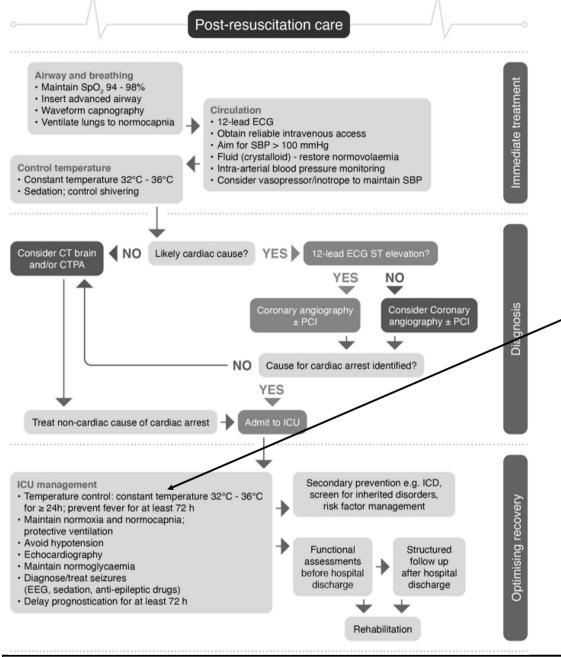
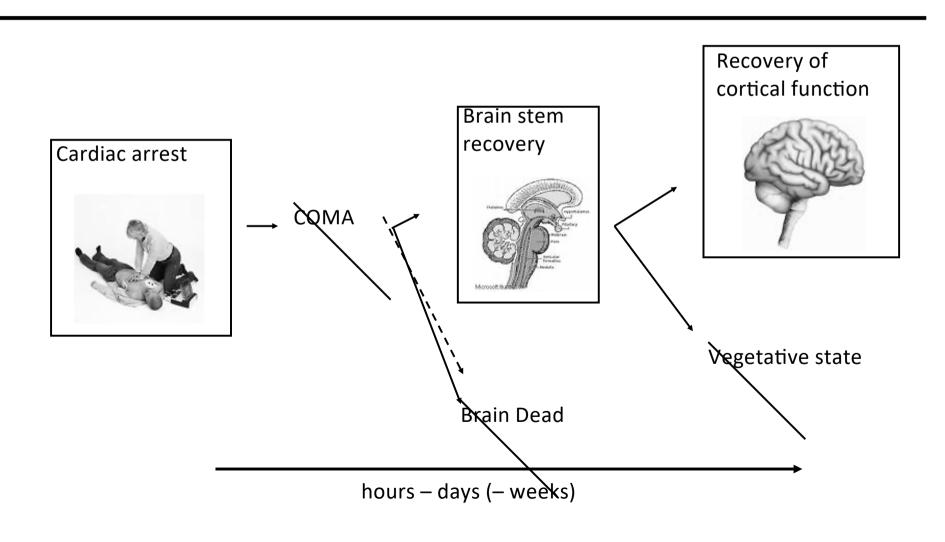
A Closer Look

- 1. Statistics: 300,000 annually
- 2. The Challenge of ICU & Survival Rates: only 30-55% will be discharged alive.
- 3. Neurological Outcomes: standard scales (CPC, GOS, mRS), only 10% experiencing severe disability.



LA RIVOLUZIONE DEI SISTEMI

ICUMANAGEMENT



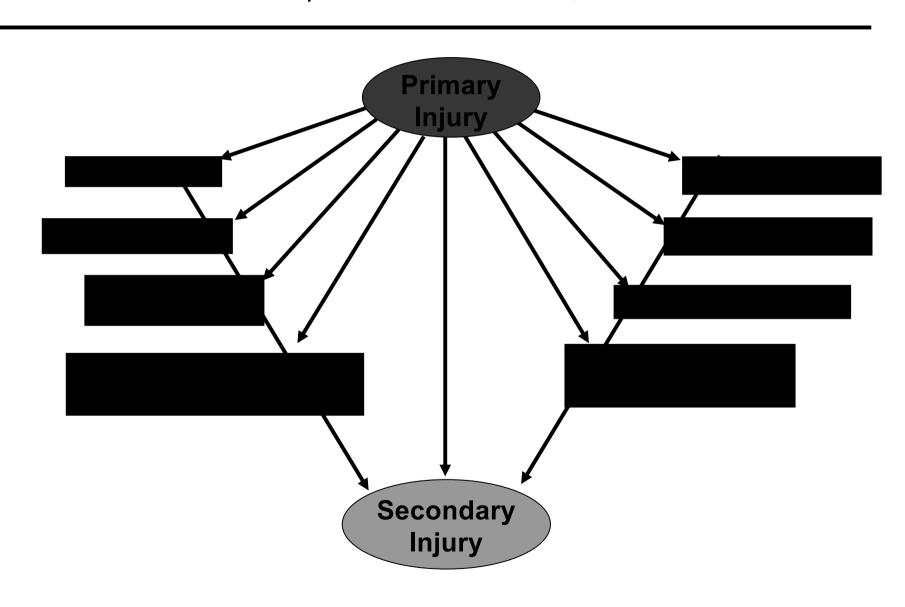
Natural course of neurological recovery following cardiac arrest

Patil KD et al. Circ Res. 2015 Jun 5;116(12):2041-9

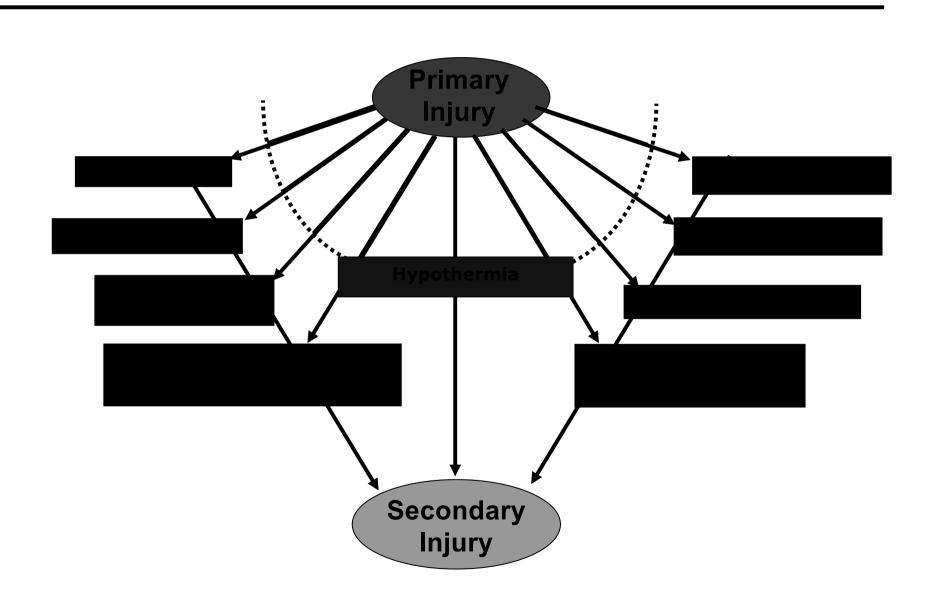
The "Chain" of Survival

Pekins GD et al Resuscitation 95 (2015): 81-99

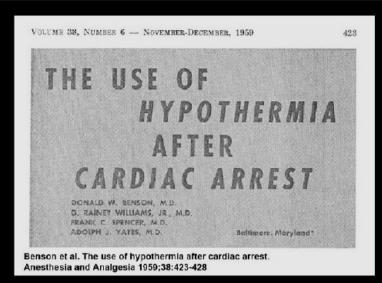
Sutherasan Y et al. Best Pract Res Clin Anaesthesiol. 2015 Dec;29(4):411-2

