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• RL is the theoretical model for learning from 
interaction with an uncertain environment
•  aleatory (intrinsic) or epistemic (knowledge) 

uncertainty
• Maximize the average reward function over a 

given time horizon
• Very important notion of time horizon, it can 

change your goal
• There could be different reward to achieve the 

same goal

Reinforcement Learning

Agent

Environment

Rewards
ObservationsActions



u RL Course by David Silver: 
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseB
mo4KQ9-

u Reinforcement learning tutorial with demo:
https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_demo#Function
Approximation

u Coursera
https://www.coursera.org/specializations/reinforcement-learning

u RL Youtube Course DeepMind
https://www.youtube.com/watch?v=TCCjZe0y4Qc&ab_channel=DeepMind
(https://deepmind.com/learning-resources/reinforcement-learning-series-2021)
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Challenges:
u Safe RL
u Reward Hacking
u Complex/Multi Tasks

Reinforcement Learning and Temporal Logic
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Safe Reinforcement Learning
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Reward Hacking
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A policy that achieves high returns but against the designer’s intentions 

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch?v=92qDfT8pENs


Complex Tasks
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Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)



Several Works with different motivations
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u Reward shaping using robusntess sa1sfac1on

u LTL constrained, Reward funcEon remained the same

u mulE-task-RL



Reward function is not enough
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u To define task better 

u To learn more efficiently and precisely

u To transfer learning between tasks

u To be “safe” 

Description using a language can help..
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General Idea 
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Reward Shaping problem: 
Design 𝑅 𝑠, 𝑎 s.t. I can find 𝜋∗ 𝑠. 𝑡. ∀ 𝑥, 𝜋∗ 𝑥 the “saEsfacEon” of x is 
maximised

Why important?
u Poorly design -> poorly convergence
u Learning unsafe or unrealisEc acEon
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1. Learning a deterministic predictive model of the system dynamics using 
deep neural networks. 
Given a state and a sequence of actions, such a predictive model produces a 
predicted trajectory over a user-specified time horizon. 

2. Using a cost function based on the quantitative semantics of STL to 
evaluate the optimality of the predicted trajectory.
Using a black-box optimizer with an evolutionary strategies to identify the 
optimal sequence of actions (in an MPC setting). 

Model-based RL from STL specification
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1. Given a dataset 𝒟 on sample transitions (𝑠, 𝑎, 𝑠′) collected from simulations 
or real-world demonstrations. 

2. Fit a model .𝐹"(𝑠# , 𝑎#) that takes the current state 𝑠# and an action 𝑎#, and 
outputs a distribution over the set of possible successor states 𝑠#$%!

3. MPC:  let an action sequence be denoted 𝐴#
(') = 𝑎# , … , 𝑎#$')*

At every time step t during the execution of the controller for a finite 
planning horizon H we solve the following optimization problem 

� maximize 𝜌(𝑠̂# , 𝑎# , 𝑠̂#$*, . . . , 𝑎#$')*, 𝑠̂#$')
� where:

𝑠̂# = 𝑠# and 
𝑠̂#$+$* = .𝐹 𝑠̂#$+ , 𝑎#$+ , ∀ 𝑖 ∈ 0,… , 𝐻 − 1

Model-based RL from STL specification
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u Monte-Carlo methods [25], the Cross-Entropy Method [26], or evolutionary 
strategies, like CMA-ES [27] and Natural Evolutionary Strategies [28]. 

u This paper uses CMA-ES: Covariance Matrix Adaptation Evolution Strategy

u In contrast to most classical methods, fewer assumptions on the nature of the 
underlying objective function are made. 

Non-Linear Optmization Techiniques
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ew candidate solutions are sampled according to a multivariate normal distribution in   . Recombination amounts to selecting a new mean value for the distribution. Mutation amounts to adding a random vector, a per

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


u D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-Learning for robust satisfaction of signal 
temporal logic specifications,” in 2016 IEEE, CDC, Dec. 2016, pp. 6565–6570.  
An extension to Q-learning where STL robustness is directly used to define 
reward functions over trajectories in an MDP. 

u X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal logic rewards,” in 2017 IEEE/RSJ 
International Conference on Intelli- gent Robots and Systems (IROS), Sept. 2017, pp. 3834–3839. 
Propose a method that augments an MDP with finite trajectories, and
defines reward functions for a truncated form of Linear Temporal Logic. 

u A. Balakrishnan and J. V. Deshmukh, “Structured Reward Shaping using Signal Temporal Logic 
specifications,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 
2019, pp. 3481–3486. 
Translate STL specifications into locally shaped reward functions using a 
notion of “bounded horizon nominal robustness”

Q-learning  RL with TL
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STL and discrete space
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General idea
u States: partition of a Continuous Space

