in order to check if those changes were in correspondence to 
maintenance activities and testify the quality of the estimated speed loss. 

For this purpose, Kolmogorov–Smirnov test (Smirnov, 1944) has been adopted. 

This nonparametric statistical test can be exploited to check if two different data samples of 
data are derived from the same probability distribution. 

Null Hypothesis: the two samples belong to the same distribution.

Digital Twin Solutions
Methodology
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Digital Twin Solutions
Results
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Digital Twin Solutions
Results
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ISO 19030 Procedure

Digital Twin Solutions
Results
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Deep Extreme Learning Machines-based Digital Twin 

Digital Twin Solutions
Results
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ISO 19030 Procedure

Digital Twin Solutions
Results
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Deep Extreme Learning Machines-based Digital Twin 

Digital Twin Solutions
Results
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Deep Extreme Learning Machines-based Digital Twin 

Digital Twin Solutions
Results
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Deep Extreme Learning Machines-based Digital Twin 

Digital Twin Solutions
Results
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1. The speed loss calculated using the linear robust regression provides an accurate picture of 

the status of the hull and propeller fouling at a specific point in time.

2. This information could be used effectively to optimize the scheduling of maintenance 

events, as today, hull and propeller cleaning are performed at fixed intervals, or in 

correspondence of other maintenance events. In practice, they could be performed more or 

less often depending on the actual status of the hull and propeller, according to methods 

based on the minimization of costs, fuel consumption, and emissions.

3. In the future, the proposed method could be exploited also for the evaluation of the 

effectiveness of different energy-saving solutions, such as the case of a new propeller design 

or the evaluation of the benefits deriving from the application of sails. 

4. The proposed method, will facilitate the verification of the impact of new technologies or 

vessel components, thereby allowing to increase the transparency of energy and fuels 

efficiency technologies by providing a method to validate fuel savings claims made by the 

manufacturers and providers, supporting further uptake in the shipping industry.

Digital Twin Solutions
Conclusion
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Condition Based Maintenance (CBM) allows 
potential failures early detection and enables 
to estimate, the time remaining before the 
failure, and the equipment estimated life in 
accordance with relevant models/algorithms.

1
DATA ACQUISITION 

2
DATA PROCESSING

3
MAINTENANCE 

DECISION-MAKING 

1
DATA ACQUISITION 

Experiments Digital Twin

NO

Are data without failure and or 
performance degradation useful? 

Induction Motors Bearings Monitoring
Motivation and Background
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Methodology

Results Publications What Next?

Raw Sensory Data
Local Feature Extractor

Convolutional Neural Network
Temporal Encoder

Deep BI-directional LSTM 
Regressor Layer 

Induction Motors Bearings Monitoring
Motivation and Background
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What Next?

I recently developed a super 
duper fancy methodology 

based on real time 
measurements to forecast any 

system health status

Andrea, we like your idea, we have 
several situations onboard that 

would benefit from your approach. 

Please let us know what you need
Based on my methodology I 

would need to install onboard 
the following:

We were thinking more to 
something like this:

• Temperature sensor
• Torque Sensor
• Speed sensors
• 3-Phase voltage sensor
• 3-Phase current sensor
• Vibration Measurements
• ….
• …. 

Induction Motors Bearings Monitoring
Motivation and Background
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Shaft

Bearing 1Bearing 2

Rotor

Stator

Induction Motors (IMs) are ubiquitous in Industrial Systems:
• Cheap
• Highly efficient
• Requiring low maintenance activities

IMs Bearings are subject to continuous mechanical 
stress and produce undesirable vibrations when 
degraded. 

Bearing fault account for the 41% of all IMs failures. 

41%

37%

10%

12%

FAILURE RATES

Bearings

Windings

Rotor

Others

Induction Motors Bearings Monitoring
Motivation and Background
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Rolling-Element Bearing related defects can be categorized as: 
• Outer bearing race defects
• Inner bearing race defects
• Ball defects
• Train defects. 

The vibration frequencies to detect these faults can be described by the 
following relationships:

𝑓𝑜𝑑: outer race defect frequency 
𝑓𝑖𝑑: inner race defect frequency
𝑓𝑏𝑑: ball defect frequency
𝑓𝑡𝑟: train defect frequency
𝑓𝑟: is the shaft rotation frequency 
𝑛: rollers number
𝛿: roller diameter of the bearing 
𝐷: pitch diameter of the bearing
𝛾: contact angle 

A common approach is to analyse fault features in the vibration signal collected with vibration probes.

Vibration sensors are not cheap, are prone to faults, are hard or impossible to install on many systems, and are sensible to
corrosive and dusty environments.