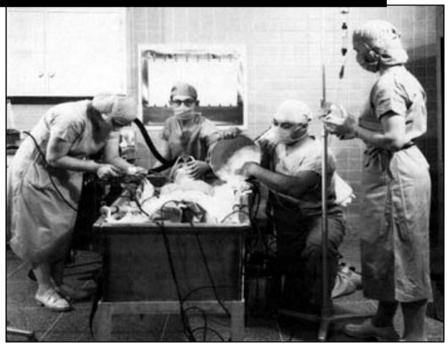

The current challenges of cardiac arrest:
Post cardiac arrest management

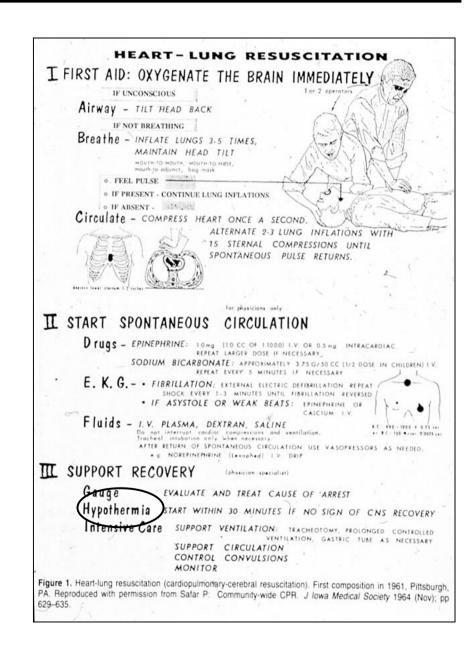
Mild to Moderate Hypothermia in Out-of-Hospital Cardiac Arrest

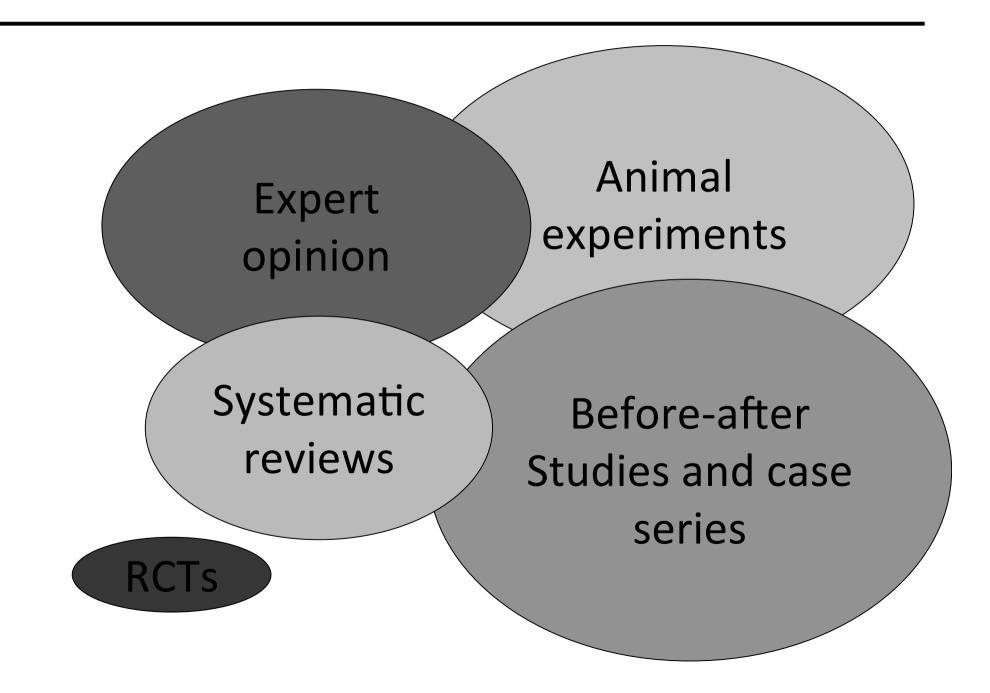

Effects of Hypothermia on Brain Damage

Fritz HG et al. Exper Toxic Pathol 2004; 56:91-102




Effects of Hypothermia on Brain Damage


Fritz HG et al. Exper Toxic Pathol 2004; 56:91-102


Background

Evidence for TTM for cardiac arrest

Background

ORIGINAL ARTICLE

Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest with Induced Hypothermia

Stephen A. Bernard, M.B., B.S., Timothy W. Gray, M.B., B.S., Michael D. Buist, M.B., B.S., Bruce M. Jones, M.B., B.S., William Silvester, M.B., B.S., Geoff Gutteridge, M.B., B.S., and Karen Smith, B.Sc. N Engl J Med 2002; 346:557-563 | February 21, 2002

Mild Therapeutic Hypothermia to Improve the Neurologic Outcome after Cardiac Arrest

The Hypothermia after Cardiac Arrest Study Group N Engl J Med 2002; 346:549-556 | February 21, 2002

TREATMENT OF COMATOSE SURVIVORS OF OUT-OF-HOSPITAL CARDIAC ARREST WITH INDUCED HYPOTHERMIA

STEPHEN A. BERNARD, M.B., B.S., TIMOTHY W. GRAY, M.B., B.S., MICHAEL D. BUIST, M.B., B.S., BRUCE M. JONES, M.B., B.S., WILLIAM SILVESTER, M.B., B.S., GEOFF GUTTERIDGE, M.B., B.S., AND KAREN SMITH, B.SC.

Bernard SA et al. N Engl J Med. 2002 Feb 21;346(8):557-63.

- Quasi-randomised, odd and even days
- 84 eligible patients, 77 included
- Unscheduled interim analysis after 62 patients
- Unusual outcome measure: survival to hospital discharge with sufficiently good neurologic function to be discharged to home or to a rehabilitation facility.
- Uneven groups (43 vs 34 patients)
- Temperature in control group (37.1 -37.3 °C)

Good outcome in hypothermia: normal or with minimal or moderate disability

Bernard SA et al. N Engl J Med. 2002 Feb 21;346(8):557-63.

Table 5. Outcome of Patients at Discharge from the Hospital.

Оитсоме*	HYPOTHERMIA (N=43)		Normothermia (N=34)	
	ſ	number of patients		
Normal or minimal disability (able to care for self, discharged directly to home)	r	15	7	
Moderate disability (discharged to a rehabil	-	6	2	
itation facility) Severe disability, awake but completely dependent (discharged to a long-term		0	1	
nursing facility) Severe disability, unconscious (discharged		0	1	
to a long-term nursing facility) Death		22	23	

