
Cyber-Physical Systems
Laura Nenzi

Università degli Studi di Trieste
I Semestre 2023

Lecture 24: TL Learning insights

Temporal Logic requirement mining

Source: https://jdeshmukh.github.io/research.html

Logic-Cluster (unsupervised)

Logic-Classifier (semi-supervised)

Logic-Classifier (supervised)

STL Classifiers ((Semi-)Supervised Learning)

Goal: learning a specification/ classifier as a temporal logic formula to
discriminate as much as possible between regular and anomalous behaviours.

We want to learn both the structure and the parameters of the formula

STL Classifier: Problem Statement

Semi-supervised one-class classification prob Supervised two-class classification problem

Training data set: two sets
• regular 𝑋!"#$%& 	
• anomalous 𝑋!"#$%'

Training data set: one set
• regular 𝑋!"#$%& 	

We want a way to search in the space of STL formulae considering training data 𝑋!"#$%

Find the best φ that better separates the
two sets.

Find the “tight” φ that is satisfied by the set

STL classifier (supervised): ROGE

• Bi-level algorithm:
• learning formula structure via Genetic

Programming (GP)
• learn parameters of the formula using by

Bayesian Optimisation

• A fitness function 𝑓 measures the quality of
candidate solutions and depends on the kind of
problem at hand (two-classes, one-class)

[L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi: A Robust Genetic Algorithm for Learning Temporal Specifications from
Data. QEST 2018]

Results: Train Cruise

Results: Maritime Surveillance
Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels
behaviours.

Limitation of ROGE

• Initial population designed ”by hand”

• The learning parameter algorithm can be slow (depending on the size
parameter space)

STL Classifier: Context Free Grammar

[F. Pigozzi, E. Medvet, L. Nenzi. Mining Road Traffic Rules with Signal Temporal Logic and Grammar-Based Genetic Programming, Applied Sciences, 2022]
[F. Pigozzi, L. Nenzi., E. Medvet, BUSTLE: a Versatile Tool for the Evolutionary Learning of STL Specifications from Data (second revision
on Evolutionary Computation]

STL classifier: Building the population
• Candidate formulas are represented as derivation trees of a grammar

STL classifier: Building the population
• Candidate formulas are represented as derivation trees of a grammar

Results

STL Classifier: Fitness Function for the one-class problem

Training data set: one set
• regular 𝑋!"#$%& 	

Fitness, two high level requirements:
1. Tight formulas should be preferred
2. Formulas that lead to few false anomalies should be preferred

2

1

Results

Results

Limitations:
• There may be several good classifiers
• Finding the best classifier might be unfeasible
• There may not exist a single, good classifier

A one-shot algorithm

An evolutionary algorithm that learns an ensemble of solutions in
a single run

• Population update:
• Divide population in groups, one for each variable
• The fittest formula of each group goes to next generation (elitism)
• The remaining offspring is obtained reproducing the individuals

• Solutions update. If some individuals solve the problem (f < 𝜖),
consider their groups:
• Remove from the population the individuals in these groups

(extinction)
• Add them to the solutions ensemble
• Refill the population with new individuals (random immigrants)

Stop once 𝑛(#$)"(variables have been solved

[Patrick Indri, Alberto Bartoli, Eric Medvet, Laura Nenzi: One-Shot Learning of Ensembles of Temporal Logic Formulas for Anomaly Detection in
Cyber-Physical Systems. EuroGP 2022: 34-50]

An online application

• For “online” anomaly detection

• using Past STL

• a single trajectory 𝑥, with several variables (> 50)

• 𝑥 is divided as 𝑥&$#'%(, 𝑥&")&(, 𝑥&")&*

• Sensor readings are numerical variables, whilst actuator readings are ternary
non-ordinal variables

Results

Results

• Standard GP more than 60 % of
the formulas containing a single
variable.

• The one-shot algorithm
produces a larger percentage of
solutions with more variables,
with some STL formulas
containing more than 20
variables

Comparison with classical ML: it is
• competitive on SWaT
• it compares unfavourably on N-BaIoT, where it reaches a perfect detection rate

only on N-BaIoT-2. However on N-BaIoT at least one anomalous instant for each
attack is correctly identified, and all attacks might thus be considered as identified.

