Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste I Semestre 2023

Lecture 24: Control Synthesis with STL

[Many Slides due to Ezio Bartocci]

MDP uses the dynamical model of the process to predict its future evolution and optimize consequently the control input signal

Example of Receding Horizon Control

We consider a discrete-time approximation: Σ_d : $x(t_k) = f_d(x(t_k), u(t_k), w(t_k))$, $\forall k > 0, t_{k+1} - t_k = \Delta t$ A run of the system is: $\xi = (x_0 u_0 w_0)(x_1 u_1 w_1)(x_2 u_2 w_2)$... where $x_k = x(t_k), u_k = u(t_k), w_k = w(t_k)$,

Receding Horizon Control with STL

Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M. Murray, Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia: Model predictive control with signal temporal logic specifications. CDC 2014: 81-87

Open-loop Controller Synthesis

 $J(x_0, \mathbf{u}, \mathbf{w}, \varphi) \in \mathbb{R}$ is a cost function

Open-loop Controller Synthesis

 $J(x_0, \mathbf{u}, \mathbf{w}, \varphi) \in \mathbb{R}$ is a cost function

Closed-loop Controller Synthesis

 $\mathbf{J}(x_0, \mathbf{u}, \mathbf{w}, \varphi) \in \mathbb{R}$ is a cost function

Closed-loop Controller Synthesis

 $\mathbf{J}(x_0, \mathbf{u}, \mathbf{w}, \varphi) \in \mathbb{R}$ is a cost function

Mixed-Integer Linear Programming

min $c^T x$ $Ax \sim b$ $x \ge 0$

 $x_i \in \mathbb{Z} \quad \forall i \in \mathbf{I}$ $\sim = \left\{ \leq, =, \leq \right\}$

Generating Systems Constraints

Given an horizon 1,...N and x_0, w_0, \dots, w_{N-1}

$$x_{1} = f_{d}(x_{0}, u_{0}, w_{0})$$

$$x_{2} = f_{d}(x_{1}, u_{1}, w_{1})$$

$$\vdots$$

$$x_{N-1} = f_{d}(x_{N-2}, u_{N-2}, w_{N-2})$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi_1 \mid \Diamond_{[a,b]} \varphi_1 \mid \varphi_1 U_{[a,b]} \varphi_2$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

We recursively generate the MILP constraints corresponding to $z_0^{\boldsymbol{\phi}}$

$$\varphi ::= \mu(x_t) > 0 | \neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \Box_{[a,b]} \varphi_1 | \diamond_{[a,b]} \varphi_1 | \varphi_1 U_{[a,b]} \varphi_2$$

$$\mu(x_t) \le M_t(z_t^{\mu}) - \varepsilon_t$$

$$-\mu(x_t) \le M_t(1 - z_t^{\mu}) - \varepsilon_t$$

Where M_t are sufficiently large positive numbers and ϵ_t are sufficiently small positive numbers to bound $\mu(x_t)$ away from zero

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

$$\varphi ::= \mu(x_t) > 0 |\neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \Box_{[a,b]} \varphi_1 | \diamond_{[a,b]} \varphi_1 | \varphi_1 U_{[a,b]} \varphi_2$$
$$\psi = \neg \varphi$$
$$z_t^{\psi} = 1 - z_t^{\varphi}$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

$$\begin{split} \varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi_1 \mid \diamond_{[a,b]} \varphi_1 \mid \varphi_1 U_{[a,b]} \varphi_2 \\ \psi = \wedge_{i=1}^m \varphi_i \\ z_t^{\psi} \le z_{t_i}^{\varphi_i}, i = 1, \cdots, m \\ z_t^{\psi} \ge 1 - m + \sum_{i=1}^m z_{t_i}^{\varphi_i} \end{split}$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi \mid \diamond_{[a,b]} \varphi \mid \varphi_1 U_{[a,b]} \varphi_2$$

$$\psi = \lor_{i=1}^m \varphi_i$$

$$z_t^{\psi} \ge z_{t_i}^{\varphi_i}, i = 1, \cdots, m$$

$$z_t^{\psi} \le \sum_{i=1}^m z_{t_i}^{\varphi_i}$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

We recursively generate the MILP constraints corresponding to $z_0^{\boldsymbol{\phi}}$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi \mid \diamond_{[a,b]} \varphi \mid \varphi_1 U_{[a,b]} \varphi_2$$

$$a_t^N = \min(t+a,N) \quad b_t^N = \min(t+b,N)$$

Compute z_t^{ψ} such that:

$$z_t^{\psi} = \wedge_{i=a_t^N}^{b_t^N} z_i^{\varphi}$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