The New England Journal of Medicine

Copyright © 2002 by the Massachusetts Medical Society

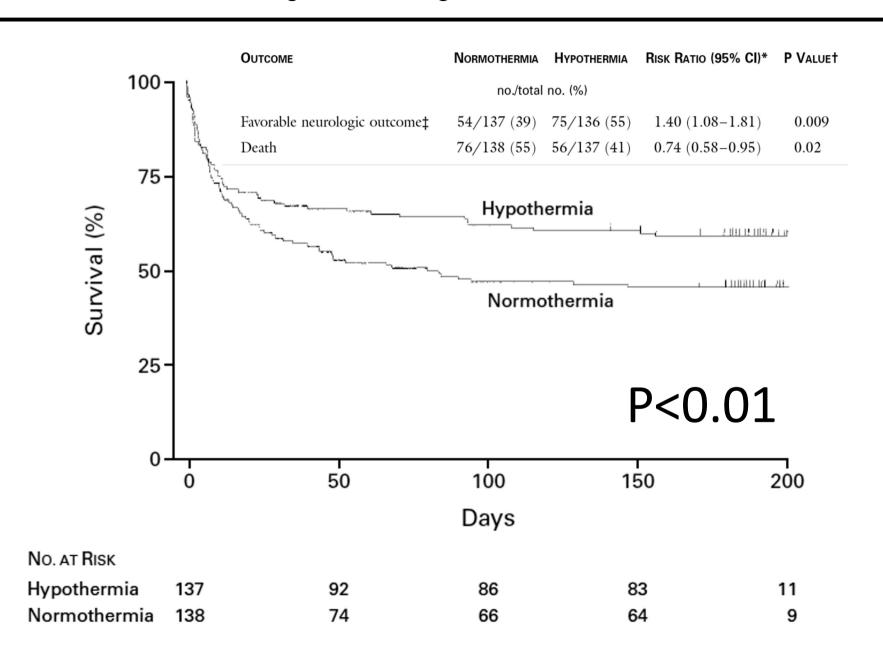
VOLUME 346

FEBRUARY 21, 2002

NUMBER 8

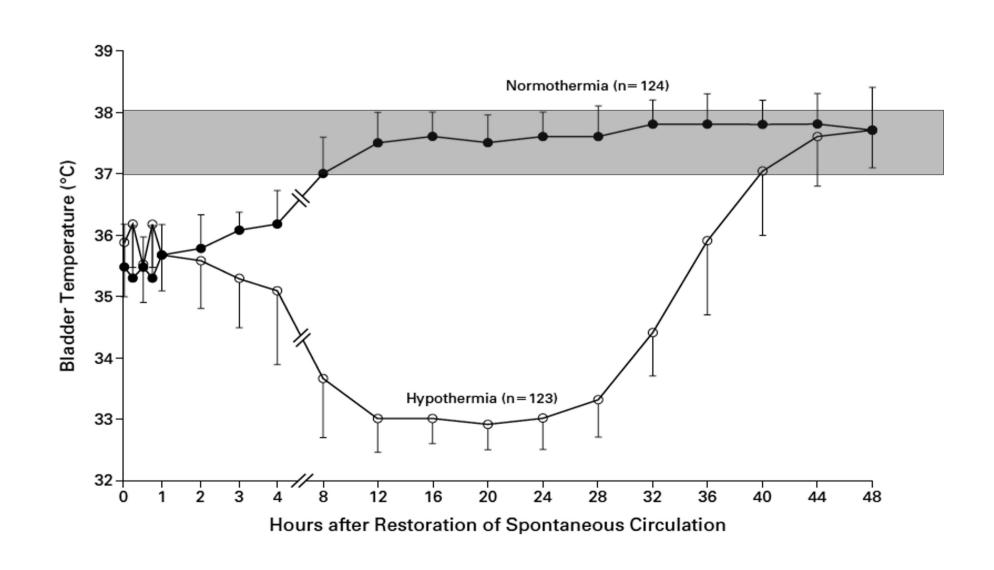
MILD THERAPEUTIC HYPOTHERMIA TO IMPROVE THE NEUROLOGIC OUTCOME AFTER CARDIAC ARREST

THE HYPOTHERMIA AFTER CARDIAC ARREST STUDY GROUP*


N Engl J Med 2002;346:549-56

HACA-trial

- √ Less risk of bias/systematic errors!
- ✓ Patients after ventricular fibrillation
- √ Included only 8 % of patients with ROSC


HACA-trial: Hypothermia Improves Survival!

HACA Investigators, N Engl J Med 2002;346:549-56

HACA-trial: Hypothermia Compared with No Temperature Control = Fever!

HACA Investigators, N Engl J Med 2002;346:549-56

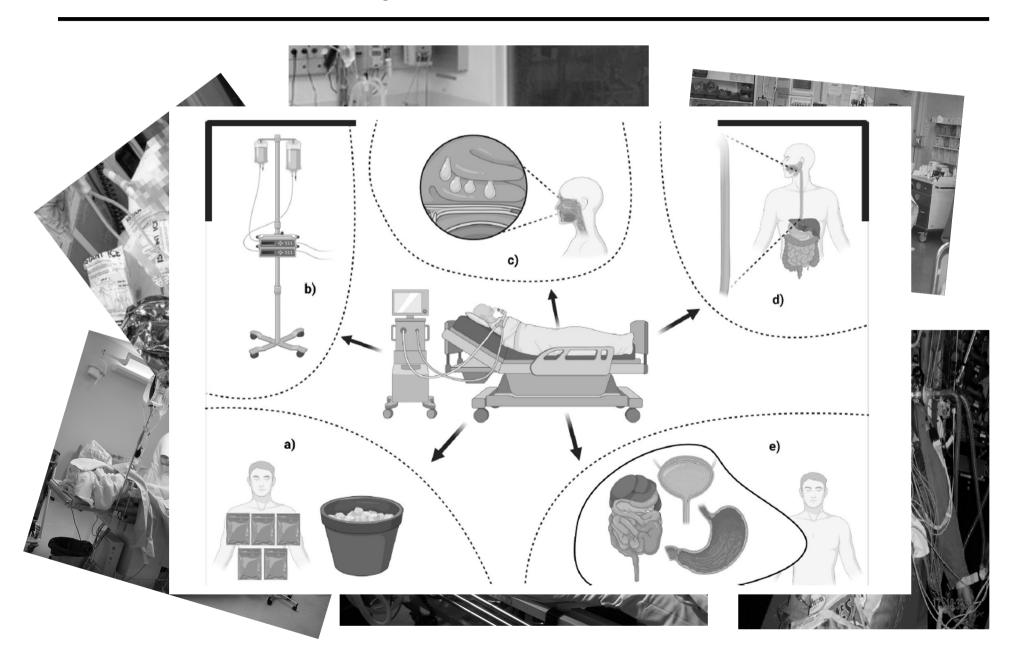
www.elsevier.com/locate/resuscitation

Therapeutic hypothermia after cardiac arrest.

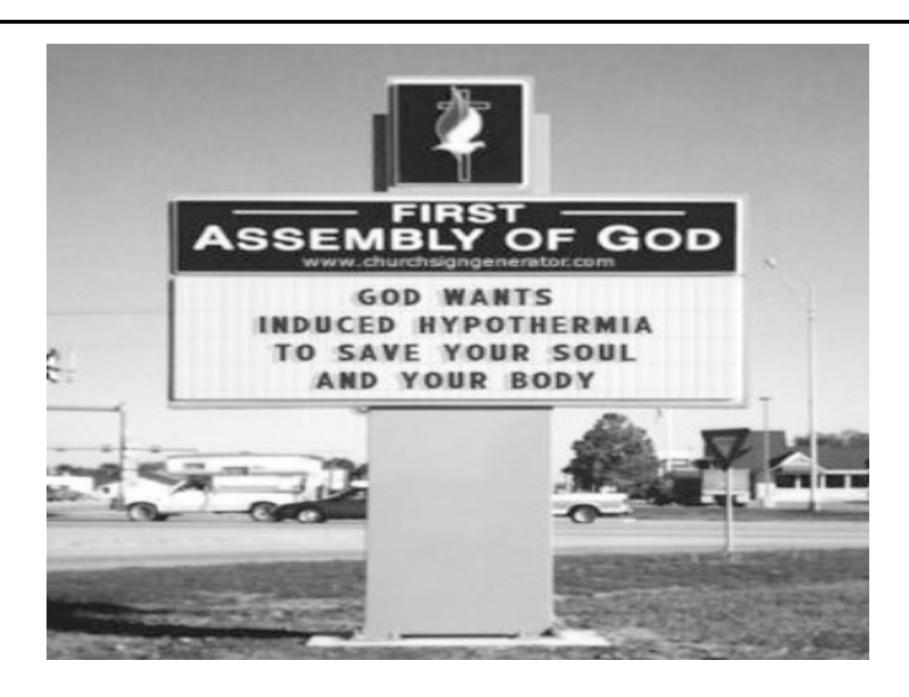
An advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation

Jerry P. Nolan a,*, Peter T. Morley b, Terry L. Vanden Hoek c, Robert W. Hickey d,1, ALS Task Force 2