Learning STL-based clustering (Unsupervised Learning)

Goal: clusterizing spatio-temporal data using formal logic

[Mohammadinejad et al, Mining Interpretable Spatio-temporal Logic Properties for Spatially Distributed Systems, ATVA, 2021]

Monotonic PSTREL 𝜑(𝑝):

• The polarity of a parameter p is:
• + if it is easier to satisfy 𝜑 as we increase the value of p
• − if it is easier to satisfy 𝜑 as we decrease the value of p

• Monotonic PSTREL:
• All parameters have either + or − polarity

• Example: □[",$]𝜑
• Polarity of d is −

• Given a location 𝑙
• A set of spatio-temporal traces 𝑋

associated with 𝑙
• The set of all valuations to 𝑝 such that

each trace in 𝑋 satisfies the STREL
formula
• Boundary of the validity domain:

The robustness value with respect to at
least one trace in 𝑋 is ≈ 0

□[",$]𝑦 < 𝑐

𝑑

𝑐

Validity Domain of PSTREL 𝜑(𝑝)

High-level steps

• Constructing the spatial model

• Projecting each spatio-temporal trace to a
tight valuation in the parameter space of a
given PSTREL formula

• Clustering the trace projections throught AHC

• Learning bounding boxes for each cluster
using a Decision Tree based approach

• Learning a STREL formula for each cluster

• Improving the interpretability of the learned
STREL formulas cluster

COVID-19 data from LA County

PSTREL formula: ⋄ ",$ {𝐹 ",* (𝑥 > 𝑐)}
• We fix 𝜏 to 10 days
• Small d and large c are hot spots

𝜑&'$ =⋄[",()*+.-*] 𝐹 ",+" 𝑥 ≥ 3181 ∨	⋄[",+."""] 𝐹 ",+" 𝑥 ≥ 5612

BSS data from the city of Edinburgh

PSTREL formula: 𝜑 𝜏, 𝑑 = 𝐺 ",9 𝜑:;<= 𝜏 ∨ 𝜑:;>? 𝑑
𝜑:;<= 𝜏 = 𝐹 ",* 𝐵 ≥ 1 ∧ 𝐹 ",* (𝑆 ≥ 1),
𝜑:;>? 𝑑 =⋄ ",$ 𝐵 ≥ 1 ∧⋄ ",$ (𝑆 ≥ 1)

𝜑&'$ = ¬𝐺 ",/ 𝜑0123 17.09 ∨ 𝜑0145 2100 ∧ ¬𝐺 ",/ (𝜑0123 50 ∨ 𝜑0145 1000.98)

Traditional ML approaches

KMeans approach from
tslearn library

Kshape approach from
tslearn library

Related Works

• Bartocci et all: Survey on mining signal temporal logic specifications. Inf. Comput., 2022
• Template-Free:

• Bombara, G et all, A Decision Tree Approach to Data Classification Using Signal Temporal Logic. In: Proc. of
HSCC, 2016

• Bombara, G. and Belta, C. (2021). Offline and Online Learning of Signal Temporal Logic Formulae Using
Decision Trees.

• Mohammadinejad, S., Deshmukh, J. V., Puranic, A. G., Vazquez-Chanlatte, M., and Donze ,́ A. (2020b).
Interpretable classification of time-series data using efficient enumerative techniques. Proceedings of the
23rd International Conference on Hybrid Systems: Computation and Control.

• Andrea Brunello, Dario Della Monica, Angelo Montanari, Nicola Saccomanno, Andrea Urgolo: Monitors That
Learn From Failures: Pairing STL and Genetic Programming. IEEE Access 11:

• Only-positive Example:
• S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, N. Shankar. TeLEx: learning signal temporal logic from positive examples

using tightness metric, Formal Methods in System Design
• Clustering

• Marcell Vazquez-Chanlatte, Jyotirmoy V. Deshmukh, Xiaoqing Jin, Sanjit A. Seshia: Logical Clustering and
Learning for Time-Series Data. CAV (1) 2017: 305-325

• Exploiting Monotonicity
• Marcell Vazquez-Chanlatte, Shromona Ghosh, Jyotirmoy V. Deshmukh, Alberto L. Sangiovanni-Vincentelli,

Sanjit A. Seshia: Time-Series Learning Using Monotonic Logical Properties. RV 2018: 389-405

A modern machine learning approach

input data

typically linear

prediction taskrepresentation in ℝ!

non-linear

representation
learning

Goal: embed STL formulae in ℝ! meaningfully.

Ideally: distance between embedded formulae should reflect
semantic distance.

Main: semantic-preserving embeddings

How to construct meaningful embeddings?

How to check that they are meaningful?

kernel-based methods

learning model checking

Bortolussi, L., Gallo, G. M., Křetínský, J., & Nenzi, L. Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: TACAS, 2022.

Kernel’s application to linearize a
problem

Kernels

A kernel is a function k defining implicitly a
scalar product in a feature space

where 𝜙 is a map from 𝑋 to the feature space

Kernel Trick
A linear regression problem in the feature space 𝜙(𝑋):

has a dual formulation depending on 𝑁 dual variables 𝛼 and on the kernel evaluated
among training points 𝑘(𝑥! , 𝑥").

∑
I
𝑤I𝜙I(𝑥)

Overview: kernel trick for STL

1. How to embed formulae in a Hilbert space?
identify a formula with a functional via quantitative semantics: 𝜑:𝒯 → ℝ

2. How to measure similarity on the feature representation?
use scalar product in 𝐿! w.r.t. a base finite measure 𝜇"

3. How to design a finite measure on trajectories?
prefer simple trajectories with limited variation

A kernel for STL

Computing kernels in three steps:

integration w.r.t. a base measure 𝜇"

normalisation

exponentiation

The base measure 𝜇!

