Action on extended operators

Consider a (O(Mp) that is "irriducible" i.e. coviralently

- it cannot be expressed as a sum of two other
 p-operators;
- there are no topol. local op. that can be inserted at a pt. x EZp except multiples of id.

Now, deforming
$$U_{g}(Z_{d-p-1})$$
 across $O(M_{p})$ leaves
behind a top local op. $O(x)$ at the inters. pt. $E \wedge M$
 $U(Z_{d-p-1})O(M_{p}) = O(x)O(M_{p})U(Z_{d-p-1}')$
 $= x = \frac{z'}{M}$

Since $O(x) = \phi(q) \ 1$, then

$$U_{q}[Z_{d-p-1}] U(M_{p}) = \phi(g) \quad O(M_{p}) U_{q}(\Sigma_{d-p-1}^{\dagger})$$

Becouse of fusion rules
$$U_{q}(Z) U_{q1}(Z) = U_{qq1}(Z)$$

$$\rightarrow \phi(g) \phi(g') = \phi(gg')$$

L.e.
$$\phi$$
 furnishes a one-dim. rep. of the
p-form symmetry group $G^{(p)}$.
 $\phi: G^{(1)} \rightarrow Q^{*}$ "CHARACTER"
 $U(1)$ if we reprin ONITARY REPS
If we bet via linking, the $\Sigma^{(1)}$ is calmediatible
 $Q^{(n)}$ $Q^{(n)}$
 $Q^{(n)}$ $Q^{(n)}$
 $Q^{(n)}$ $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$
 $Q^{(n)}$

ES,
$$G^{(p)} = U(1) \longrightarrow G^{(p)} = T$$

 $g = e^{i\alpha x} \quad \alpha \in Iopint$
 $auol 1 - form sym.$
 $f(g) = g^m = e^{i\alpha x}$
 $g(e^{i\alpha}) = e^{i\Theta(\alpha)} \quad aith = \Theta(\alpha + 2\pi) = \Theta(\alpha) + 2k\pi$
 $f(e^{i\alpha})^{b_1}(e^{i\alpha})^{b_2}) = f(e^{i(b_1\alpha_1 + b_2\alpha_2)}) = b_1b_2 \in \mathbb{Z}$
 $f(e^{i\alpha})^{b_1}(e^{i\alpha})^{b_2}) = f(e^{i(b_1\alpha_1 + b_2\alpha_2)}) = b_1b_2 \in \mathbb{Z}$
 $= e^{ibn(\alpha_1 + b_2\alpha_2)}$
 $= e^{ibn(\alpha_1 + b_2\alpha_2)} = \theta(b_1\alpha_1 + b_2\alpha_2) = b_1\theta(A) + b_1\theta(A)$
 $= e^{ibn(\alpha_1)}e^{ib_2\theta(A)} \quad f \Rightarrow \theta(b_1\alpha_1 + b_2\alpha_2) = b_1\theta(A) + b_1\theta(A)$
 $= e^{ibn(\alpha_1)}e^{ib_2\theta(A)} \quad f \Rightarrow \theta(b_1\alpha_1 + b_2\alpha_2) = b_1\theta(A) + b_1\theta(A)$
 $= e^{i\alpha} \quad mean function \Rightarrow \theta(A) = h \neq mean A$
 $\Rightarrow \theta(A)$ is a linen function $\Rightarrow \theta(A) = h \neq mean A$
 $\Rightarrow \theta(A)$ is a linen function $\Rightarrow \theta(A) = h \neq mean A$
 $\Rightarrow \theta(a)^{i\alpha} = e^{i\alpha} \quad mean A$
 $= e^{i\alpha}$

$$\begin{split} ES. \quad G^{(p)} &= \mathbb{Z}_{N} \longrightarrow \hat{G}^{(p)} = \mathbb{Z}_{N} \\ & \stackrel{(U)}{=} 2\pi i d_{N} \\ g &= e \\ d &= 0_{1}1_{1}..., N-1 \\ & \qquad \beta^{=0_{1}1_{1}..., N-1} \\ \end{split}$$

$$\begin{split} \hat{\mathcal{D}}_{\mathcal{W}} & \hat{\mathcal{D}} \left(e^{2\pi i \hat{\mathcal{D}}/N} \right) = e^{i \hat{\mathcal{D}}(\mathcal{A})} \\ \rightarrow \hat{\mathcal{D}}(\mathcal{A}) \quad \hat{\mathcal{U}}_{\mathcal{W}} \rightarrow \phi_{\beta} \left(e^{2\pi i \hat{\mathcal{D}}/N} \right) = e^{i \frac{2\pi i \beta}{N} \cdot \mathcal{A}} \\ \beta = 0_{1} \cdot 1_{1} - \dots \cdot N - 1 \quad \hat{\mathcal{D}}_{\mathcal{P}} \quad \hat{\mathcal{D}} \quad \hat{\mathcal{D}}_{\mathcal{P}} \quad \hat{\mathcal{D}} \quad \hat{\mathcal{D}}_{\mathcal{P}} \quad \hat{\mathcal{D}} \quad \hat{\mathcal{D}}$$

ES.
$$G^{(p)} = G^{(p)} = G^{(p)}$$

ABELIAN
 L These are products of \mathcal{T}_{EN} 'S
One has : $\hat{G}^{(p)} = G^{(p)}$
In fact $g \in G^{(p)}$ oblighted by: $\hat{G}^{(p)} \rightarrow U(1)$
 $\phi \mapsto \phi(g)$.