- Patients after out of hospital cardiac arrest SHOULD UNDERGO HYPOTHERMIA at 32-34 °C for 12-24 h in case of VF
- Hypothermia might be useful for other type of arrest including intra hospital cardiac arrest

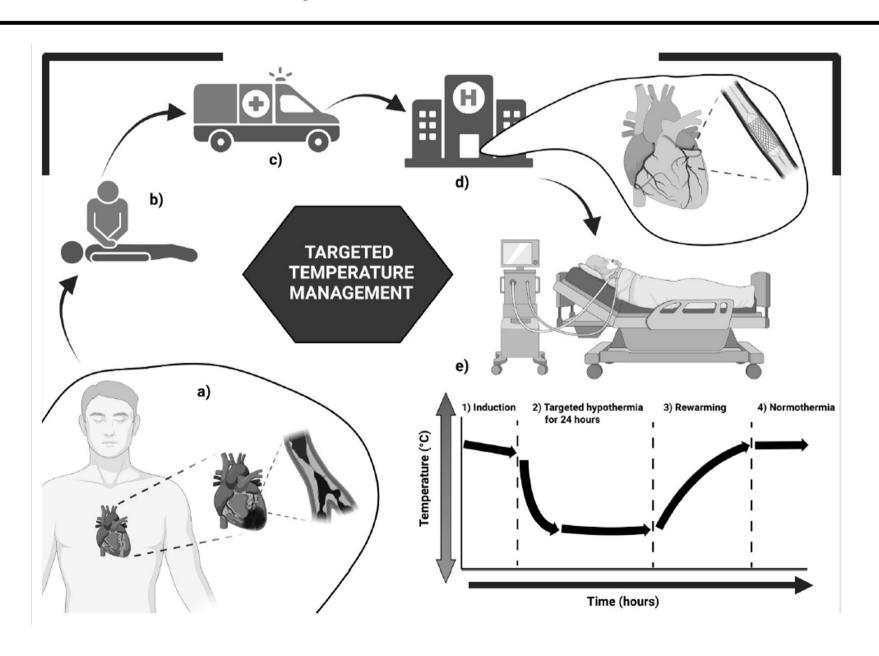

ILCOR Recommendations

On the basis of the published evidence to date, the Advanced Life Support (ALS) Task Force of the International Liaison Committee on Resuscitation (ILCOR) made the following recommendations in October 2002:


- Unconscious adult patients with spontaneous circulation after out-of-hospital cardiac arrest should be cooled to 32°C to 34°C for 12 to 24 hours when the initial rhythm was ventricular fibrillation (VF).
- Such cooling may also be beneficial for other rhythms or in-hospital cardiac arrest.

Different cooling techniques ... too many?

Markota A et al. Signa Vitae. 2022.doi:10.22514/sv.2021.227



Cooling Techniques save our soul & body!

TTM in OHCA: a clinical protocol

Markota A et al. Signa Vitae. 2022.doi:10.22514/sv.2021.227

Temperature Target Management is also associated with potential harm!

Increased risk of:

- √ infection
- ✓ arrhythmia
- √ hemodynamic failure
- √ seizures
- √ major bleeding
- √ delayed weaning

Hypothermia after Cardiac Arrest: A Metaanalysis

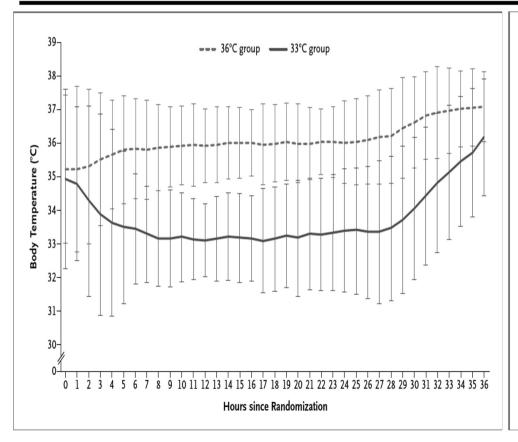
Nielsen et al Int J Cardiol. 2011 Sep 15;151(3):333-41

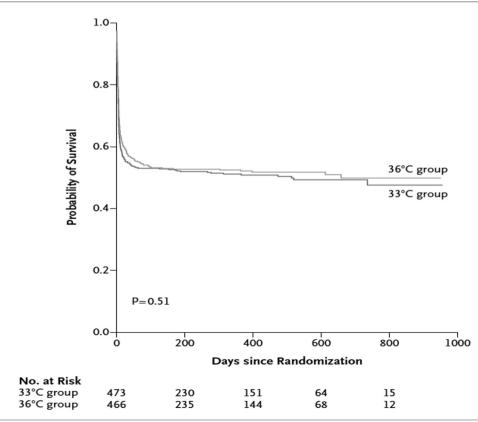
Contents lists available at ScienceDirect

International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard

Hypothermia after cardiac arrest should be further evaluated—A systematic review of randomised trials with meta-analysis and trial sequential analysis


Earlier Trials:

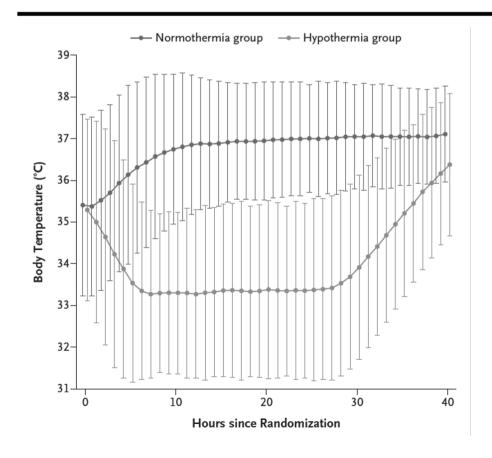

- Possible risk of systematic errors
- Possible risk of being underpowered
- Investigated a selected group

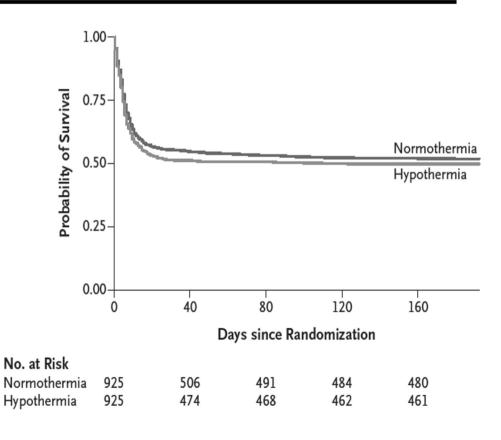
ORIGINAL ARTICLE

Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest

Nilsen N et al. Engl J Med 2013;369:2197-206

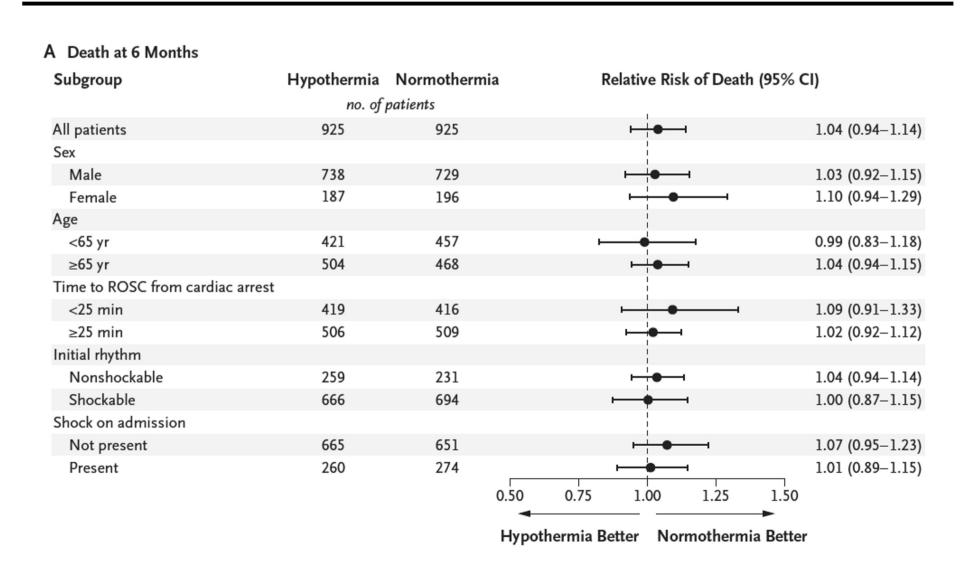
Target Temperature Management at 33 vs 36 °C after cardiac arrest