Unknown stochastic dynamics
u Goal: Maximizing Pr[𝑠 ⊨ Φ] or 𝐸[𝑟(𝑠,Φ)]
u Issue: Pr[𝑠 ⊨ Φ] or 𝐸[𝑟(𝑠,Φ)] are not in the 

standard objective form of Q- learning (i.e., the 
sum of instantaneous rewards) 

u Solution: approximation of STL synthesis 
problems that can be solved via Q-learning, 
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System Model

u Set of partitions with centroid 𝜎* = ∆-
.
, ∆/
.

u Motion primitives 𝑎 ∈ 𝐴 , blue arrow
u 𝑠#":##: state trajectory of the system within 𝑡* , 𝑡.

e.g. s1 = 𝜎*. If the system visits 𝜎2 and returns to 𝜎*, its 
state trajectory can be written as 𝑠1:.∆# = 𝜎*𝜎2𝜎*

u probability distribution for 𝑠#$* is unknown 
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Problem: history- dependence of the satisfaction 

u Let Φ be an STL specification with hrz(Φ) = T . Given a stochastic model M = 
⟨Σ,A,P,R⟩ with unknown P and an initial partial state trajectory s0:τ for some 0 ≤ τ 
< T , find a control policy π such that 

u Fragment of STL such that the progress towards satisfaction is checked with a 
sufficient number of (i.e., τ) state measurements. 



Q-learning 
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Problem: history- dependence of the satisfaction 
u The policies should be defined as 𝜋 ∶ Σ3 ×𝑁41 → 𝐴 where Σ3 = Σ×···×Σ for 

τ times. Hence, the state-space of the system needs to be redefined as 
Σ3 ×𝑁41. 

u 𝜏 −MDP   where 𝜏 = [567 8
9#

] + 1 for     𝐹[1,<]𝜓, 𝐺[1,<]𝜓

u Each state corresponds to a 
𝜏-length  trajectory
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Problem: robustness shape

u log-sum-exp approximation to adapt the Robustness of Q-learning
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Finally…

The immediate reward is :
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Experiments

|S|= 19, |S(| = 676 and 𝜏 = 3

the robustness degree gives “partial credit” 
for trajectories that are close to satisfaction 

For the satisfaction prob,  instead, Q-
learning algorithm is essentially performing 
a random search 

 

Φ) = 𝐺 *,,) (𝐹 *,) (𝑟𝑒𝑔𝑖𝑜𝑛	𝐴) ∧ 𝐹 *,) (𝑟𝑒𝑔𝑖𝑜𝑛	𝐵))



STL and continuous space
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Truncated Linear 
Temporal Logic (TLTL)

• Specifically for robots

• Unbounded

• Atomic propositions

• Evaluated against finite time sequences
𝑠-:-/0 	= 	 𝑠-	𝑠-/,…𝑠-/0

•  
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STL and continuous space
u Policy parametrization 𝜋 𝑠, 𝑎 𝜃 where θ is the set of model parameters 

u 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥" 𝐸>$%(3)[𝑅(𝜏)] , 
where 𝑝?%(𝜏) is trajectory distribution from following policy π 

u Relative Entropy Policy Search (REPS) : 
constrained optimization problem that can be solved by Lagrange multipliers
method

u Time-varying linear Gaussian policies and weighted maximum-likelihood
estimation to update the policy parameters
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Experiments



LTL constrained to discrete state and action
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LTL constrained to discrete state and action
u select the reward function on the product MDP so it corresponds to the Rabin 

acceptance condition of the LTL specification. 

u Prove convergence if policy exist s.t. it satisfies property with probability 1

u 1) Learn the transition probabilities and 
2) Optimize the expected utility. 
E.g.  with a modified active temporal difference learning algorithm 



Several Works with different motivations
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u Reward shaping using probability of average robusntess satisfaction

u LTL constrained, Reward function remained the same

u multi-task-RL
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Safe RL via Shield
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u The shield is computed upfront from the safety part of 
the given system specification and an abstraction of 
the agent’s environment dynamics 

u Minimum interference: monitors the actions selected 
by the learning agent and corrects them if and only if 
the chosen action is unsafe.

u Boundary helps to separate the concerns, e.g., safety 
and correctness on one side and convergence and 
optimality on the other 

u Compatible with mechanisms such as function 
approximation, employed by learning algorithms in 
order to improve their scalability 

How can we let a learning agent do whatever it is doing, and also monitor and interfere with 
its operation whenever absolutely needed in order to ensure safety? 



Safe RL via Shield
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u Safety fragment of LTL 
(something bad should never happen, e.g. no safety G(r → Fg), every request is eventually 
granted)

u A faithful, yet precise enough, abstraction of the physical environment is required

u Independent of the state space components of the system to be controlled 

u The shield is the product between specification automaton and the MDP abstraction 



Grid world Example
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With tabular Q-learning with an ε-greedy explorer 

φs: the robot must not crash into walls or 
the moving opponent agent. 



The PacMan Example
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Approximate Deep Q-learning agent

The safety specification in this example is to avoid 
crashing into a wall. 



Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u Multi-task-RL



Multi-task-RL
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Decompose tasks into subtasks with LTL progression

44Task with finite-episode -> restriction to co-safe properties