PURE SU(2) YM

• Wilson line operators parametrited by IRREP of SU(2) $W_j = Tr_{R_j} P e^{iSA} \qquad j \in \mathbb{Z}_2$ is the "spin". We have charged operators on which these lives can end, Twis with this can happen only two for integer spain! μ∩(×) => The "Unscreened" Wilson lives an • the trivial one $\int they generate a \mathbb{Z}_2$ group • the one in fundom rep. $\int = \hat{G}^{(1)}$ $\Rightarrow The one-form sym. of SU(2) is$ $G_e^{(1)} = \hat{G}^{(1)} = \mathbb{Z}_2^{(1)}$ electric 1-form symmetry. • 't Houft openators. For pur SU(2) there seem to be solitowic field configurations that have charges

to screen all 't Hooff operators.

$$\Rightarrow G_{m}^{(1)} = \{1\}$$

It is indep of the choice of lift. For G = SO(3) $\widetilde{G} = SU(2)$ $\Lambda = \mathbb{Z}_2$ the clar with its known as the 2nd Stiefel-Whitney class. PURE SO(3) YM Gauge G = SO(3) = SU(2)/Zz & no matter fields group <u>Wilson lines</u> parametrized by irrep of SO(3), that are fewer than in SU(2): j EZ (j is the spin of rep.)

Since all these WL can be sneed => Ge⁽¹⁾=1.

• 't Hood lines : now not all TL can be sneened, we are left with
$$\hat{G}_{m}^{(1)} = \mathbb{Z}_{2} \implies \hat{G}_{m}^{(1)} = \mathbb{Z}_{2}$$
.

The topological surface operator generating the majnetic 1-form
symmetry can be expressed as
$$U(Z_z) = e^{i\pi \int_{Z_z}^{W_z}}$$

As we have seen, for large C
(a)
$$\iff$$
 (W[C]>=0
(b) \iff (W[C]>=0

→ Interpret the problem of CONFINEMENT in terms of SPONTANEOUS SYMMETRY BREAKING of a 1-form sym. What is the associated GOLDSTONE Boson? For ordinary O-form sym one starts from the WI $\partial_{\mu} < J^{\mu}(x) \phi(y) ? = -i \delta(x-y) < \delta \phi(y)$? and do Former transform:

$$\int d^{4}x e^{ipx} \partial_{\mu} \langle J^{\mu}(x) d(y) \rangle = -i \int d^{4}x e^{ipx} \delta(x-y) \langle \delta d(y) \rangle$$

$$= -i \int d^{4}x p_{\mu} e^{ipx} \langle J^{\mu}(x) d(y) \rangle = -i e^{ipy} \langle \delta d(y) \rangle$$

$$\int p_{\mu} \langle \tilde{J}^{\mu}(p) d(y) \rangle = e^{ipy} \langle \delta d(y) \rangle$$

$$\int F_{i}T_{i} iny$$

$$p_{\mu} \langle \tilde{J}^{\mu}(p) \tilde{\phi}(q) \rangle = \langle \delta \tilde{\phi}(p+q) \rangle$$

$$\int S_{i}t q = -p$$

$$\int p_{\mu} \langle \tilde{J}^{\mu}(p) \tilde{\phi}(-p) \rangle = \langle \delta \tilde{\phi}(0) \rangle \langle \phi d(y) \rangle \langle \phi d(y) \rangle \langle \phi d(y) \rangle \rangle$$

$$\Rightarrow \langle \tilde{J}^{\mu}(p) \tilde{\phi}(-p) \rangle Hust Have A Pole$$

$$in p = 0 \quad ij \langle \delta \tilde{\phi}(0) \rangle \langle \phi d(y) \rangle \rangle$$

$$\Rightarrow \langle \tilde{J}^{\mu}(p) \tilde{\phi}(-p) \rangle Hust Have A Pole$$

$$in p = 0 \quad ij \langle \delta \tilde{\phi}(0) \rangle \langle \phi d(y) \rangle \rangle$$

$$\Rightarrow \langle \tilde{J}^{\mu}(p) \tilde{\phi}(-p) \rangle \sim \frac{p^{\mu}}{p^{2}} \langle H_{\mu}ssless Physica e_{i} \langle \phi d(y) \rangle \rangle$$

let's repeat it for 1-form sym. We start from WI $(\partial_{\mu} J^{\mu\nu}(x) WECJ > = -9e \int dy^{\nu} S'(x-y) < WECJ > C (\delta W = -i9eW)$

Taking Former transform:

$$\begin{aligned}
&= \int dy^{\nu} e^{ipt} \\
&= \int dy^{\nu} e$$

One can actuelly check that the photons ARE He Goldstone excitations.

- conserved current J^{MU} creates Goldston excitations
 from the vacuum in the broken phase
 I Gold 7 ~ J^{MU} 10 > (Like in QFTE.)
 recell that J^{MU} = F^{MU}.
- · using Conoural quanties are can show that this actually reates one photon.