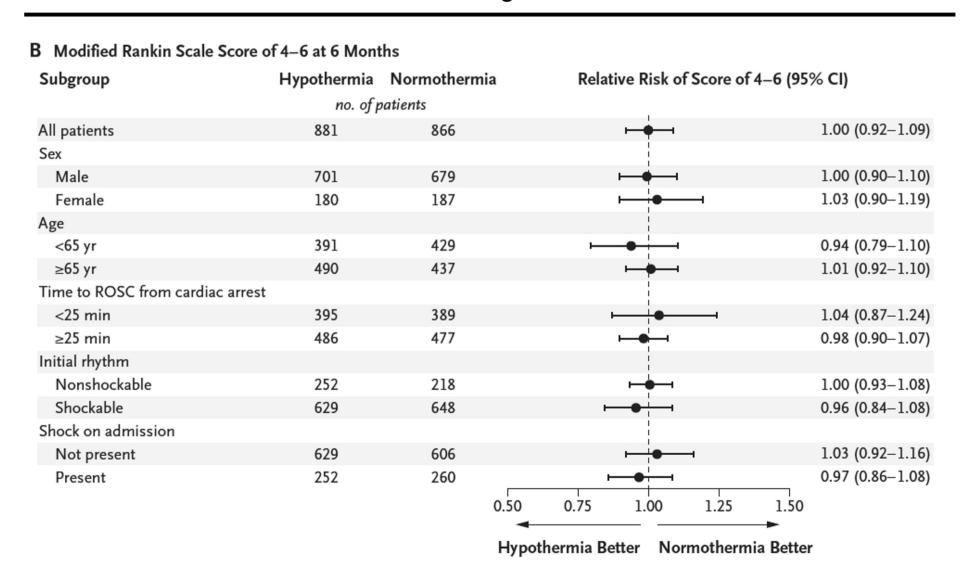

Nilsen N et al. Engl J Med 2013;369:2197-206


Subgroup	Target 33 °C No. of events/Tot	Target 36 °C al no. of patients	Hazard Ratio 95% CI	Hazard Ratio 95% CI	Test of interaction
Age					P = 0.52
Less than or equal to 65 years	91/238	85/250	1.13 [0.84, 1.53]	- - - - - - - - - - 	
More than 65 years	144/235	140/216	1.01 [0.80, 1.28]	_	
Gender					P = 0.75
Female	47/80	55/98	1.14 [0.77, 1.69]	- - - - - - - - - -	
Male	188/393	170/368	1.07 [0.87, 1.32]	 	
Time from cardiac arrest to R	osc				P = 0.20
Less than or equal to 25 min	79/243	86/241	0.92 [0.68, 1.24]		
More than 25 min	156/230	138/224	1.20 [0.96, 1.50]	 	
Initial rhythm					P = 0.92
Non-shockable	82/98	74/88	1.08 [0.79, 1.48]		
Shockable	153/375	150/377	1.06 [0.84, 1.34]		
Shock at admission					P = 0.17
Not present	183/402	180/398	1.03 [0.83, 1.28]		
Present	52/70	44/67	1.35 [0.90, 2.03]	+ + -	
Site category					P = 0.19
Two largest sites	50/110	40/108	1.33 [0.87, 2.03]	- I	-
Sites except two largest	185/363	185/358	1.02 [0.83, 1.25]	-	
TTM-Trial					
All patients	235/473	225/466	1.06 [0.89, 1.28]	+	
					<u> </u>
				0.5 0.7 1 1.5 2 33 °C better 36 °C better	2

ORIGINAL ARTICLE

Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest

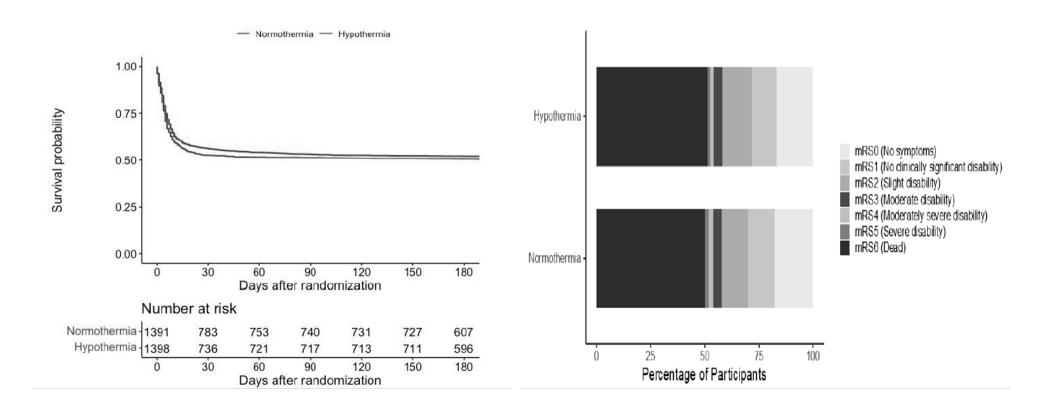

Dankiewicz J N et al. Engl J Med 2021;384:2283-94


Hypothermia vs normothermia after out of hospital cardiac arrest

Dankiewicz J N et al. Engl J Med 2021;384:2283-94

Hypothermia vs normothermia after out of hospital cardiac arrest

Dankiewicz J N et al. Engl J Med 2021;384:2283-94



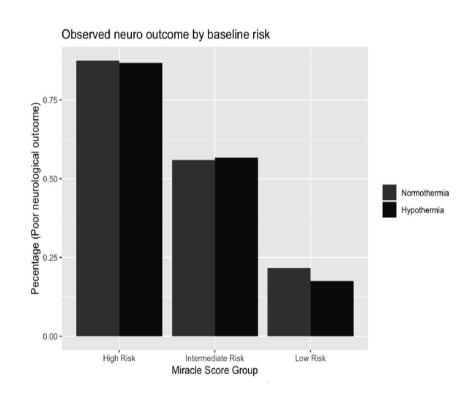
Hypothermic versus normothermic temperature control after cardiac arrest: TTM1 + TTM2

Holgersson J et al. N Engl J Med Evidence June 15, 2022

Effects on survival

mRS at 180 d

Hypothermic versus normothermic temperature control after cardiac arrest: TTM1 + TTM2


