Action on extended operators

Consider a $O(M_p)$ that is "irriducible" $i.e.$ equivalently

- it cannot be expressed as ^a sum of tuo other p operators
- . there are no topol. local op. that can be inserted at θ pt. $x \in \Sigma_p$ except multiples of id.

Now, delforming U_d(Z_{d-p-1}) a*cross*
$$
O(n_1)
$$
 laws
\n $Orbund = kop.bcd^{d} op O(x) at the intas. pt. $\Sigma \wedge M$
\n $O(\Sigma_{d-p-1}) O(M_1) = O(x) O(M_1) U(\Sigma_{d-p-1}')$
\n $=$ $x \cdot R$$

Since $O(x) = \phi(q) 1$, then

$$
U_{q}(\Sigma_{d-p-1})U(H_{p}) = \phi(q)U(H_{p})U_{q}(\Sigma_{d-p-1}^{1})
$$
\nBecause of
$$
U_{q}(\Sigma)U_{q}(\Sigma) = U_{qq}(\Sigma)
$$
\n
$$
\Rightarrow \phi(q) \phi(q) = \phi(qq)
$$

Let
$$
\phi
$$
 ϕ ϕ

\nThen ϕ ϕ

F.S.
$$
G^{(1)} = U(1)
$$
 \rightarrow $\hat{G}^{(1)} = T$
\n $\phi(g) = e^{i\omega t} \propto E_0 2\pi \Gamma$
\n $\phi(g) = g^m = e^{i\omega t}$
\n $\phi(g) = g^m = g^m = g^m = g^m$
\n $\phi(g) = g^m = g^m = g^m = g^m$
\n $\phi(g) = g^m = g^$

E5.
$$
G^{(p)} = \mathbb{Z}_N
$$
 $\rightarrow \hat{G}^{(p)} = \mathbb{Z}_N$
\n $\int_{0}^{q} 2\pi i d\omega$ $\phi_{\beta}(q_{\alpha}) = e^{2\pi i d \cdot \beta / N}$
\n $d = 0, 1, ..., N-1$ $\beta = 0, 1, ..., N-1$

$$
\begin{array}{lll}\n\text{Divy} & \phi(e^{2\pi i \alpha/\omega}) = e^{i\theta(\alpha)} \\
\rightarrow \theta(\alpha) & \text{Div} \rightarrow \phi_{\beta}(e^{2\pi i \omega/\omega}) = e^{i\frac{2\pi i}{\omega}\beta} \\
\rightarrow e^{i\frac{2\pi i \beta}{\omega}\beta} & \text{for } \phi_{\beta} \text{ for be well defined.}\n\end{array}
$$

ES.
$$
G^{CP}
$$
 $\underset{\text{ABEUAN}}{\text{Hinter}} \Rightarrow \hat{G}^{(p)} = G^{(p)}$
\n $\overset{\text{A}}{\perp}$ $\overset{\text{BEEUAN}}{\perp}$
\n $\overset{\text{BEEUAN}}{\perp}$ $\overset{\text{BDEUAN}}{\perp}$
\n $\overset{\text{BDEUAN}}{\perp}$ $\overset{\text{Cup}}{\perp}$ $\overset{\text{DHeV}}{\perp}$ $\overset{\text{DHeV}}{\perp}$
\n $\overset{\text{Dhe}}{\perp}$ $\overset{\text{Aap}}{\perp}$ $\overset{\text{BEEUAN}}{\perp}$ $\overset{\text{DHeV}}{\perp}$ $\overset{\text{DHeV}}{\perp}$

PURE SU(2) YM

• Wilson line operators parametrited by IRREP of SU(2)
Wj = Tr_{Rj} Pe^{iS} A $j \in \mathbb{Z}_2$ is the "spin". We have charged operators on which these lines can end, but this can happen only
of the integer spin! $\mathop{\mathrm{E}}\limits_{\mathbf{r}}(\mathbf{x})$ => The "Unscreened" Wilson lines an

. The trivial one
. The one in fundam rep. \int they generate $\frac{1}{G}$ or group.

$$
\Rightarrow \text{The} \quad \text{out} - \text{form} \quad \text{Sym.} \quad \text{of} \quad \text{SUC2} \quad \text{is}
$$
\n
$$
G_e^{(1)} = \hat{G}^{(1)} = \mathbb{Z}_2^{(1)} \quad \text{electric} \quad \text{1-form} \quad \text{symmetry}.
$$

Asider:
$$
OSSTRUCTION
$$
 classes
\nConsider a principal bond for $G = \tilde{G}/\Lambda$ $ACZ(\tilde{G})$
\n \rightarrow If can be described in terms of transition functions
\n $Volume$ of the G on a column 1. log
\n $Index$ and log
\n $codim$ 2 junctions.
\nConsider the $left$ of the G -valued transform functions
\n ko \tilde{G} valued transition functions. Be for the $left$,
\n the product of transition functions around a cat junctions
\nis 1
\n 1
\n

It is Indep. of the chove of $ln f +$. For $G = SO(3)$ $\tilde{G} = SU(2)$ $\Lambda = \mathbb{Z}_2$ the class we is known as the 2nd Stiefel-Whitney class.