We recursively generate the MILP constraints corresponding to $z_0^{\boldsymbol{\phi}}$

$$\varphi ::= \mu(x_t) > 0 |\neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \Box_{[a,b]} \varphi | \diamond_{[a,b]} \varphi | \varphi_1 U_{[a,b]} \varphi_2$$

$$a_t^N = \min(t+a,N) \quad b_t^N = \min(t+b,N)$$

Compute z_t^{ψ} such that:

$$z_t^{\psi} = \bigvee_{i=a_t^N}^{b_t^N} z_i^{\varphi}$$

Given a formula φ we introduce a variable z_t^{φ}

 $z_t^{\varphi} = 1 \Leftrightarrow \xi(x_t, u, w) \models \varphi$

We recursively generate the MILP constraints corresponding to $z_0^{\boldsymbol{\phi}}$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi \mid \diamond_{[a,b]} \varphi \mid \varphi_1 U_{[a,b]} \varphi_2$$

Compute z_t^{ψ} such that:

$$\Psi = \varphi_1 U_{[a,b]} \varphi_2 = \Box_{[0,a]} \varphi_1 \wedge \Diamond_{[a,b]} \varphi_2 \wedge \Diamond_{[a,a]} (\varphi_1 U \varphi_2)$$
$$\left\langle \left\langle \varphi_1 U \varphi_2 \right\rangle \right\rangle_t = \begin{cases} z_t^{\varphi_2} \vee \left(z_t^{\varphi_1} \wedge \left\langle \left\langle \varphi_1 U \varphi_2 \right\rangle \right\rangle_{t+1} \right), & t=1,\dots, N-1 \\ z_N^{\varphi_2} \end{cases}$$

Algorithm for Open-Loop

Algo	rithm 1 Algorithm f	for Problem 1
1: p	rocedure OPEN_L	$LOOP(f, x_0, \mathbf{w}, N, \varphi, J)$
2:	LOOP_CONSTR.	AINTS \leftarrow Sec. IV-B
3:	SYSTEM_CONS	TRAINTS \leftarrow Sec. IV-A
4:	STL_CONSTRAI	NTS \leftarrow Sec. IV-C2 OR Sec. IV-D
5:		
	$\mathbf{u}^* \leftarrow \operatorname{argmin}$	$J(x_0, \mathbf{u}, \mathbf{w}, \varphi)$

$$\mathbf{u}^* \leftarrow \operatorname*{argmin}_{\mathbf{u} \in \mathcal{U}^N}$$

$$J(x_0, \mathbf{u}, \mathbf{w}, \varphi)$$

Return \mathbf{u}^* 6: end procedure

$$\varphi ::= \mu(x_t) > 0 |\neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \Box_{[a,b]} \varphi_1 | \diamond_{[a,b]} \varphi_1 | \varphi_1 U_{[a,b]} \varphi_2$$

$$r_t^{\mu} = \mu(x_t) \quad r_t^{\psi} = -r_t^{\varphi}$$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi_1 \mid \Diamond_{[a,b]} \varphi_1 \mid \varphi_1 U_{[a,b]} \varphi_2$$

$$(\sum_{i=1}^{m} p_{t_i}^{\varphi_i} = 1) \longrightarrow \text{Binary variable}$$

$$r_t^{\psi} \le r_{t_i}^{\varphi_i}, i = 1, ..., m$$

$$r_t^{\varphi_i} - (1 - p_{t_i}^{\varphi_i}) M \le r_t^{\psi} \le r_{t_i}^{\varphi_i} + M(1 - p_{t_i}^{\varphi_i})$$

$$r_t^{\psi} = \min_i (r_{t_i}^{\varphi_i})$$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi_1 \mid \diamond_{[a,b]} \varphi_1 \mid \varphi_1 U_{[a,b]} \varphi_2$$

$$\sum_{i=1}^{m} p_{t_i}^{\varphi_i} = 1$$

$$r_t^{\psi} \ge r_{t_i}^{\varphi_i}, i = 1, \dots, m$$

$$r_t^{\varphi_i} - (1 - p_{t_i}^{\varphi_i}) M \le r_t^{\psi} \le r_{t_i}^{\varphi_i} + M(1 - p_{t_i}^{\varphi_i})$$

$$r_t^{\psi} = \max_i (r_{t_i}^{\phi_i})$$

$$\varphi ::= \mu(x_t) > 0 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box_{[a,b]} \varphi_1 \mid \Diamond_{[a,b]} \varphi_1 \mid \varphi_1 U_{[a,b]} \varphi_2$$