Compute integral by Montecarlo sampling of 𝜇":

𝜇" is defined via its sampling algorithm:
- fixed time step Δ up to a final time 𝑇
- Bounded total variation (sampled from squared

Gaussian)
- Limited change of sign of derivative

“Learning” model checking

Equipped with the previous definitions, we can try to solve the following problem:

Given 𝑝(𝜓#|𝑀) for randomly chosen formulae 𝜓$, … , 𝜓%

can we predict 𝑝(𝜑|𝑀)?

without knowing or executing the system 𝑀

Learning with STL kernels

Different kinds of prediction tasks:
- Boolean truth and robustness for individual trajectories
- average robustness (w.r.t. 𝜇" or a generic process 𝜇)
- satisfaction probability (w.r.t. 𝜇" or a generic process 𝜇)

Data distribution over STL formulae 𝜑: prefer simple formulae over complex ones

Training set: {(𝜓# , 𝑦#)}#&$…,%

Learning algorithm: kernel ridge regression (with cross-validation)

Experimental Results

(left) Robustness on single
trajectories and (right)
satisfaction probability (𝜇!)

Good generalisation on out-
of-distribution formulae

Experimental Results on the stochastic models

(left) Accuracy of satisfiability
prediction and (right) MRE of
robustness prediction

Immigration (1d)
Isomerization (2d)
Transcription (3d)

How many input points we need?

In practice

Dessert: ongoing work

How to make embeddings explicit (i.e. in ℝ")?

Can we replace quantitative with Boolean semantics?

How to use these embeddings for STL requirement mining?

kernel PCA

Boolean kernel

invert the embeddings using GNN

From implicit to explicit embeddings

input data prediction taskrepresentation in ℝ*

dimensionality reduction 𝑘<<𝑛 < ∞

Goal: reduce the dimensionality of the embeddings using Kernel-PCA

representation in ℝ+

STL kernel

Kernel-PCA
Project input data on a high-dimensional continuous
space ℝ$ using a kernel, then perform dimensionality
reduction using PCA to project the embeddings in ℝ% ,
where downstream tasks are performed.

Kernel-PCA: experimental results

MRE Comparison of STL Kernel
Regression with 𝑛 = 1000 and
Kernel PCA + linear regression with
𝑘 = 350.

After ∼ 350 principal components, the performance of Kernel PCA stabilises to errors
comparable to that of STL Regression.

Intuition: many of the formulae in the training set bring the same
contribution to the final predictions, without adding a significant
amount of information. Reducing the dimension of the embeddings
saves computational time without hurting the predictive
performance.

A STL-kernel leveraging qualitative satisfaction

Satisfaction probability

Advantages:
- the Boolean kernel preserves semantic equivalence
- the Boolean kernel outperforms the standard one on the
task of satisfaction probability;
- interpretable measure of similarity between STL

formulae (allowing to sample formulae as diverse as
possible).

Adapt the definition of the STL Kernel to rely on the qualitative/Boolean semantics of STL

𝑘&' (𝜑, 𝜓) = ∫(∈𝒯𝜑(𝑟)𝜓(𝑟)d𝜇+(𝑟)
i.e. integral of the product of the satisfiability value of input formulae w.r.t. measure 𝜇+.

Inverting the embedding
Problem with kernel embeddings: non-invertibility→ encoding-decoding architecture

Learn invertible encodings using Graph Neural Networks (GNN):
- Encode parse tree of the formula into the latent space
- Decode latent vectors to syntactic trees, ideally with the same semantic meaning of the input

formula

∧

∨ ¬

∧

𝑧𝑦

𝑦𝑥
Encoder Decoder

Formula Latent Representation in ℝ,

∧

∨ ¬

∧

𝑧𝑦

𝑦𝑥

A simpler setting: boolean formulae
Problems with GNN encoding-decoding architectures:
- Scalability to deeper parse trees
- Learning temporal/threshold parameters of

operators

Current solutions/attempts:
- Boolean logic setting (i.e. non-parametric formulae)
- Hierarchical approach: first learn adjacency matrix, then

features

∧

∨ ¬

∧

XX

XX

∧

∨ ¬

∧

∧

∨ ¬

∧

𝑧𝑦

𝑦𝑥

Node
Classification

Task

Encoding
Decoding

Currently 92 ± 3%average reconstruction accuracy on Boolean
formulae with 5 variables and parse trees having depth ∼ 6

Conclusions

- Using kernels + kernel PCA, we can construct finite dimensional embeddings
which are effective in solving the “learning” model checking problem.

- Leveraging GNN deep learning models we are trying to build syntax based
invertible embeddings.

- Idea: combine syntax and semantic based embeddings to get invertible
mappings from formulae to real vector spaces

- use the framework for STL requirement mining, formula translation, sanitisation
and simplification, game-based synthesis, …