Holgersson J et al. N Engl J Med Evidence June 15, 2022

Severity & survival

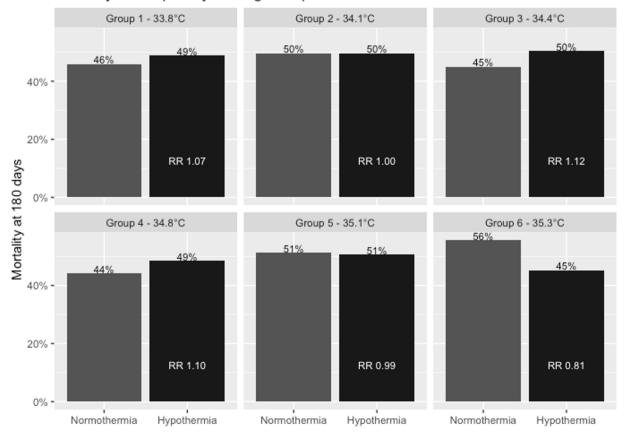
Miracle2 score vs. observed outcome

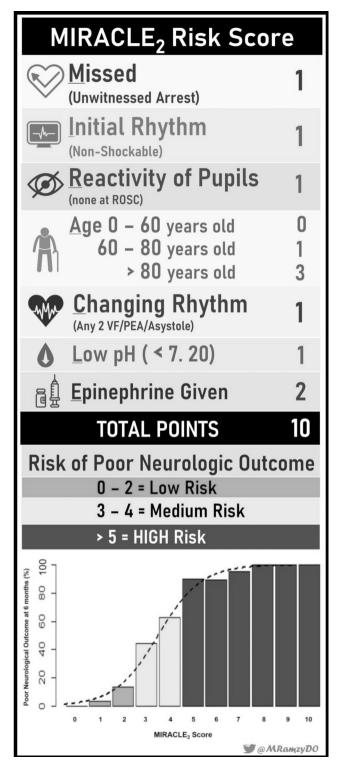
Total number of patients (dots

TTM & survival

Hypothermia improved good functional outcome in patients who had not received bystander cardiopulmonary resuscitation

Speed of cooling after cardiac arrest in relation to the intervention effect: a TTM2 trial sub-study


Simpson RFG et al. Crit Care. 2022 Nov 15;26(1):356

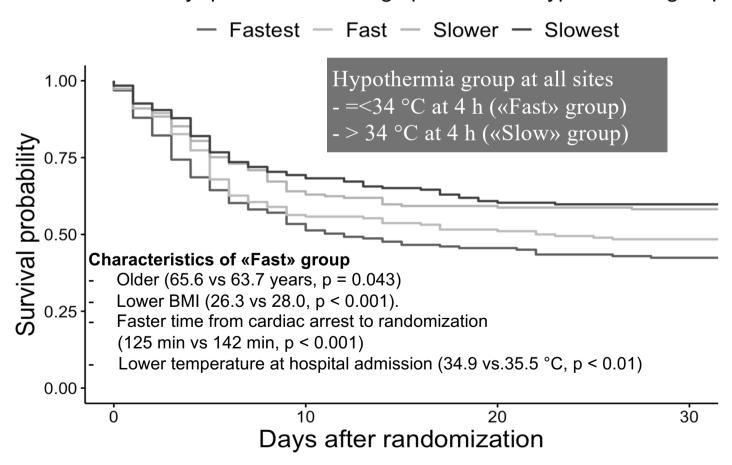

Average temperature at 4 hours (240 min) after for each participating sites

Normothermia

Hypothermia

Mortality - Grouped by average temperature at four hours at each site

Seven predictor variables resulting in a final score ranging from 0 to 10 were used in the final model and it was named MIRACLE₂


- 0 2 = LOW risk of poor neurologic outcome
- 3 4 = **INTERMEDIATE** risk of poor neurologic outcome
- \geq 5 = **HIGH** risk of poor neurologic outcome

Speed of cooling after cardiac arrest in relation to the intervention effect: a TTM2 trial sub-study

Simpson RFG et al. Crit Care 2022 (accepted, in press)

Average temperature at 4 hours (240 min) after for each participating sites

Survival by quartiles of cooling speed in the Hypothermia group

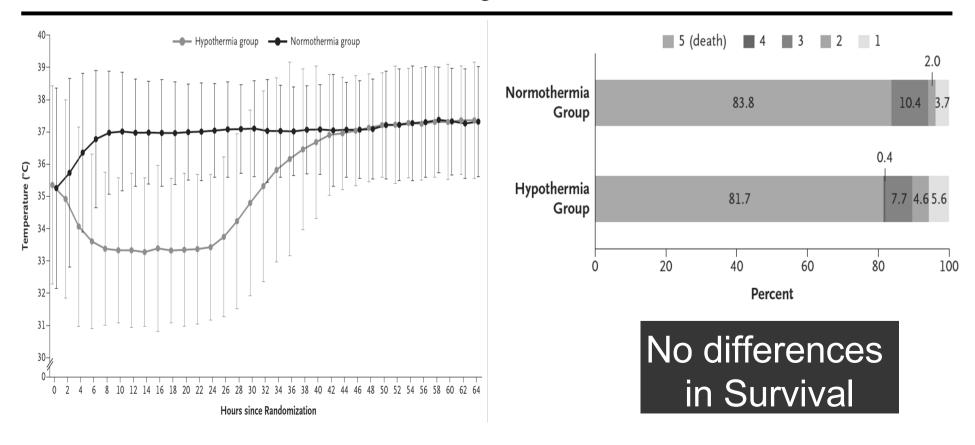
What TTM 1 & TTM2 trials did show?

Strictly controlled TTM regiments (32 °C vs 36 °C & 33 °C vs 36.5-37.7 °C) do not give different results

 Target temperature management works and it is necessary (with data available)

The importance of avoiding fever in cardiac arrest

Limitations of TTM 1 & TTM 2 trials


- OHCA patients (generazibility to in hospital?)
- High patients' heterogeneity
- √ shockable and non-shockable rhythms
- ✓ no age limit

Very short no-flow time and a large number of bystander-initiated resuscitation (implying a limited brain injury)

ORIGINAL ARTICLE

Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm

Lescarrou JB et al. N Engl J Med 2019;381:2327-37.

Targeted temperature management and cardiac arrest after the TTM-1 &2 and HYPERION trials

Taccone FS et al. Crit Care (2021) 25:275

All the randomized studies on TTM after cardiac arrest are not entirely comparable!

	Bernard et al. [1]	HACA group [2]	Nielsen et al. [7]	Dankiewicz et al. [5]	Lascarrou et al. [4]
Design	Single-Centre	Multicentric	Multicentric	Multicentric	Multicentric
N (HT group)	79 (43)**	275 (138)*	939 (473)	1861 (930)	584 (284)
Age, years	67 (49–89)	59 (49–67)	64±12	64±13	67 (57–76)
Male gender	58%	77%	83%	80%	65%
OHCA	100%	100%	100%	100%	74%
Bystander CPR	49%	49%	73%	82%	70%
Shockable rhythm	100%	96%	79%	72%	0%
Time to ROSC, min	27 ± 13	22 (17–33)*	25 (18–40)	25 (16–40)	18 (10–25)
Cause of Arrest	Cardiac	Cardiac	Cardiac/UNK	Cardiac/UNK	All**
Shock on Admission	NR	49*	15%	28%	56%
STEMI on Admission	NR	NR	40%	41%	16%
Lactate, mmol/L	8.3 (2.2-14.9)	NR	6.7 ± 4.5	5.9±4.4	5.8 (3.2-9.0)
Outcome Assessment	Hospital Discharge	6 months	6 months	6 months	3 months
Mortality, %*	51%	41%	50%	50%	81%
UO Assessment Scale	CPC 3-5	CPC 3-5	CPC 3-5	mRS 4-6	CPC 3-5
UO, %	51	45	54	55	90
Prognostication Rules	Absent	Absent	Present	Present	Present
Generalisability/Bias	Low/high	Low/high	High/low	High/low	High/moderate

Targeted temperature management and cardiac arrest after the TTM-1 &2 and HYPERION trials

Taccone FS et al. Crit Care (2021) 25:275

All the randomized studies on TTM after cardiac arrest are not entirely comparable

- **The TTM-2 study findings would be applicable:**
- ✓ OHCA of cardiac causes
- ✓ Bystander CPR (i.e., short no-flow time and less severe initial anoxic injury)
- ✓ Patients with acute myocardial infarction and a low occurrence of shock on admission
- **❖** In patients with an initial non-shockable rhythm due to respiratory/hypoxic causes and hemodynamic instability:
- ✓ The use of hypothermia at 33 °C could be considered more effective than normothermia, in particular for in-hospital cardiac arrest (?)