As defined before

Case Study: Building Climate Control

3

Building a thermal model

- a resistor capacitor circuit with n nodes, m rooms n – m are walls.
- $\succ T_{r_i}$ temperature of room r_i
- $\blacktriangleright w_{i,j}$ wall between rooms i and j
- $ightarrow T_{w_{i,j}}$ temperature of wall $w_{i,j}$

Building Climate Model

Building Climate Model

$$\frac{d}{dt}x_t = f(x_t, u_t, w_t),$$

Where state vector x_t representing the temperature of the nodes in the thermal network

 u_t is the input vector representing the air mass flow rate and discharge air temperature of conditioned air into each thermal zone

 w_t stores the estimated disturbance values, aggregating various unmodelled dynamic

 y_t is the output vector, representing the temperature of the thermal zones.

Simulation Building Model

Simulated temperature, measured temperature and unmodelled dynamics of a thermal zone in Bancroft library on UC Berkeley campus. 33

MPC for Building Climate Control

Maintaining a comfort temperature given by T_t^{comf} whenever the room is occupied while minimizing the cost of heating.

$$\begin{split} \min_{\vec{u}_t} \sum_{k=0}^{H-1} \|u_{t+k}\| \quad \text{s.t.} \\ x_{t+k+1} &= f(x_{t+k}, u_{t+k}, w_{t+k}), \\ x_t &\models \varphi \quad \text{with} \quad \varphi = \Box_{[0,H]}((\operatorname{occ}_t > 0) \Rightarrow (T_t > T_t^{\operatorname{comf}}) \\ u_{t+k} \in \mathcal{U}_{t+k}, \ k = 0, \dots, H-1 \end{split}$$

MPC for Building Climate Control

BluSTL tool

2

EPiC Series in Computer Science Volume 34, 2015, Pages 160–168

ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems

BluSTL: Controller Synthesis from Signal Temporal Logic

Specifications 2.1 System dynamics

We consider a continuous-time system Σ of the form Alexandre Donzé¹ and Vasumathi R

¹ Department of Electrical Engineering and Comp		
UC Berkeley,	$\dot{x} = Ax + B_u u + B_w w$	(1)
Berkeley, CA 94720, USA donze@berkeley	$a_{1} - C_{m} + D_{n} + D_{n} + D_{n}$	(1)
California Institute of Technology, Pasadena, CA, USA	$y = Ou + D_u u + D_w w$	(2)

where

Abstract

We present BluSTL, a MATLAB toolbox for automatically generating written in Signal Temporal Logic (STL). The toolbox takes as input a expressed in STL and constructs an open-loop or a closed-loop (in a dictive fashion) controller that enforces these constraints on the syst function. The controller can also be made reactive or robust to some The toolbox is available at https://github.com/BluSTL/BluSTL.

- $x \in \mathcal{X} \subseteq \mathbb{R}^n$ is the system state,
- $u \in \mathcal{U} \subseteq \mathbb{R}^m$ is the control input,
- $w \in \mathcal{W} \subseteq \mathbb{R}^l$ is the external input,
- $y \in \mathcal{Y} \subseteq \mathbb{R}^o$ is the system output.

Given a sampling time $\Delta t > 0$, we discretize Σ into Σ_d of the form

v

$$x(t_{k+1}) = A^d x(t_k) + B^d_u u(t_k) + B^d_w w(t_k)$$
(3)

$$y(t_k) = C^d x(t_k) + D^d_u u(t_k) + D^d_w w(t_k)$$
(4)

where for all k > 0, $t_{k+1} - t_k = \Delta t$ and $t_0 = 0$. Given an integer N > 0, $x_0 \in \mathcal{X}$, and two sequences $\mathbf{u} \in \mathcal{U}^{N-1}$ and $\mathbf{w} \in \mathcal{W}^{N-1}$ noted

$$\mathbf{u} = u_0 u_1 \dots u_{N-1}$$
$$\mathbf{w} = w_0 w_1 \dots w_{N-1}$$

we denote by $\xi(x_0, \mathbf{u}, \mathbf{w}) \in \mathcal{X}^N$ the 4-uple of sequences $(\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{w}) = \xi(x_0, \mathbf{u}, \mathbf{w})$ such that \mathbf{x} , **y**, **u** and **w** satisfy (3-4) with $x(t_k) = x_k$, $y(t_k) = y_k$, $u(t_k) = u_k$ and $w(t_k) = w_k$ for all k. $\xi(x_0, \mathbf{u}, \mathbf{w})$, or sometimes simply ξ is called a run of Σ_d .