PURE $SO(3)$ YM Gauze $G = SO(3) = SU(2) / Z_2$ & no matter fields · Wilson lines parametrized by irrop of SO(3), that are fewer than in $SO(2)$: $j \in \mathbb{Z}$ $(j$ is the spin of j

Since all these WC can be sneared $\Rightarrow G_e^{(1)}=1$.

$$
\bullet \frac{1}{t} \frac
$$

The topological surface operator generating the magnitude 1-form
symmetry can be expressed as

$$
U(z_z) = e^{\lambda \pi \int \frac{w}{z_z}}
$$

Spontaneous breaking of high-form symmetries.

\nLet us consider gauge through a with Wilson Lines op.

\nThese are charged (extended) op. ondu 1-form sym.

\nIf their VEV is
$$
\pm 0
$$
 then the 1-form spin is SR.

\n $\le WICJ > fyr\geq U$ defined on geometric properties.

\n $\le WICJ > v e^{-ArafcJ}$ or $\leq WICJ > v e^{-hrindert}$

\n(a)

As we have seen
$$
\int av \log C
$$

(a) $\Leftrightarrow \text{(WIC)} \ge 0$
(b) $\Leftrightarrow \text{CWIC} \Rightarrow \text{O} \qquad (\text{this happens also } \int av \text{V(r)} \sim \frac{1}{r})$

$$
\Rightarrow
$$
 Interpot the problem of ConFlowerent in terms of
\n
$$
S
$$
1600TAMES STInterry BEAKING of a 1-form Sym.
\nWbab is the associated Gousstone Boson?
\nFor ordinary O-form sym one starts from the WL
\n
$$
\partial_{\mu} \langle J^{\mu}(\kappa) \phi(\gamma) \rangle = -i \delta(\chi - \gamma) \langle \delta \phi(\gamma) \rangle
$$

$$
\int d^{d}x e^{i\beta x} \partial_{\mu} \langle \exists^{\prime\prime}(x) d(y) \rangle = -i \int d^{d}x e^{i\beta x} \delta(x-y) \langle \delta d(y) \rangle
$$
\n
$$
-i \int d^{d}x \int_{\mu} e^{i\beta x} \langle \exists^{\prime\prime}(x) d(y) \rangle = -i e^{i\beta x} \langle \delta d(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu} e^{i\beta x} \langle \exists^{\prime\prime}(x) d(y) \rangle = -i e^{i\beta x} \langle \delta d(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu} e^{i\beta x} \langle \exists^{\prime\prime}(y) d(y) \rangle = \langle \delta d^{d}(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu}^{\infty} e^{i\beta x} \langle \exists^{\prime\prime}(y) d(y) \rangle = \langle \delta d^{d}(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu}^{\infty} e^{i\beta x} \langle \exists^{\prime\prime}(y) d(y) \rangle = -i \int d^{d}x e^{i\beta x} \langle \delta d(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu}^{\infty} \langle \exists^{\prime\prime}(y) d(y) \rangle = -i \int d^{d}x e^{i\beta x} \langle \delta d(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu}^{\infty} \langle \exists^{\prime\prime}(y) d(y) \rangle = -i \int d^{d}x e^{i\beta x} \langle \delta d(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu}^{\infty} \langle \exists^{\prime\prime}(y) d(y) \rangle = -i \int d^{d}x e^{i\beta x} \langle \delta d(y) \rangle
$$
\n
$$
\int_{-\infty}^{\infty} \int d^{d}x \int_{\mu}^{\infty} \langle \exists^{\prime\prime}(y) d(y) \rangle = -i \int d^{d}
$$

let's repeat it for 1- form sym. We start from WI $<\partial_{\mu} J^{\mu\nu}(x) W[C] > = -9e \int_{C} dy^{\nu} \frac{d}{d}(x-y) GW[C] >$

Taking Fourier transform:

\n
$$
x \cdot p_{p} < \frac{1}{3}mv(p) Wtc3 >= q_{e} \int_{0}^{v} (p)c) < Wtc3 > 0
$$
\n
$$
x^{p}p_{p} < \frac{1}{3}mv(p) Wtc3 >= q_{e} \int_{0}^{v} (p)c) < Wtc3 > 0
$$
\nTake limit $p_{p} \Rightarrow 0$:

\n
$$
y^{p}p^{p}(p)c) = \int_{0}^{1} dy^{p}p^{p}e^{i\theta y} = \int_{0}^{1} (dy^{p}p)e^{i\theta y} = \int_{0}^{1} (dy^{p}p)e
$$

One can actually cheek that the photons ARE He Goldstone excitations.

- \sim conserved current $J^{\mu\nu}$ creates Goldston excitations from the vacuum in the broken phase 1 Gold $>$ $\bigcup^{\mu\nu}$ $10>$ (Like in QFTII.) · reall that $J^{\mu\nu} = F^{\mu\nu}$.
- using Canonical quanta oh can show that this actually creates one photon