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

Review

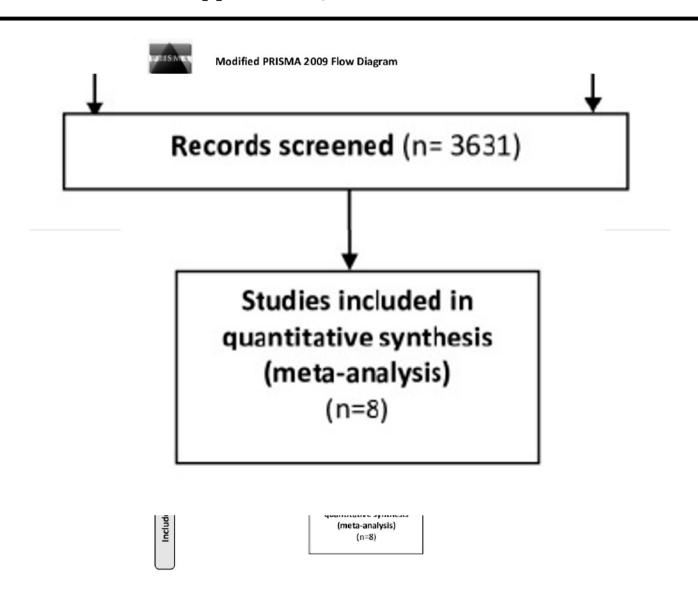
Targeted Temperature Management after Cardiac Arrest: A Systematic Review and Meta-Analysis with Trial Sequential Analysis

Filippo Sanfilippo ^{1,*,†}, Luigi La Via ^{1,2,†}, Bruno Lanzafame ^{1,2}, Veronica Dezio ^{1,2}, Diana Busalacchi ², Antonio Messina ^{3,4}, Giuseppe Ristagno ⁵, Paolo Pelosi ^{6,7} and Marinella Astuto ^{1,2}

- Department of Anaesthesia and Intensive Care, "Policlinico-Vittorio Emanuele" University Hospital, 95123 Catania, Italy; luigilavia7@gmail.com (L.L.V.); lanza.bb@gmail.com (B.L.); veronica_dezio@hotmail.it (V.D.); astmar@tiscali.it (M.A.)
- School of Anaesthesia and Intensive Care, University Hospital "G. Rodolico", University of Catania, 95123 Catania, Italy; diana.busalacchi@gmail.com
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; mess81rc@gmail.com
- ⁴ IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; gristag@gmail.com
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; ppelosi@hotmail.com
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
- * Correspondence: filipposanfi@yahoo.it; Tel.: +39-(0)-953782307
- † The two authors equally contributed to this study.

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

❖ Effects on survival & neurologic outcome

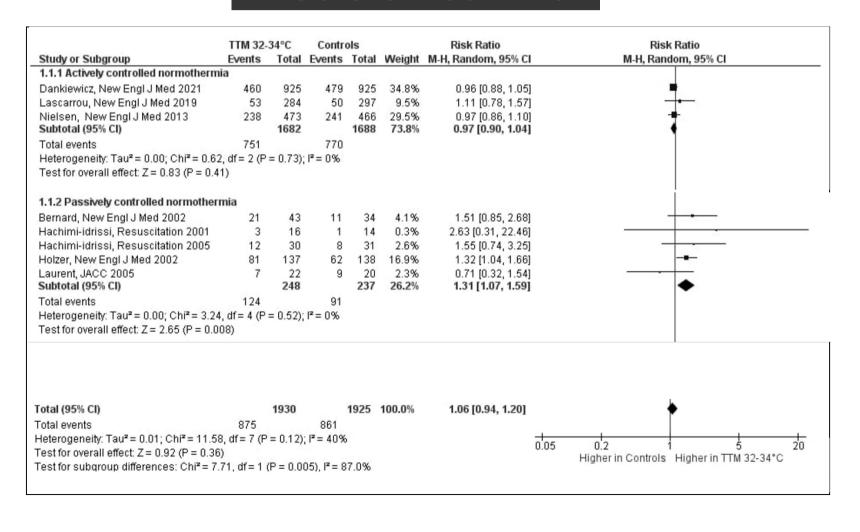

- TTM (Temperature range of 32-34 °C)
- > Controls:
- "actively" controlled (avoiding fever)
- "uncontrolled" normothermia (may hesitate in hyperthermia/fever)

Serious adverse events

PICOS CRITERIA						
Population	Patients experiencing CA both in and out-of-hospital, independently from the initially detected rhythm (shockable or not), with TTM performed after hospital arrival					
Intervention	n TTM with temperature range set at 32–34 °C					
Comparison	TTM with either actively controlled or uncontrolled normothermia					
Outcome(s)	Survival and neurological outcome at longest follow-up (primary); adverse effects (secondary)					
Study design	Randomized controlled trial only					

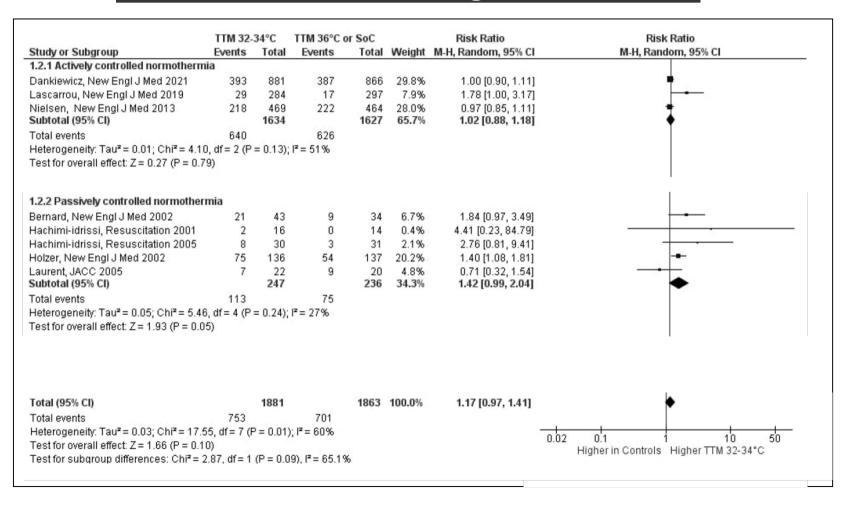
CA: cardiac arrest; TTM: target temperature management.

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943


Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

First Author Year	Location of Arrest	First Rhythm Detected	Treatment in the Intervention Group Treatment in the Control Group	Longest Follow Up GNO Assessment	
Dankiewicz 202 N = 1861	OHCA	Shockable 74% Non-shockable 26%	TTM (surface/ iv, 33 °C, 28 h) + active RW (12 h) Normothermia (\leq 37.5 °C + surface/iv if \geq 37.8 °C)	6-months mRS	
Nielsen 2013 N = 939	OHCA	Shockable 80% Non-shockable 20%	TTM (any method, 33 $^{\circ}$ C, 28 h) + active RW (8 h) TTM (any method, 36 $^{\circ}$ C, 28 h) + active RW (2 h)	6-months—End trial CPC—mRS	
Lascarrou 2019 N = 548	Mixed (73% OHCA)	Non-shockable 100%	TTM (any method, 33 °C, 24 h) + active RW (8–16 h, 36 °C, 24 h) TTM (any method, 37 °C, 48 h)	90-days CPC	
Holzer 2002 $N = 136$	OHCA	Shockable 96% Other 4%	TTM (mattress, 32–34 °C, 24 h) + passive RW Normothermia (no target)	6-months CPC	
Bernard 2002 N = 77	OHCA	Shockable 100%	TTM (ice-packs, 33 °C, 12 h) + active RW (6 h) Normothermia (37 °C)	Hospital discharge Home/short term rehab	
Hachimi- idrissi 2005	ОНСА	Non-shockable 54%	TTM (Helmet, 33 °C, brief *) + passive KW Normothermia (37 °C)	6-months	
N = 61		Shockable 46%	TTM (mattress, 33 °C, 24 h) + passive RW Normothermia (37 °C)	CPC	
Laurent 2005 * N = 42	OHCA	Shockable 74% Non-shockable 26%	TTM (HF + ice-packs, 32 °C, 24 h) + passive RW Normothermia + HF 8 h (37 °C)	6-months CPC	
Hachimi- idrissi 2001 N = 30	OHCA	Non-shockable 100%	TTM (Helmet, 34 °C, brief *) + passive RW Normothermia + treatment of fever (38 °C)	2-weeks CPC	