Induction Motors Bearings Monitoring
Motivation and Background
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Induction Motors Bearings Monitoring
Data Acquisition
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• Three identical artificially damaged bearings have been used: 
• H0 = no damages, 
• H1 = size-1 artificial induced hole (1.6 mm), 
• H2 = size-2 artificial induced hole (5 mm).

• Each mechanical condition is identified by the stator current percentage of the rated motor current: 
• L1 = 25%,
• L2 = 50%,
• L3 = 75%, 
• L4 = 100%.

• For each bearing damaged condition, four different mechanical conditions have been investigated, applying to the 
motor shaft different resistive torques at the same rotational speed. 

For each experiment, once the steady-state conditions have been reached, the stator currents have been acquired for 30 
seconds. 
Experiments have been repeated 30 times for each damage condition, to build a large enough set of experiments.

Induction Motors Bearings Monitoring
Data Acquisition
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H0 = no damages

L4 = 100%

H1 = size-1 artificial induced hole (1.6 mm)

L4 = 100%

H2 = size-2 artificial induced hole (5 mm)

L4 = 100%

Induction Motors Bearings Monitoring
Methodology
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The first phase: process of collecting the raw data with an analog to digital converter device cleaned from the higher noise 
frequencies.

The second phase: consists in segmenting these raw data in overlapping sliding time windows of 24 s. This quantity has 
been selected considering the peculiar characteristic of the studied IM, so to have a window large enough to capture the 
behavior of the IM.

The third phase: extraction from the windowed raw data a series of simple yet informative features, which have been 
chosen based on previous studies on similar context.

Data Pre-processing & Features creation

Induction Motors Bearings Monitoring
Methodology
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The result of this feature mapping is a sample 𝒙 ∈ 𝑿 ⊆ Rd with d = 155  with associated its label 𝒚 ∈ 𝑌 

𝑦1 ∈ 𝑌1 = 1,2,3  𝑦2 ∈ 𝑌2 ⊆ 𝑅

1 = H0 = no damages
2 = H1 = size-1 artificial induced hole (1.6 mm)
3 = H2 = size-2 artificial induced hole (5 mm)

8 features

L1 = 25%
L2 = 50%
L3 = 75% 
L4 = 100%

Induction Motors Bearings Monitoring
Methodology
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A total of n = 1400 samples have been collected for solving a multioutput (two labels) and multitasks 
problem:
• one label brings to a classification task 
• one label brings to a regression one

High dimensional feature mapping

Risk is to overfit the available data 
instead of learning some 
meaningful information out of 
them.

High dimensional space and the low number of experiments

Hard to interpret

Drawbacks

Solution
Unsupervised Dimensionality Reduction 

Induction Motors Bearings Monitoring
Methodology
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The unsupervised learning feature selection process has been developed utilizing SNNs and DNNs.

instead of learning the relationship between the input space 𝑋 and the output space 𝑌, try to perform an often lower 
dimensional feature mapping, which is able to explain, in a more informative way, the point sampled from 𝑋.

By staking many autoencoders it is possible to obtain a deep autoencoder:

Induction Motors Bearings Monitoring
Methodology
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Once the representation has been learned, it is possible to use the deep autoencoder in order to learn the 
relation between 𝑋 and Y with the final SNN & DNN architecture

• the activation function (e.g. sigmoidal, hyperbolic tangent, and rectified linear);
• the number of layers;
• the number of neurons for each layer;
• the type of regularizes and magnitude of regularization (e.g. norm of the weights, dropout, and early 

stopping);
• the loss function (e.g. quadratic and linear);
• the optimizer and optimization time (e.g. stochastic gradient descent and mini-batch gradient descent).

Hyperparameters:

Induction Motors Bearings Monitoring
Methodology
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H0 − L2
H1 − L2
H2 − L2

H0 − L3
H1 − L3
H2 − L3

H0 − L4
H1 − L4
H2 − L4

H0 − L1
H1 − L1
H2 − L1

• H0 = no damages
• H1 = size-1 artificial induced hole (1.6 mm)
• H2 = size-2 artificial induced hole (5 mm)

• L1 = 25%
• L2 = 50%
• L3 = 75%
• L4 = 100%

Projected test point in the two-dimensional space defined by the different networks.
To simulate in a more realistic scenario a reduced amount of labeled samples has been exploited just 𝑛 ∈
{100, 150, 200}
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• DNN and SNN find compact and expressive representations of the bearings damage status, by grouping 
the data in separate clusters based on load and damage conditions; 

• both in SNN and DNN learned representation groups are ordered by load and entity of the damage; 

• DNN provide clearer and more defined clusters with respect to SNN ones, showing higher classification 
performances even when the number of training samples is extremely limited. 

This model:
• USE simply collectable data;
• IS unintrusive;
• IS interpretable;  
• HAS good precision; 
• IS cheap.

Induction Motors Bearings Monitoring
Conclusion
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