HF: hemofiltration; OHCA: out-of-hospital cardiac arrest; RW: rewarming; TTM: target temperature management; mRS: modified rankin scale; CPC: cerebral performance category. * The control group not treated with HF was not considered (n = 19)


Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

Effects on survival

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

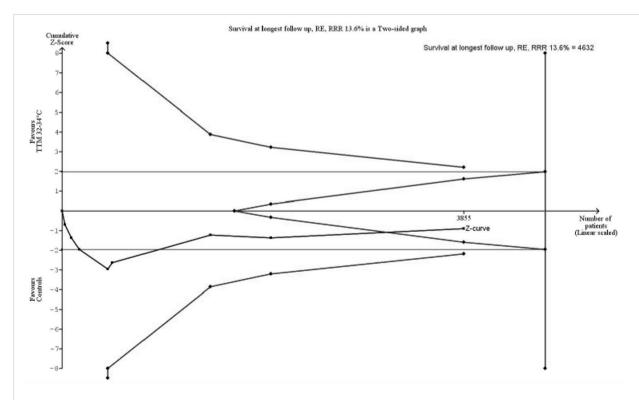
Effects on neurologic outcome

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

Adverse events

Arrhythmias

	TTM 32 - 34 °C T		TTM Cor	TTM Controls		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Dankiewicz, New Engl J Med 2021	222	927	152	921	67.6%	1.45 [1.21, 1.75]		
Holzer, New Engl J Med 2002	49	135	44	138	21.2%	1.14 [0.82, 1.58]		
Lascarrou, New Engl J Med 2019	35	284	31	297	11.2%	1.18 [0.75, 1.86]	-	
Total (95% CI)		1346		1356	100.0%	1.35 [1.16, 1.57]	•	
Total events	306		227					
Heterogeneity: Tau ² = 0.00; Chi ² = 1.	.94, df = 2 (F)	9 = 0.38	$ ^2 = 0\%$				05 07 4 45 3	
Test for overall effect: Z= 3.83 (P = 0.0001)						0.5 0.7 1 1.5 2 Higher in Controls Higher in 32 - 34 °C		

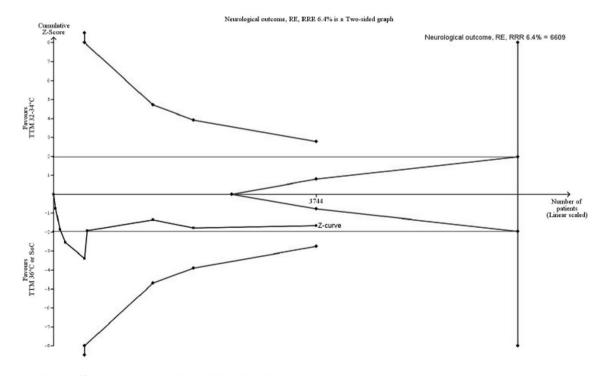

No differences in the incidence of:

- √ bleeding (RR 1.10 (95%CI 0.83, 1.44))
- √ pneumonia (RR 1.11 (95%CI 0.96, 1.29))

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

Trials sequential analysis

Survival at longest follow-up



RE=random effect, RRR=Relative risk reduction.

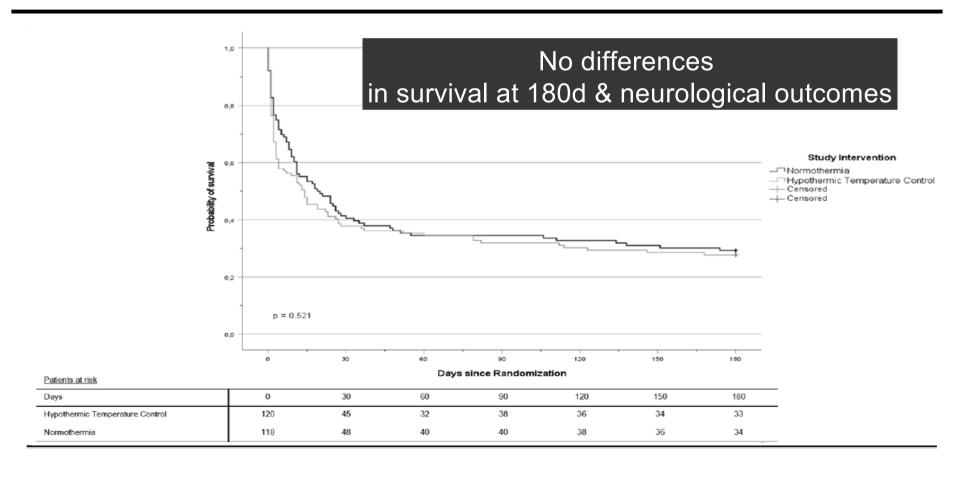
Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943

Trials sequential analysis

Neurological outcome

RE=random effect, RRR=Relative risk reduction.

Sanfilippo F et al. J. Clin. Med. 2021, 10, 3943


Conclusions

- In CA survivors admitted to hospital, the implementation of TTM with a target temperature of 32 - 34 °C:
- √ does not improve survival nor neurological outcome
- √ it increases the risk of arrhythmias
- For survival, robust evidence and no more studies are needed.
- For neurological outcome current evidence is not robust enough - thus new research is needed.
- Approaching temperature management with "uncontrolled" normothermia may be associated with worse outcomes and this should not be considered an option nowadays.

Temperature Control After In-Hospital Cardiac Arrest: A Randomized Clinical Trial

Sebastian Wolfrum, MD*; Kevin Roedl, MD*; Alexia Hanebutte, MD; Rüdiger Pfeifer, MD; Volkhard Kurowski, MD; Reimer Riessen, MD; Anne Daubmann, MSc; Stephan Braune, MD; Gerold Söffker, MD; Eric Bibiza-Freiwald, MSc; Karl Wegscheider, PhD; Heribert Schunkert, MD; Holger Thiele, MD*; Stefan Kluge, MD*; for the Hypothermia After In-Hospital Cardiac Arrest Study Group

Wolfrum S et al. Circulation 2022; 146:000-000

The Care Consortium & STEPCARE trial

The STEPCARE trial is an international, multicenter, parallel group, noncommercial, randomized, factorial, superiority trial to include 3100 patients

- 1. Continuous sedation for 36 h or minimal sedation (SEDCARE)
- 2. Fever management with or without a TTM device for 72 h (TEMPCARE)
- 3. A mean arterial pressure target of > 85mmHg or > 65mmHg for 36 hours (MAPCARE)

Follow-up will be performed at 30 days and 6 months after cardiac arrest including mortality, functional outcome and quality of life

- 1. Detailed cognitive outcome with focus on patients and caregivers
- 2. Prognostication to identify and validate early and accurate instruments and algorithm
- 3. Biobank with blood samples at 0, 24, 48, and 72 hours after the cardiac arrest